Basic Probability Cheat Sheet

September 20, 2018

1 Probability and Expectation

1.1 Bayes Rule

Bayes rule:

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta} = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})}$$

If **X** represents data and θ is an unknown quantity of interest, the Bayes rule can be interpreted as making *inference* about θ based on the data **X** (Bayesian inference) in the form of the posterior distribution $p(\theta|\mathbf{X})$.

Remark. In the machine learning course, you will encounter the words 'learning' and 'inference'. From a Bayesian point of view, there's no difference between those two (because everything is expressed by posteriors). But machine learning people tend to use 'learning' as tuning parameters of a model using data and 'inference' as computing some quantity with the model (sometimes this includes evaluating a posterior distribution). This distinction is not exhaustive but may be good to know to avoid confusion.

1.2 Some Useful Formulas of Conditional Expectations

- $\mathbb{E}[X] = \mathbb{E}_Y \left[\mathbb{E}_{X|Y}[X|Y] \right]$
- $\operatorname{Var}[X] = \operatorname{Var}_{Y} \left[\mathbb{E}_{X|Y}[X|Y] \right] + \mathbb{E}_{Y} \left[\operatorname{Var}_{X|Y}[X|Y] \right]$

2 Asymptotic Theory

Theorem. The Law of Large Numbers Let $X_{1,}X_{2}...$, be independent identically distributed (i.i.d.) real random variables. Let $S_{n} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $\mu = \mathbb{E}X_{1}$. If $\mathbb{E}|X_{1}| < \infty$, then $S_{n} \to \mu$ as $n \to \infty^{1}$.

 $^{^1\}mathrm{To}$ be precise, we need to define convergence of random variables.

Theorem. The Central Limit Theorem Let $X_1, X_2...$, be as above. Let $\sigma^2 = \operatorname{Var}[X_1]$. Under a (stronger) assumption $\mathbb{E}X_1^2 < \infty$, the probability distribution of $\sqrt{n} \frac{(S_n - \mu)}{\sigma}$ converges to the standard normal distribution $\mathcal{N}(0, 1)^2$.

3 Miscellaneous

- Linearity. Let X obeys a multivariate normal distribution. $\mathcal{N}(\mu, \Sigma)$. Then, $AX \sim \mathcal{N}(A\mu, A\Sigma A^{\top})$, where A is a matrix of appropriate shape.
- Product of normal densities. Let $N(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\left(x \mu\right)^2 / (2\sigma^2)\right)$, then

$$\mathcal{N}(x;\mu_1,\sigma_1^2)\mathcal{N}(x;\mu_2,\sigma_2^2) = \mathcal{N}(\mu_1;\mu_2,\sigma_1^2+\sigma_2^2)\mathcal{N}\left(x;\frac{\frac{\mu_1}{\sigma_1^2}+\frac{\mu_2}{\sigma_2^2}}{\frac{1}{\sigma_1^2}+\frac{1}{\sigma_2^2}},\frac{\sigma_1^2\sigma_2^2}{\sigma_1^2+\sigma_2^2}\right)$$

²Assume $\sigma = 1$ for simplicity. In contrast with the law of large numbers, what the central limit theorem says is that if you multiply the error of the estimate of the mean $S_n - \mu$ by \sqrt{n} , the distribution of the amplified error $\sqrt{n}(S_n - \mu)$ is a Gaussian $\mathcal{N}(0, 1)$ for sufficiently large n. If you don't, the error converges to a point (zero) as the variance tends to 0, which agrees with the law of large numbers.