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Latent variable methods

Most neural codes are distributed
I Each neuron fires for a range of stimulus values and computations.
I Population activity must be taken together to identify stimulus.

Neurons are noisy
I Synaptic release failures.
I Branch-point spike propagation failures.
I Channel noise.
I Network chaos may amplify such noise.

⇒ Network computation is carried in the coordinated activity of many neurons.



Heterogeneous dynamics

Churchland & Shenoy 2007
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Latent variable methods
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Two ideas

I Static dimensionality reduction
I Requires data (population states) to be confined to low-dimensional manifold, with

relatively small off-manifold noise.
I In fact measured single-trial noise seems substantial, so single-trial analysis would

require that the dominant modes of variability are not noise, but computational
variablity within the manifold.

I Conversely, if computational variability is small, then trial-averaging (PSTHs) may
reduce off-manifold variation and allow dimensionality reduction.

I Low-dimensional latent dynamics
I Noise may lift data off manifold, but only “manifold projection” influences future

evolution.
I Conceptually familiar from population coding – independent (or otherwise

non-code-shaped) noise is easy to average away.



Linear Gaussian methods

7→



Latent variables and Gaussians
Gaussian correlation can be composed from latent components and uncorrelated noise.
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Probabilistic Principal Components Analysis (PPCA)

If the uncorrelated noise is assumed to be isotropic, this model is called PPCA.

Data: D = X = {x1, x2, . . . , xN}; xi ∈ RD

Latents: Y = {y1, y2, . . . , yN}; yi ∈ RK

Linear generative model: xd =
K∑

k=1

Λdk yk + εd

I yk are independent N (0, 1) Gaussian factors
I εd are independent N (0, ψ) Gaussian noise
I K <D

x1 x2 xD

y1 y2 yK• • •

• • •

Model for observations x is a correlated Gaussian:

p(y) = N (0, I)

p(x|y) = N (Λy, ψI)

p(x) =

∫
p(y)p(x|y)dy = N

(
Ey [Λy] ,Ey

[
ΛyyTΛT

]
+ ψI

)
Note: Ex [f (x)] = Ey

[
Ex|y [f (x)]

]
Vx [x] = Ey [V [x|y]] + Vy [E [x|y]]

= N
(

0,ΛΛT + ψI
)

where Λ is a D × K matrix.
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PPCA likelihood

The marginal distribution on x gives us the PPCA likelihood:

log p(X|Λ, ψ) = −N
2

log
∣∣∣2π(ΛΛT + ψI)

∣∣∣− 1
2

Tr
[

(ΛΛT + ψI)−1
∑

n

xxT

︸ ︷︷ ︸
NS

]

To find the ML values of (Λ, ψ) we could optimise numerically (gradient ascent / Newton’s
method), or we could use a different iterative algorithm called EM which we’ll introduce soon.

In fact, however, ML for PPCA is more straightforward in principle, as we will see by first
considering the limit ψ → 0.

[Note: We may also add a constant mean µ to the output, so as to model data that are not
distributed around 0. In this case, the ML estimate µ̂ = 1

N

∑
n xn and we can define

S = 1
N

∑
n(x− µ̂)(x− µ̂)T in the likelihood above.]



The ψ → 0 limit

As ψ → 0, the latent model can only capture K dimensions of variance.

In a Gaussian model, the ML parameters will find the K -dimensional space of most variance.
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Principal Components Analysis

This leads us to an (old) algorithm called Principal Components Analysis (PCA).

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

x
2

x
1

x 3

Assume data D = {xi} have zero mean (if not, subtract it).

I Find direction of greatest variance – λ(1).

λ(1) = argmax
‖v‖=1

∑
n

(xT
nv)2

I Find direction orthogonal to λ(1) with greatest variance –
λ(2)

...
I Find direction orthogonal to {λ(1),λ(2), . . . ,λ(n−1)} with

greatest variance – λ(n).
I Terminate when remaining variance drops below a

threshold.



Eigendecomposition of a covariance matrix
The eigendecomposition of a covariance matrix makes finding the PCs easy.

Recall that u is an eigenvector, with scalar eigenvalue ω, of a matrix S if

Su = ωu

u can have any norm, but we will define it to be unity (i.e., uTu = 1).
For a covariance matrix S =

〈
xxT
〉

(which is D × D, symmetric, positive semi-definite):

I In general there are D eigenvector-eigenvalue pairs (u(i), ω(i)), except if two or more
eigenvectors share the same eigenvalue (in which case the eigenvectors are degenerate
— any linear combination is also an eigenvector).

I The D eigenvectors are orthogonal (or orthogonalisable, if ω(i) = ω(j)). Thus, they form
an orthonormal basis.

