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Preliminaries
This section is a very short version of the great book [1] (mainly its first part).
The goal is to give a formal view on constraint optimisation. It’s not necessary for
understanding the material, but should clarify a lot of small intermediate steps that
will appear in the TN/ML/kernels courses.

We’d like to solve problems of the form

min 𝑓(𝑥),

s.t. 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, . . . ,𝑚

ℎ𝑖(𝑥) = 0, 𝑖 = 1, . . . , 𝑝.

(1)

Denote the intersection of their domains as

𝒟 = dom𝑓 ∩ (∩ dom𝑓𝑖) ∩ (∩ domℎ𝑖).

One can interpret the constraints 𝑓𝑖 and ℎ𝑖 as penalties, obtaining the Lagrangian:

𝐿(𝑥, 𝜆, 𝜈) = 𝑓(𝑥) +
𝑚∑︁
𝑖=1

𝜆𝑖𝑓𝑖(𝑥) +

𝑝∑︁
𝑖=1

𝜈𝑖ℎ𝑖(𝑥), (2)

where 𝜆 and 𝜈 are so-called Lagrange multipliers (or dual variables). Why is it useful?
Denote the Lagrange dual function as

𝑔(𝜆, 𝜈) = inf
𝑥
𝐿(𝑥, 𝜆, 𝜈). (3)

We have that for every 𝜆 ≥ 0, every 𝜈 and every feasible 𝑥 (such that the constraints
in Equation 1 are satisfied) the following is always true:

𝑔(𝜆, 𝜈) ≤ 𝐿(𝑥, 𝜆, 𝜈) ≤ 𝑓(𝑥). (4)

The left inequality is trivial; the right one is true as ℎ𝑖(𝑥) = 0 and 𝜆𝑖𝑓𝑖(𝑥) ≤ 0 for
any feasible point.
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We haven’t yet said that any of the used functions is "good", although we used
the fact that 𝒟 ̸= ∅. In practice, it means that if one can find 𝑔(𝜆, 𝜈), maximising
it would give a lower bound on 𝑓(𝑥). Moreover, 𝑔(𝜆, 𝜈) is always a concave function
(we’ll define it soon; the proof uses only the definitions of concavity and the dual
function), which means that there is only one global maximum.

The question is how one can find all three variables 𝑥*, 𝜆*, 𝜈* such that 𝑔(𝜆*, 𝜈*) =
𝑓(𝑥*). First, we need to define "good" functions.

Convex functions. A function 𝑓(𝑥), 𝑥 ∈ R𝑛 is convex if

𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) ≥ 𝑓(𝛼𝑥 + (1 − 𝛼𝑦)), 𝛼 ∈ [0, 1], 𝑥, 𝑦 ∈ R𝑛.

An example is drawn in Figure 1. A function 𝑓(𝑥) is called concave if −𝑓(𝑥) is convex.

(𝑥, 𝑓(𝑥))

(𝑦, 𝑓(𝑦))

(𝛼𝑥 + (1 − 𝛼)𝑦, 𝑓(𝛼𝑥 + (1 − 𝛼)𝑦))

(𝛼𝑥 + (1 − 𝛼)𝑦, 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦))

Figure 1: Graph of a convex function

Convex problems. Problems of the form Equation 1 for which 𝑓(𝑥), 𝑓𝑖(𝑥) are
convex and ℎ𝑖(𝑥) are affine (forming a constraint 𝐴𝑥 = 𝑏) are called convex. In other
words, we take an objective function 𝑓(𝑥) that is convex on a convex set and minimise
it on this set (recall that a set is called convex if the edge between any two points of
the set belongs to it as well).

A problem is called concave, if 𝑓(𝑥) is concave (and the rest is convex).

Slater’s condition. Denote 𝑝* = min 𝑓(𝑥), 𝑑* = max 𝑔(𝜆, 𝜈) (letters stand for
primal and dual, optimisation is done w.r.t. the mentioned constraints). Consider
problems of the form

min 𝑓(𝑥),

s.t. 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1, . . . ,𝑚

𝐴𝑥 = 𝑏.

