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1 Probability and Expectation

1.1 Bayes Rule
Bayes rule:

p(θ|X) =
p(X|θ)p(θ)∫
p(X|θ)p(θ)dθ

=
p(X|θ)p(θ)
p(X)

If X represents data and θ is an unknown quantity of interest, the Bayes rule
can be interpreted as making inference about θ based on the data X (Bayesian
inference) in the form of the posterior distribution p(θ|X).

Remark. In the machine learning course, you will encounter the words ’learning’
and ’inference’. From a Bayesian point of view, there’s no difference between
those two (because everything is expressed by posteriors) . But machine learning
people tend to use ’learning’ as tuning parameters of a model using data and
’inference’ as computing some quantity with the model (sometimes this includes
evaluating a posterior distribution). This distinction is not exhaustive but may
be good to know to avoid confusion.

1.2 Some Useful Formulas of Conditional Expectations
• E[X] = EY

[
EX|Y [X|Y ]

]
• Var[X] = VarY

[
EX|Y[X|Y]

]
+ EY

[
VarX|Y[X|Y]

]
2 Asymptotic Theory
Theorem. The Law of Large Numbers Let X1,X2 . . . , be independent iden-
tically distributed (i.i.d.) real random variables. Let Sn = 1

n

∑n
i=1Xi and

µ = EX1. If E |X1| <∞ , then Sn → µ as n→∞1.
1To be precise, we need to define convergence of random variables.
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Theorem. The Central Limit Theorem Let X1,X2 . . . , be as above. Let
σ2 = Var[X1]. Under a (stronger) assumption EX2

1 <∞, the probability distri-
bution of

√
n (Sn−µ)

σ converges to the standard normal distribution N (0, 1)2.

3 Miscellaneous
• Linearity. Let X obeys a multivariate normal distribution. N (µ,Σ).

Then, AX ∼ N
(
Aµ,AΣA>

)
, where A is a matrix of appropriate shape.

• Product of normal densities. LetN(x;µ, σ2) = 1√
2πσ

exp
(
− (x− µ)

2
/(2σ2)

)
,

then

N (x;µ1, σ
2
1)N (x;µ2, σ

2
2) = N (µ1;µ2,σ

2
1 + σ2

2)N

(
x;

µ1

σ2
1

+ µ2

σ2
2

1
σ2
1

+ 1
σ2
2
,

σ2
1σ

2
2

σ2
1 + σ2

2

)

2Assume σ = 1 for simplicity. In contrast with the law of large numbers, what the central
limit theorem says is that if you multiply the error of the estimate of the mean Sn−µ by

√
n,

the distribution of the amplified error
√
n(Sn − µ) is a Gaussian N (0, 1) for sufficiently large

n. If you don’t, the error converges to a point (zero) as the variance tends to 0 , which agrees
with the law of large numbers.
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