∑
i u(i)u(i)

T = I.
I Any vector v can be written as

v =
(∑

i

u(i)u(i)
T
)

v =
∑

i

(u(i)
Tv)u(i) =

∑
i

v(i)u(i)

I The original matrix S can be written:

S =
∑

i

ω(i)u(i)u(i)
T = UWUT

where U = [u(1), u(2), . . . , u(D)] collects the eigenvectors and
W = diag

[
(ω(1), ω(2), . . . , ω(D))

]
.
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PCA and eigenvectors

I The variance in direction u(i) is〈
(xTu(i))

2
〉

=
〈

u(i)
TxxTu(i)

〉
= u(i)

TSu(i) = u(i)
Tω(i)u(i) = ω(i)

I The variance in an arbitrary direction v is〈
(xTv)2

〉
=
〈(

xT
(∑

i

v(i)u(i)

))2〉
=
∑

ij

v(i)u(i)
TSu(j)v(j)

=
∑

ij

v(i)ω(j)v(j)u(i)
Tu(j) =

∑
i

v2
(i)ω(i)

I If vTv = 1, then
∑

i v2
(i) = 1 and so argmax‖v‖=1

〈
(xTv)2

〉
= u(max)

The direction of greatest variance is the eigenvector the largest eigenvalue.
I In general, the PCs are exactly the eigenvectors of the empirical covariance matrix,

ordered by decreasing eigenvalue.

I The eigenspectrum shows how the variance
is distributed across dimensions; can iden-
tify transitions that might separate signal from
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Example of PCA: Genetic variation within Europe

Novembre et al. (2008) Nature 456:98-101
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Equivalent definitions of PCA

I Find K directions of greatest variance in data.

I Find K -dimensional orthogonal projection that preserves greatest
variance.

I Find K -dimensional vectors yi and matrix Λ so that x̂i = Λyi is as
close as possible (in squared distance) to xi .

I Find the approximate rank-K factorisation of the data matrix X ≈ ΛY
with smallest squared error (SVD!)

I . . . (many others)
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Factor Analysis
If dimensions are not equivalent, equal variance assumption is inappropriate.

Data: D = X = {x1, x2, . . . , xN}; xi ∈ RD

Latents: Y = {y1, y2, . . . , yN}; yi ∈ RK

Linear generative model: xd =
K∑

k=1

Λdk yk + εd

I yk are independent N (0, 1) Gaussian factors
I εd are independent N (0,Ψdd ) Gaussian noise
I K <D

x1 x2 xD

y1 y2 yK• • •

• • •

Model for observations x is still a correlated Gaussian:

p(y) = N (0, I)

p(x|y) = N (Λy,Ψ)

p(x) =

∫
p(y)p(x|y)dy = N

(
0,ΛΛT + Ψ

)
where Λ is a D × K , and Ψ is K × K and diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data that
captures the correlation structure of the data.



Factor Analysis (cont.)

x1 x2 xD

y1 y2 yK• • •

• • •

I ML learning finds Λ (“common factors”) and Ψ (“unique factors” or “uniquenesses”)
given data

I parameters (corrected for symmetries): DK + D − K (K−1)
2

I If number of parameters > D(D+1)
2 model is not identifiable (even after accounting for

rotational degeneracy discussed later)
I no closed form solution for ML params: N (0,ΛΛT + Ψ)



Factor Analysis projections

Our analysis for PPCA still applies:

x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

but now Ψ is diagonal but not spherical.

Note, though, that Λ is generally different from that found by PPCA.

And Λ is not unique: the latent space may be transformed by an arbitrary orthogonal
transform U (UTU = UUT = I) without changing the likelihood.

ỹ = Uy and Λ̃ = ΛUT ⇒ Λ̃ỹ = ΛUTUy = Λy

− ` =
1
2

log
∣∣∣2π(ΛΛT + Ψ)

∣∣∣+
1
2

xT(ΛΛT + Ψ)−1x

=
1
2

log
∣∣∣2π(Λ̃Λ̃T + Ψ)

∣∣∣+
1
2

xT(Λ̃Λ̃T + Ψ)−1x
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Factor analysis rotations

I FA (like many other latent methods) finds a subspace not a basis.
I Indeed, the columns of Λ need not be orthogonal.
I Many standard choices of basis:

I Principal factors: orthogonalise columns in order of variance contribution to ΛΛT

(analgous to PCA – achieved by eigendecomp of ΛΛT or equivalent SVD of Λ.
I Varimax factors:

argmax
Λ:ΛTΛ=I

(
1
D

∑
k

∑
d

(Λdk )4 −
∑

k

( 1
D

∑
d

Λ2
dk

)2
)

sparse along columns, so each observation is explained by few factors.
I Other rotations: Quartimax, Equimax, Oblimin, Promax . . . all consider loading

pattern alone.
I Independent components: usually formed from PCA sphered representation

(assuming no noise), but noisy complete case could be seen as FA rotation.



FA vs PCA

I PCA and PPCA are rotationally invariant; FA is not

If x→ Ux for unitary U, then λPCA
(i) → UλPCA

(i)

I FA is measurement scale invariant; PCA and PPCA are not

If x→ Sx for diagonal S, then λFA
(i) → SλFA

(i)

I FA and PPCA define a probabilistic model; PCA does not

[Note: it may be tempting to try to eliminate the scale-dependence of (P)PCA by
pre-processing data to equalise total variance on each axis. But P(PCA) assume equal noise
variance. Total variance has contributions from both ΛΛT and noise, so this approach does
not exactly solve the problem.]