(5)

with convex 𝑓, 𝑓𝑖. The Slater’s condition states that if ∃𝑥 ∈ relint𝒟 for which all
𝑓𝑖 < 0, then 𝑑* = 𝑝*. Relative interior of a set is defined as

relint𝒟 = {𝑥 ∈ 𝒟|𝐵(𝑥, 𝑟) ∩ aff 𝒟 ⊆ 𝒟 for some 𝑟 > 0},
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where 𝐵(𝑥, 𝑟) is an 𝑥-centred ball of radius 𝑟 and aff 𝒟 is the affine hull of 𝒟.
This condition seems to be trivial, but it doesn’t always hold (e.g. [1], p. 280,

example 5.21).

Karush-Kuhn-Tucker (KKT) conditions. If 𝑥* and 𝜆*, 𝜈* are the solutions
of the primal and dual problems and also 𝑑* = 𝑝*, then the KKT conditions for
differentiable 𝑓, 𝑓𝑖, ℎ𝑖 are

𝜕

𝜕 𝑥
𝐿(𝑥*, 𝜆*, 𝜈*) = 0,

𝑓𝑖(𝑥
0) ≤ 0, 𝑖 = 1, . . . ,𝑚,

ℎ𝑖(𝑥) = 0, 𝑖 = 1, . . . , 𝑝,

𝜆𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚,

𝜆𝑖𝑓𝑖(𝑥
*) = 0, 𝑖 = 1, . . . ,𝑚.

(6)

The first condition means that 𝑥* minimises the Lagrangian, the next three imply that
all the constraints (both primal and dual) are satisfied. The third one, called comple-
mentary slackness, means that 𝜆𝑖 has to be zero when the corresponding constraint
𝑓𝑖 is strictly negative (otherwise it would penalise the Lagrangian).

These conditions are necessary, meaning that they hold for any solution of a
problem with zero duality gap. However, for convex problems this conditions are also
sufficient. Hence, it’s enough to find a point that satisfies all of them.

How do I use it? In practice, a lot of problems are convex and usually do satisfy
the Slater’s conditions. Hence, it’s enough to find when 𝐿′

𝑥 = 0 (another notation
for partial derivatives) and then match all the conditions. Let’s illustrate it with a
simple example.

Quadratic problem example. For 𝑏 > 𝑎, consider

min
𝑥

𝑥2,

s.t. (𝑥− 𝑎)(𝑥− 𝑏) ≤ 0.
(7)

It’s a convex problem that satisfies the Slater’s condition. The solution is trivial, but
let’s get it formally. The Lagrangian is

𝐿(𝑥, 𝜆) = 𝑥2 + 𝜆(𝑥− 𝑎)(𝑥− 𝑏).

Setting 𝐿′
𝑥 = 0, we get

𝑥 =
𝜆(𝑎 + 𝑏)

2(1 + 𝜆)
.

Complementary slackness allows us to find possible 𝜆:

𝜆(𝑥− 𝑎)(𝑥− 𝑏) = 0 ⇒ 𝜆

4(1 + 𝜆)2
(𝜆(𝑏− 𝑎) − 2𝑎)(𝜆(𝑎− 𝑏) − 2𝑏) = 0.
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It gives three possible 𝜆 along with corresponding 𝑥:

𝑥 = 0, 𝜆 = 0;

𝑥 = 𝑎, 𝜆 =
2𝑎

𝑏− 𝑎
;

𝑥 = 𝑏, 𝜆 =
2𝑏

𝑎− 𝑏
.

When 𝑎 < 0 < 𝑏, the last two solutions result in negative 𝜆, hence 𝑥 = 0. The same
solution holds when either 𝑎 or 𝑏 is zero.

If 𝑏 < 0, the first solution results in (𝑥 − 𝑎)(𝑥 − 𝑏) = 𝑎𝑏 > 0 and the second one
gives 𝜆 < 0. Hence, 𝑥 = 𝑏.

If 𝑎 > 0, again the first solution violates the 𝑥 constraint and the last one violates
the 𝜆 constraint.

Overall, we first set 𝐿′
𝑥 to zero and then used complementary slackness in order

to select possible values of the dual variable. The unique solution is determined by
satisfying the primal and dual constraints. This is more or less the general algorithm.

Infinite-dimensional problems. Somewhat less rigorously, we can use Lagrange
multipliers for the problems of the form

min
𝑝

∫︁
𝐹 (𝑥, 𝑝(𝑥))𝑑𝑥,

s.t.