FA vs PCA for neural data



Non-Gaussian noise

7→



Other noise models

I Both Gaussian noise, and mean-independent stationary variance, are unrealistic
assumptions for spike counts, particularly in small bins

I Square-rooting improves matters, but is inaccurate for small counts and transforms the
shape of the manifold.

I Instead: use a conditionally Poisson count distribution:
I Poisson Factor Analysis
I Exponential Family PCA
I Covariance transformation



Likelihood-based approaches

One approach uses the following model:

p(y) = N (0, I)

p(x|y) =
∏

d

Poisson[f ([Λy + b]d )] =
∏

d

f ([Λy + b]d )xd e−f ([Λy+b]d )

xd !

This is the Poisson noise equivalent of FA (note that we include an explicit “bias” b to control
the mean of the generative distribution — it does not make sense to centre non-negative
data).

Unfortunately, the E-step inference of p(y|x) has no simple closed form solution, and so true
maximum likelihood learning is not tractable.

Instead, we can follow the steps of EM, but using an approximate estimate of the posterior.
This is called a variational approximation.



Exponential Family PCA

p(x|y) =
∏

d

Poisson[f ([Λy + b]d )] =
∏

d

f ([Λy + b]d )xd e−f ([Λy+b]d )

xd !

I Maximise likelihood over latents y and parameters Λ, b jointly.
I Convex if f () ≡ exp() (and other convex, log-concave functions).
I Noise model, but no uncertainty in latents — analagous to PCA.
I Can be seen as matrix factorisation (like SVD) with different cost function.
I Incorporating “nuclear norm” penalty (sum of singular values of ΛY finds low-rank

log-rates while retaining convexity.



Covariance transformation

I Assume

x ∼ Poisson[exp(z)]

and

z ∼ N (µ,Σ)

I Then we can compute the expected mean and covariance of z in terms of µ and Σ in
closed form.

I This relationship can be inverted to give Σ from the observed mean and covariance of
the data.

I Can then perform PCA or factor analysis on Σ.



Dynamics

7→



Dynamics

I Slow features analysis: SFA
I [Noise (and slowness)] Gaussian Process Factor Analysis : GPFA
I [Markov dynamics] Linear Gaussian State-Space Models: LGSSM

also called (Hidden) Linear Dynamical Systems models: LDS.
I related to the Kalman Filter
I a particular 0 noise limit→ SFA.
I consistent spectral learning [Subspace Identification: SSID] possible, but inefficient.

I Poisson noise: PLDS
I EM intractable – requires approximation.
I SSID can be adapted exactly.



Gaussian process latents

x(t) ∼ GP [µ(t); Kθ(t, t ′)] state model

y(t) ∼ Dist [f (x(t))] observation model

GP is a Gaussian process: this implies that any finite set of measurements at fixed times is
jointly normal.

I Includes linear-Gaussian dynamical systems (LDS).

xt ∼ N (Axt−1,Q)

I Allows generalisation to non-(first-order-)Markov systems.



Gaussian process dynamics

x(t) ∼ GP [µ(t); Kθ(t, t ′)]

y(t) ∼ Dist [f (x(t))]

I Kθ(t, t ′) gives the covariance between values of x(t) and x(t ′).
I Parameterised by covariance. LDS (or auto-regressive models) are parameterised by

precision (inverse covariance).
I Easier to specify priors wih interesting properties:

− LDS: K(t, t ′) ∝ a|t−t′|

− Smooth: K(t, t ′) ∝ exp(−(t − t ′)2/2λ)

− Oscillatory: K(t, t ′) ∝ sin(2πω(t − t ′))

− Stationary “Brownian”: K(t, t ′) ∝ [1− |t − t ′|/λ]+

I Inference naively O(T 3) instead of O(T ).
I Numerical methods based on regularities in matrices.
I Sparsifying methods select (or create) subset of data with similar predictive power.



Link functions

x(t) ∼ GP [µ(t); Kθ(t, t ′)]

y(t) ∼ Dist [f (x(t))]

f maps the latent GP values to (mean) intensity.

I Nonlinear

I Exponential – danger: emphasises variability at high values.
I Threshold-linear or soft-threshold.

I Linear

I Requires observation model tolerant of negative values.
I Alternatively, can use a truncated prior.

I Requires approximation (but so does non-linearity).
I Posterior often not far from Gaussian (multi-d truncation – draws are suprisingly smooth).
I EP can be powerful approximation technique.



Observation models

x(t) ∼ GP [µ(t); Kθ(t, t ′)]

y(t) ∼ Dist [f (x(t))]

I Point process (continuous time)
I Rescaled renewal process. (next)
I Inhomogeneous Markov-interval.

λ(t) = f (x(t), slast )
(
often = f (x(t)) · h(slast )

)
I GM-like sum.

λ(t) = f
(

x(t) +
∑

i

αi h(si )
)

I Spike count (discrete time)
I Poisson counts.
I (Square-rooted) Gaussian counts.



Examples

I Example 1: GP-based intensity estimates

Cunningham, Yu, Shenoy, and Sahani. Inferring neural firing rates from spike trains
using Gaussian processes. In Adv. Neural Info. Proc. Sys. 20, Cambridge, MA,
2008. MIT Press.
Cunningham, Shenoy, and Sahani. Fast Gaussian process methods for point
process intensity estimation. In ICML ’08, pp. 192–199, Helsinki Finland, 2008.
Omni Press.

I Example 2: Gaussian process factor analysis

Yu, Cunningham, Santhanam, Ryu, Shenoy, and Sahani. Gaussian-process factor
analysis for low-dimensional single-trial analysis of neural population activity. J.
Neurophysiol. 102: 614-635, 2009.



Example 1: GP-based intensity estimates

Spike train discretised in (arbitrarily small) time-bins.

x ∼ N (µ1,Kθ)

p(y | x) =
N∏

i=1

[
γxyi

Γ(γ)

(
γ

yi−1∑
k=yi−1

xk ∆

)γ−1

exp

{
−γ

yi−1∑
k=yi−1

xk ∆

}]

I This is a Gamma-interval process

p(τ) =
γγ

Γ(γ)
τγ−1e−γτ

with order γ and mean 1, with time rescaled according to GP rate.



Example 1: GP-based intensity estimates

Modal Inference:

x∗ = argmax
x�0

p(x | y) = argmax
x�0

p(y | x)p(x).

I Note that the nonnegativity constraint eliminates need for a space warping link function
(equivalent to truncated prior).

I Convex. Solve using a log barrier Newton Method.
I Computational complexity is a major challenge. We exploit problem structure to

minimize run-time and memory requirements.



Example 1: GP-based intensity estimates

Learning:

I The hyperparameters are θ = [σ2
f , κ, γ, µ] (where σ2

f and κ are the variance and
lengthscale of the covariance kernel).

I Laplace approximation to approximate the intractable integral over x:

p(y | θ) =

∫
x

p(y | x, θ)p(x | θ)dx ≈ p(y | x∗, θ)p(x∗ | θ)
(2π)

n
2

|Λ∗ + K−1| 12

I This can be optimised to find “best” parameter values. Or can be used to weight different
parameter values on a grid to integrate approximately over parameter settings.



Example 1: GP-based intensity estimates
Results: (reconstructing simulated data)
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Example 1: GP-based intensity estimates
Results: (percent improvement of full GP method over competitor)
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Example 2: GPFA

Spike train binned (10 – 20 ms) to yield spike counts.

xi (t) ∼ GP[0; Ki ]

Ki (t1, t2) = (1− σ2
n) exp

(
− (t1 − t2)2

2τ 2
i

)
+ σ2

nδt1,t2

y(t)|x(t) ∼ N (Cx(t) + d,R)

I Spike counts may be square-rooted to stabilise variance of (and Gaussianise) Poisson
counts

I The model is jointly Gaussian! Exact inference and learning is possible using
Factor-Analysis-like methods.
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Learning dynamics

State space models.

x1 x2 x3 xT

y1 y2 y3 yT

• • •A A A A

C C C C

xt |xt−1 ∼ N (Axt−1,Q)

yt |xt ∼ N (Cxt ,R)

I Dynamics in latent space are self-contained.
I An innovations process introduces stochasticity, and allows inference and learning to

compensate for model mismatch.
I Poisson, or other point-process observation models are not easy to handle. (But see

Smith & Brown 2003, Yu et al. 2006, Macke et al. 2011, Buesing et al. 2012).



The Kalman Filter

x1 x2 x3 xT

y1 y2 y3 yT

• • •A A A A

C C C C

P(xt |y1:t ) =

∫
P(xt , xt−1|yt , y1:t−1) dxt−1

=

∫
P(xt , xt−1, yt |y1:t−1)

P(yt |y1:t−1)
dxt−1

∝
∫

P(xt−1|y1:t−1)P(xt |xt−1, y1:t−1)P(yt |xt , xt−1, y1:t−1) dxt−1

=
Markov property

∫
P(xt−1|y1:t−1)P(xt |xt−1)P(yt |xt ) dxt−1

This is a forward recursion based on Bayes rule.



The Kalman Filter

x1 x2 x3 xT

y1 y2 y3 yT

• • •A A A A

C C C C

Notation: x̂τt ≡ E[xt |y1, . . . , yτ ]

Prediction: x̂t−1
t = Ax̂t−1

t−1

Correction: x̂t
t = x̂t−1

t + Kt (yt − Cx̂t−1
t )

Kalman gain: Kt = V̂ t−1
t CT(CV̂ t−1

t CT + R)−1

Prediction variance: V̂ t−1
t = AV̂ t−1

t−1 AT + Q

Corrected variance: V̂ t
t = V̂ t−1

t − Kt CV̂ t−1
t

To get these equations we need the Gaussian integral:
∫

e−
1
2 (x−µ)TΣ−1(x−µ)dx = |2πΣ|1/2

and the Matrix Inversion Lemma: (Φ + ΛΨΛT)−1 = Φ−1 − Φ−1Λ(Ψ−1 + ΛTΦ−1Λ)−1ΛTΦ−1

assuming Φ and Ψ are symmetric and invertible.