∫︁
𝑝(𝑥)𝑓𝑖(𝑥)𝑑𝑥 = 𝑐𝑖, 𝑖 = 1, . . . ,𝑚.

(8)

In such calculus of variations problems, the function 𝑝(·) belongs to some function
class (e.g. continuously differentiable on [𝑎, 𝑏]) and 𝐹 is also sufficiently differentiable.

Similarly to the finite-dimensional case, we’ll study

𝐿(𝑝, 𝜆) =

∫︁
𝐹 (𝑥, 𝑝(𝑥))𝑑𝑥 +

∑︁
𝑖

𝜆𝑖

(︂∫︁
𝑝(𝑥)𝑓𝑖(𝑥)𝑑𝑥− 𝑐𝑖

)︂
.

Instead of the usual derivative, consider the variation of the functional 𝐿 w.r.t. 𝛿𝑝:

𝛿𝐿

𝛿𝑝(𝑥)
=

𝛿𝐹 (𝑥, 𝑝(𝑥))

𝛿𝑝(𝑥)
+
∑︁
𝑖

𝜆𝑖𝑓𝑖(𝑥).

Setting it to zero and then choosing 𝜆𝑖 that satisfy the constraints would give the
solution.

References
[1] Boyd, Stephen; Vandenberghe, Lieven. Convex Optimization. Cambridge Univer-

sity Press, 2004.
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Problems
Task 1. (ridge regression) Consider the usual linear regression problem. We have
a data matrix 𝑋 ∈ R𝑛×𝑚 (𝑛 objects and 𝑚 features) and a vector of answers 𝑦 ∈ R𝑛.
We want to find a vector 𝑤 that solves the following:

min
𝑤

1

2
‖𝑦 −𝑋𝑤‖22,

s.t. ‖𝑤‖22 ≤ 𝑐.
(9)

Is it a convex problem? Write down the Lagrangian and express 𝑤 in terms of the
dual variable 𝜆. Using the KKT conditions, obtain an equation for evaluating 𝜆. Why
is the solution unique? Hint: you will need the SVD decomposition 𝑋 = 𝑈𝑆𝑉 ⊤.
Task 2. (Bregman divergence) Assume that we have a vector 𝑦 ∈ R𝑛

++ (meaning
that all entries are positive). Solve the following problem:

min
𝑥

𝑛∑︁
𝑖=1

(︂
𝑥𝑖 log

𝑥𝑖

𝑦𝑖
− (𝑥𝑖 − 𝑦𝑖)

)︂
,

s.t.
𝑛∑︁

𝑖=1

𝑥𝑖 = 1.

(10)

Also assume that the objective is convex on the given set. Note that the non-
negativity constraint on 𝑥 is implicit (it won’t affect optimisation; you can add it
and see what happens) and actually enforced by the domain of log(·).
Task 3. (entropy maximisation) In the TN course, you’ll encounter the entropy
maximisation problem:

max
𝑝

−
∫︁

𝑝(𝑥) log 𝑝(𝑥)𝑑𝑥,

s.t.

∫︁
𝑝(𝑥)𝑑𝑥 = 1,∫︁
𝑝(𝑥)𝑓(𝑥)𝑑𝑥 = 𝑎.

(11)

Find the maximising distribution 𝑝(𝑥) using calculus of variations. Note that the non-
negativity constraint is again implicit. What distribution do you obtain for 𝑓(𝑥) = 𝑥
(so the expectation is fixed)? For 𝑓(𝑥) = 𝑥2?
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Solutions
Task 1. For a data matrix 𝑋 ∈ R𝑛×𝑚 (𝑛 objects and 𝑚 features) and a vector of
answers 𝑦 ∈ R𝑛, we’re solving the following problem:

min
𝑤

1

2
‖𝑦 −𝑋𝑤‖22,

s.t. ‖𝑤‖22 ≤ 𝑐.
(12)

You can easily verify that this problem is convex. There is only one constraint, so
the Lagrangian is

𝐿(𝑤, 𝜆) = ‖𝑦 −𝑋𝑤‖22 + 𝜆(‖𝑤‖22 − 𝑐).