The Kalman Smoother

x1 x2 x3 xT

y1 y2 y3 yT

• • •A A A A

C C C C

P(xt |y1:τ ) =

∫
P(xt , xt+1|y1:τ ) dxt+1

=

∫
P(xt |xt+1, y1:τ )(xt+1|y1:τ ) dxt+1

=
Markov property

∫
P(xt |xt+1, y1:t )(xt+1|y1:τ ) dxt+1

Additional backward recursion:

Jt = V̂ t
t AT(V̂ t

t+1)−1

x̂τt = x̂t
t + Jt (x̂τt+1 − Ax̂t

t )

V̂ τt = V̂ t
t + Jt (V̂ τt+1 − V̂ t

t+1)Jt
T



The Kalman filter

For a Gaussian SSM, the Kalman filter finds the expected latent state.

x1 x2 x3 xT

y1 y2 y3 yT

• • •A A A A

C C C C

I Model likelihood can be computed from filtered expected state and variance.

P(y1 . . . yT ) = P(y1)
T∏

t=2

P(yt |y1 . . . yt−1)

P(yt+1|y1 . . . yt ) =

∫
dxt+1 P(yt+1|xt+1)P(xt+1|y1 . . . yt )

=

∫
dxt+1 N (yt+1|Cxt+1,R) N (xt+1|Ax̂t ,Vt+1)

= N (yt+1|CAx̂t ,CVt+1CT + R) ,

I Kt and Vt converge to stationary values.



Recurrent Linear Models

The RLM parametrises the likelihood with a stationary feedback gain:

x̂0 x̂1 x̂2 x̂T -1

y1 y2 y3 yT

• • •A A A A

CA CA CA CAW W W W

I Learning by direct gradient ascent: backpropagation through time.
I For Gaussian SSM data converges to equivalent model – learns the Kalman filter

directly.
I Generalisation to Poisson (or other point process) output is remains tractable with stable

learning.
I Not identical to Poisson-output SSM, but empirically close.



Supervised methods

7→



Not so latent variables

I Controlled experiments use repeated trials
I One or more experimental parameter or factor varied systematically.
I Each unique configuration of factors is a condition.

I May also observe (generally continuous-valued) behavioural outputs or a
random/natural stimulus: covariates.

I Ideally, unsupervised structure in data would reflect these values.
I Weak signals? Non-linearities?
I Unsupervised projections may not naturally separate the different factors: unmixing.

I We will look at supervised methods designed to relate multivariate data to known
experimental factors or covariates.

I Methods we consider are also used to study structure in the condition averages:
equivalent to having one trial per condition

I averaging may make noise more Gaussian
I but still not equal variance



Two cases

The tools needed in two different cases are slightly different:

I Categorical factors: discrete repeated values (almost always experimental control).
I Stimulus (say, object) identity.
I Behavioural instruction.
I “Context” signal.

I We sometimes ignore the metricity of factors: time bin, gabor orientation, . . .

I Continuous or ordinal covariates: experimental factors or covariates themselves lie in a
metric space.

I time in trial
I orientation
I reaching movement kinematics



Categorical factors: decomposition of variance
Suppose on i th trial we have:

I factor value k (i) ∈ 1 . . .K
I recorded (binned) data x(i)

t ∈ RN , t = [1 . . . T ],N = # neurons; remove global mean.
Consider time t .

I For each condition κ we have the condition mean (PSTH): x̄(κ)
t =

〈
x(i)

t

〉
i:k(i)=κ

I Let us write x(i)
t = x̄(k(i))

t + ∆x(i)
t .

I Then total scatter or variance:

St =
〈

x(i)
t x(i)

t
T
〉

=
〈

(x̄(k(i))
t + ∆x(i)

t )(x̄(k(i))
t + ∆x(i)

t )T
〉

=
〈〈

(x̄(κ)
t + ∆x(i)

t )(x̄(κ)
t + ∆x(i)

t )T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T − x̄(κ)

t ∆x(i)
t

T −∆x(i)
t x̄(κ)

t
T + ∆x(i)

t ∆x(i)
t

T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T
〉
−
〈

x̄(κ)
t ∆x(i)

t
T
〉
−
〈

∆x(i)
t x̄(κ)

t
T
〉

+
〈

∆x(i)
t ∆x(i)

t
T
〉〉

κ

=

〈
x̄(κ)

t x̄(κ)
t

T − x̄(κ)
t

〈
∆x(i)

t

〉T
−
〈

∆x(i)
t

〉
x̄(κ)

t
T +

〈
∆x(i)

t ∆x(i)
t

T
〉〉

κ

=
〈

x̄(κ)
t x̄(κ)

t
T
〉
κ

+
〈〈

∆x(i)
t ∆x(i)

t
T
〉

i:k(i)=κ

〉
κ

= S(signal)
t + S(noise)

t



Categorical factors: decomposition of variance
Suppose on i th trial we have:

I factor value k (i) ∈ 1 . . .K
I recorded (binned) data x(i)

t ∈ RN , t = [1 . . . T ],N = # neurons; remove global mean.
Consider time t .

I For each condition κ we have the condition mean (PSTH): x̄(κ)
t =

〈
x(i)

t

〉
i:k(i)=κ

I Let us write x(i)
t = x̄(k(i))

t + ∆x(i)
t .

I Then total scatter or variance:

St =
〈

x(i)
t x(i)

t
T
〉

=
〈

(x̄(k(i))
t + ∆x(i)

t )(x̄(k(i))
t + ∆x(i)

t )T
〉

=
〈〈

(x̄(κ)
t + ∆x(i)

t )(x̄(κ)
t + ∆x(i)

t )T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T − x̄(κ)

t ∆x(i)
t

T −∆x(i)
t x̄(κ)

t
T + ∆x(i)

t ∆x(i)
t

T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T
〉
−
〈

x̄(κ)
t ∆x(i)

t
T
〉
−
〈

∆x(i)
t x̄(κ)

t
T
〉

+
〈

∆x(i)
t ∆x(i)

t
T
〉〉

κ

=

〈
x̄(κ)

t x̄(κ)
t

T − x̄(κ)
t

〈
∆x(i)

t

〉T
−
〈

∆x(i)
t

〉
x̄(κ)

t
T +

〈
∆x(i)

t ∆x(i)
t

T
〉〉

κ

=
〈

x̄(κ)
t x̄(κ)

t
T
〉
κ

+
〈〈

∆x(i)
t ∆x(i)

t
T
〉

i:k(i)=κ

〉
κ

= S(signal)
t + S(noise)

t



Categorical factors: decomposition of variance
Suppose on i th trial we have:

I factor value k (i) ∈ 1 . . .K
I recorded (binned) data x(i)

t ∈ RN , t = [1 . . . T ],N = # neurons; remove global mean.
Consider time t .

I For each condition κ we have the condition mean (PSTH): x̄(κ)
t =

〈
x(i)

t

〉
i:k(i)=κ

I Let us write x(i)
t = x̄(k(i))

t + ∆x(i)
t .

I Then total scatter or variance:

St =
〈

x(i)
t x(i)

t
T
〉

=
〈

(x̄(k(i))
t + ∆x(i)

t )(x̄(k(i))
t + ∆x(i)

t )T
〉

=
〈〈

(x̄(κ)
t + ∆x(i)

t )(x̄(κ)
t + ∆x(i)

t )T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T − x̄(κ)

t ∆x(i)
t

T −∆x(i)
t x̄(κ)

t
T + ∆x(i)

t ∆x(i)
t

T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T
〉
−
〈

x̄(κ)
t ∆x(i)

t
T
〉
−
〈

∆x(i)
t x̄(κ)

t
T
〉

+
〈

∆x(i)
t ∆x(i)

t
T
〉〉

κ

=

〈
x̄(κ)

t x̄(κ)
t

T − x̄(κ)
t

〈
∆x(i)

t

〉T
−
〈

∆x(i)
t

〉
x̄(κ)

t
T +

〈
∆x(i)

t ∆x(i)
t

T
〉〉

κ

=
〈

x̄(κ)
t x̄(κ)

t
T
〉
κ

+
〈〈

∆x(i)
t ∆x(i)

t
T
〉

i:k(i)=κ

〉
κ

= S(signal)
t + S(noise)

t



Categorical factors: decomposition of variance
Suppose on i th trial we have:

I factor value k (i) ∈ 1 . . .K
I recorded (binned) data x(i)

t ∈ RN , t = [1 . . . T ],N = # neurons; remove global mean.
Consider time t .

I For each condition κ we have the condition mean (PSTH): x̄(κ)
t =

〈
x(i)

t

〉
i:k(i)=κ

I Let us write x(i)
t = x̄(k(i))

t + ∆x(i)
t .

I Then total scatter or variance:

St =
〈

x(i)
t x(i)

t
T
〉

=
〈

(x̄(k(i))
t + ∆x(i)

t )(x̄(k(i))
t + ∆x(i)

t )T
〉

=
〈〈

(x̄(κ)
t + ∆x(i)

t )(x̄(κ)
t + ∆x(i)

t )T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T − x̄(κ)

t ∆x(i)
t

T −∆x(i)
t x̄(κ)

t
T + ∆x(i)

t ∆x(i)
t

T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T
〉
−
〈

x̄(κ)
t ∆x(i)

t
T
〉
−
〈

∆x(i)
t x̄(κ)

t
T
〉

+
〈

∆x(i)
t ∆x(i)

t
T
〉〉

κ

=

〈
x̄(κ)

t x̄(κ)
t

T − x̄(κ)
t

〈
∆x(i)

t

〉T
−
〈

∆x(i)
t

〉
x̄(κ)

t
T +

〈
∆x(i)

t ∆x(i)
t

T
〉〉

κ

=
〈

x̄(κ)
t x̄(κ)

t
T
〉
κ

+
〈〈

∆x(i)
t ∆x(i)

t
T
〉

i:k(i)=κ

〉
κ

= S(signal)
t + S(noise)

t



Categorical factors: decomposition of variance
Suppose on i th trial we have:

I factor value k (i) ∈ 1 . . .K
I recorded (binned) data x(i)

t ∈ RN , t = [1 . . . T ],N = # neurons; remove global mean.
Consider time t .