It’s derivative w.r.t. 𝑤 is

𝜕

𝜕 𝑤
𝐿(𝑤, 𝜆) = −2𝑋⊤(𝑦 −𝑋𝑤) + 2𝜆𝑤.

We need to set it to zero, hence

𝑋⊤𝑦 = 𝑋⊤𝑋𝑤 + 𝜆𝑤 = (𝑋⊤𝑋 + 𝜆)𝑤.

The matrix on the right hand side is invertible for every positive 𝜆, thus we get the
well-known ridge regression solution:

𝑤 = (𝑋⊤𝑋 + 𝜆)−1𝑋⊤𝑦.

That’s only the first part of the KKT conditions. Let’s check the rest of them:

‖𝑤‖22 = 𝑦⊤𝑋(𝑋⊤𝑋 + 𝜆)−2𝑋⊤𝑦 ≤ 𝑐.

Using the SVD decomposition 𝑋 = 𝑈𝑆𝑉 ⊤, we get

𝑦⊤𝑈𝑆𝑉 ⊤𝑉 (𝑆2 + 𝜆)−2𝑉 ⊤𝑉 𝑆𝑈⊤𝑦 ≤ 𝑐.

As 𝑉 ⊤𝑉 = 𝐼, we have
𝑦⊤𝑈𝑆(𝑆2 + 𝜆)−2𝑆𝑈⊤𝑦 ≤ 𝑐.

Denoting 𝑏 = 𝑈⊤𝑦, we get
𝑚∑︁
𝑖=1

𝑏2𝑖
𝑠2𝑖

(𝑠2𝑖 + 𝜆)2
≤ 𝑐.

If
∑︀𝑚

𝑖=1(𝑏𝑖/𝑠𝑖)
2 ≤ 𝑐, any non-zero 𝜆 would not satisfy complementary slackness (as

both multipliers would be non-zero), hence 𝜆 = 0. The other way round, 𝜆 = 0 is
only possible when

∑︀𝑚
𝑖=1(𝑏𝑖/𝑠𝑖)

2 ≤ 𝑐 as the constraint has to be satisfied.
When

∑︀𝑚
𝑖=1(𝑏𝑖/𝑠𝑖)

2 > 𝑐 and thus 𝜆 > 0, complementary slackness implies that

𝑚∑︁
𝑖=1

𝑏2𝑖
𝑠2𝑖

(𝑠2𝑖 + 𝜆)2
= 𝑐,
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so we can find the correct 𝜆 numerically.
It’s clear that 𝜆 is a monotonically decreasing function of 𝑐. Therefore choosing 𝑐

is equivalent to picking the corresponding 𝜆 and solving

min
𝑤

‖𝑦 −𝑋𝑤‖22 + 𝜆‖𝑤‖22

without constraints, which is sometimes called the Tikhonov regularisation problem.
The smaller the 𝜆, the bigger the allowed norm of 𝑤.
Task 2. Assume that we have a vector 𝑦 ∈ R𝑛

++ (meaning that all entries are
positive). We’ll solve the following problem:

min
𝑥

𝑛∑︁
𝑖=1

(︂
𝑥𝑖 log

𝑥𝑖

𝑦𝑖
− (𝑥𝑖 − 𝑦𝑖)

)︂
,

s.t.
𝑛∑︁

𝑖=1

𝑥𝑖 = 1.

(13)

Formally, we’re trying to minimise the Bregman divergence associated to the negative
entropy on a simplex (the sum constraint). Informally, we’re projecting 𝑦 onto the
set of probability distributions.

It’s a convex problem as 𝑥 log 𝑥 is convex on the simplex. The Lagrangian is

𝐿(𝑥, 𝜆) =
𝑛∑︁

𝑖=1

(︂
𝑥𝑖 log

𝑥𝑖

𝑦𝑖
− (𝑥𝑖 − 𝑦𝑖) + 𝜆𝑥𝑖

)︂
− 𝜆𝑛.

Setting it’s derivative w.r.t. 𝑥𝑖 to zero, we get

𝜕

𝜕 𝑥𝑖

𝐿(𝑥, 𝜆) = log
𝑥𝑖

𝑦𝑖
+ 1 − 1 + 𝜆 = 0 ⇒ 𝑥𝑖 = 𝑦𝑖𝑒

−𝜆.