I For each condition κ we have the condition mean (PSTH): x̄(κ)
t =

〈
x(i)

t

〉
i:k(i)=κ

I Let us write x(i)
t = x̄(k(i))

t + ∆x(i)
t .

I Then total scatter or variance:

St =
〈

x(i)
t x(i)

t
T
〉

=
〈

(x̄(k(i))
t + ∆x(i)

t )(x̄(k(i))
t + ∆x(i)

t )T
〉

=
〈〈

(x̄(κ)
t + ∆x(i)

t )(x̄(κ)
t + ∆x(i)

t )T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T − x̄(κ)

t ∆x(i)
t

T −∆x(i)
t x̄(κ)

t
T + ∆x(i)

t ∆x(i)
t

T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T
〉
−
〈

x̄(κ)
t ∆x(i)

t
T
〉
−
〈

∆x(i)
t x̄(κ)

t
T
〉

+
〈

∆x(i)
t ∆x(i)

t
T
〉〉

κ

=

〈
x̄(κ)

t x̄(κ)
t

T − x̄(κ)
t

〈
∆x(i)

t

〉T
−
〈

∆x(i)
t

〉
x̄(κ)

t
T +

〈
∆x(i)

t ∆x(i)
t

T
〉〉

κ

=
〈

x̄(κ)
t x̄(κ)

t
T
〉
κ

+
〈〈

∆x(i)
t ∆x(i)

t
T
〉

i:k(i)=κ

〉
κ

= S(signal)
t + S(noise)

t



Categorical factors: decomposition of variance
Suppose on i th trial we have:

I factor value k (i) ∈ 1 . . .K
I recorded (binned) data x(i)

t ∈ RN , t = [1 . . . T ],N = # neurons; remove global mean.
Consider time t .

I For each condition κ we have the condition mean (PSTH): x̄(κ)
t =

〈
x(i)

t

〉
i:k(i)=κ

I Let us write x(i)
t = x̄(k(i))

t + ∆x(i)
t .

I Then total scatter or variance:

St =
〈

x(i)
t x(i)

t
T
〉

=
〈

(x̄(k(i))
t + ∆x(i)

t )(x̄(k(i))
t + ∆x(i)

t )T
〉

=
〈〈

(x̄(κ)
t + ∆x(i)

t )(x̄(κ)
t + ∆x(i)

t )T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T − x̄(κ)

t ∆x(i)
t

T −∆x(i)
t x̄(κ)

t
T + ∆x(i)

t ∆x(i)
t

T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T
〉
−
〈

x̄(κ)
t ∆x(i)

t
T
〉
−
〈

∆x(i)
t x̄(κ)

t
T
〉

+
〈

∆x(i)
t ∆x(i)

t
T
〉〉

κ

=

〈
x̄(κ)

t x̄(κ)
t

T − x̄(κ)
t

〈
∆x(i)

t

〉T
−
〈

∆x(i)
t

〉
x̄(κ)

t
T +

〈
∆x(i)

t ∆x(i)
t

T
〉〉

κ

=
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t x̄(κ)

t
T
〉
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+
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t
T
〉
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〉
κ
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Categorical factors: decomposition of variance
Suppose on i th trial we have:

I factor value k (i) ∈ 1 . . .K
I recorded (binned) data x(i)

t ∈ RN , t = [1 . . . T ],N = # neurons; remove global mean.
Consider time t .

I For each condition κ we have the condition mean (PSTH): x̄(κ)
t =

〈
x(i)

t

〉
i:k(i)=κ

I Let us write x(i)
t = x̄(k(i))

t + ∆x(i)
t .

I Then total scatter or variance:

St =
〈

x(i)
t x(i)

t
T
〉

=
〈

(x̄(k(i))
t + ∆x(i)

t )(x̄(k(i))
t + ∆x(i)

t )T
〉

=
〈〈

(x̄(κ)
t + ∆x(i)

t )(x̄(κ)
t + ∆x(i)

t )T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T − x̄(κ)

t ∆x(i)
t

T −∆x(i)
t x̄(κ)

t
T + ∆x(i)

t ∆x(i)
t

T
〉

i:k(i)=κ

〉
κ

=
〈〈

x̄(κ)
t x̄(κ)

t
T
〉
−
〈

x̄(κ)
t ∆x(i)

t
T
〉
−
〈

∆x(i)
t x̄(κ)

t
T
〉

+
〈

∆x(i)
t ∆x(i)

t
T
〉〉

κ

=

〈
x̄(κ)

t x̄(κ)
t

T − x̄(κ)
t

〈
∆x(i)

t

〉T
−
〈

∆x(i)
t

〉
x̄(κ)

t
T +

〈
∆x(i)

t ∆x(i)
t

T
〉〉

κ

=
〈

x̄(κ)
t x̄(κ)

t
T
〉
κ︸ ︷︷ ︸

Var(cond. mean)