Having and additional 𝑥𝑖 ≥ 0 constraint would result in 𝑥𝑖 = 𝑦𝑖 exp(−𝜆 + 𝜈𝑖), but as
𝑦𝑖 > 0 and thus 𝑥𝑖 > 0, complementary slackness enforces 𝜈𝑖 = 0.

Now we need to satisfy the KKT conditions. Check the simplex constraint:

1 =
∑︁
𝑖

𝑥𝑖 = 𝑒−𝜆
∑︁
𝑖

𝑦𝑖 ⇒ 𝑒−𝜆 =
1

‖𝑦‖1
and 𝑥 =

𝑦

‖𝑦‖1
.

We got that this problem is equivalent to simple re-normalisation. Note that we don’t
check complementary slackness as there is no inequality constraints.

The discussed problem arises in the optimisation algorithm called Mirror Descent.
Check the Sebastien Bubeck’s blog for a reference (links to part 1 and part 2).
Task 3. For the entropy maximisation problem

max
𝑝

−
∫︁

𝑝(𝑥) log 𝑝(𝑥)𝑑𝑥,

s.t.

∫︁
𝑝(𝑥)𝑑𝑥 = 1,∫︁
𝑝(𝑥)𝑓(𝑥)𝑑𝑥 = 𝑎,

(14)

https://blogs.princeton.edu/imabandit/2013/04/16/orf523-mirror-descent-part-iii/
https://blogs.princeton.edu/imabandit/2013/04/18/orf523-mirror-descent-part-iiii/
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which is equivalent to

min
𝑝

∫︁
𝑝(𝑥) log 𝑝(𝑥)𝑑𝑥,

s.t.

∫︁
𝑝(𝑥)𝑑𝑥 = 1,∫︁
𝑝(𝑥)𝑓(𝑥)𝑑𝑥 = 𝑎,

(15)

the Lagrangian is

𝐿(𝑝, 𝜆, 𝜈) =

∫︁
𝑝(𝑥) log 𝑝(𝑥)𝑑𝑥 + 𝜆

(︂∫︁
𝑝(𝑥)𝑑𝑥− 1

)︂
+ 𝜈

(︂∫︁
𝑝(𝑥)𝑓(𝑥)𝑑𝑥− 𝑎

)︂
.

The non-negativity constraint is implicit, but it won’t affect the solution. It’s variation
is:

𝛿𝐿

𝛿𝑝(𝑥)
= log 𝑝(𝑥) + 1 + 𝜆 + 𝜈𝑓(𝑥) = 0.

Hence,
𝑝(𝑥) = exp (− (1 + 𝜆 + 𝜈𝑓(𝑥))) = exp(−1 − 𝜆) exp(−𝜈𝑓(𝑥)).

From the first constraint we get that∫︁
exp(−𝜈𝑓(𝑥))𝑑𝑥 = exp(1 + 𝜆).

The second constraint results in

1∫︀
exp(−𝜈𝑓(𝑥))𝑑𝑥

∫︁
exp(−𝜈𝑓(𝑥))𝑓(𝑥)𝑑𝑥 = 𝑎,

which does not have a general form.
If 𝑓(𝑥) = 𝑥 and limits of integration are [0,∞), we have the exponential distribu-

tion with rate 𝜈:
𝑝(𝑥) = 𝜈 exp(−𝜈𝑥).

Hence, ∫︁
𝑝(𝑥)𝑓(𝑥)𝑑𝑥 = 𝜈−1 = 𝑎 ⇒ 𝑝(𝑥) =

1

𝑎
exp

(︁
−𝑥

𝑎

)︁
.

If 𝑓(𝑥) = 𝑥2 and the limits are (−∞,∞), then we get the zero-mean Gaussian
distribution with 𝜎2 = 𝜈/2:

𝑝(𝑥) =

√
2𝜈√
2𝜋

exp(−𝜈𝑥2) =

√
𝜈√
𝜋

exp(−𝜈𝑥2).

Hence, ∫︁
𝑝(𝑥)𝑥2𝑑𝑥 = 𝜎2 =

𝜈

2
= 𝑎 ⇒ 𝑝(𝑥) =

√︂
2𝑎

𝜋
exp(−2𝑎𝑥2).