+
〈〈

∆x(i)
t ∆x(i)

t
T
〉

i:k(i)=κ

〉
κ︸ ︷︷ ︸

Mean(cond. var)

= S(signal)
t + S(noise)

t



Multifactor decomposition of variance
We can consider time bin t to be another factor (and may have may experimental factors).
Write

I x̄t =
〈

x(i)
t

〉
i

I x̄(κ) =
〈

x(i)
t

〉
t,i:k(i)=κ

I ∆x̄(κ)
t = x̄(κ)

t − x̄t − x̄(κ)

Then

S(total) =
〈

x(i)
t x(i)

t
T
〉

t,i
=
〈

(x̄t + x̄(k(i)) + ∆x̄(k(i))
t + ∆x(i)

t )(x̄t + x̄(k(i)) + ∆x̄(k(i))
t + ∆x(i)

t )T
〉

t,i

=
〈

x̄t x̄
T
t

〉
t

+
〈

x̄(κ)x̄(κ)T
〉
κ

+
〈

∆x̄(κ)
t ∆x̄(κ)

t
T
〉

t,κ
+
〈

∆x(i)
t ∆x(i)

t
T
〉

t,i

= S(time) + S(factor) + S(interact) + S(noise)

In general, for multiple factors:

S(total) = S(t) + S(f1) + S(f2) + . . .

+ S(t×f1) + S(t×f2) + S(f1×f2) + . . .

+ S(t×f1×f2) + · · ·+ S(t×f1×f2×... ) + . . .

+ S(noise)

This decomposition is fundamental to the Multivariate Analysis of Variance (MANOVA).



Studying factor-related variance

The idea behind our first group of methods is to look for a projection of the data that captures
the structure related to one factor at a time.

I A first thought: Use PCA / FA / etc. on the condition means.

I Maximises projected signal variance, but does not reject variance from trial-to-trial
noise, or from other factors (unmixing).

I Rotate the projection vectors so as to find a good compromise between retaining
variance related to signal and avoiding other sources.
Two ideas:

I Maximise projected signal to noise ratio.
I Minimise error between reconstructed trial and signal.

We consider one factor at a time: S(total) = S(factor) + S(other) = SF + S∆.
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Linear Discriminant Analysis (LDA)

Originally due to Fisher (1936), widely discussed in text books.

Find w∗ = argmax
w

wTSF w
wTS∆w

In this context, SF is usually called between-class scatter – scatter between condition means.
S∆ is the average within-class scatter.

The projection is (heuristically) designed to maximise separation of the classes.

[The same idea, slightly generalised, has been discussed in neuroscience as “Denoising
Source Separation” (Simon and de Cheveigné) and “Joint Decorrelation” (de Cheveigné and
Parra).]



Linear Discriminant Analysis (LDA)

First note that
wTSF w
wTS∆w

=
wTS1/2

∆ S–1/2
∆ SF S–1/2

∆ S1/2
∆ w

wTS1/2
∆ S1/2

∆ w
so that we can define w̃ = S1/2

∆ w and find

w̃∗ = argmax
w̃

w̃TS–1/2
∆ SF S–1/2

∆ w̃

w̃Tw̃
= argmax
‖w̃‖=1

w̃TS–1/2
∆ SF S–1/2

∆ w̃

finally mapping back to obtain w∗ = S–1/2
∆ w̃∗.

It may be easiest to think of this as a two-stage process:
I Whiten the non-factor scatter (transform data to x̃(i)

t = S–1/2
∆ x(i)

t ), so that S̃∆ = I.

I Run PCA on the means x̄(κ) in the whitened space; diagonalising S̃F = S–1/2
∆ SF S–1/2

∆ .

⇒ S̃F w̃∗ = λw̃∗

⇒ S–1/2
∆ SF S–1/2

∆ S1/2
∆ w∗ = λS1/2

∆ w∗

⇒ S−1
∆ SF w∗ = λw∗

So solutions are eigenvectors of S−1
∆ SF (or generalised eigenvectors of S∆ and SF ).

We can use more than one eigenvector of S̃F to capture subspace with maximal whitened
signal variance, although these will not be orthogonal when transformed back to the original
space.



Demixed Principal Component Analysis (DPCA)

Two slightly different recent proposals from Machens and collaborators [NIPS and eLife]. We
will describe the eLife version.

Find argmin
w,‖u‖=1

∑
i,t

‖x̄(k(i)) − uwTx(i)
t ‖

2

Reduced rank regression. Compress data to optimally preserve information about factor
means: compare to bottleneck view of PCA.

Similar intuition to LDA, but slightly different cost function.



DPCA

Reduced rank regression has a well-known solution: The output direction (u∗) will align with
maximum output-variance mode of MSE regression.

That is:

let Q =
〈

x(i)
t x(i)

t

〉−1〈
x(i)

t x̄(k(i))
〉

= (STot )
−1SF

then u∗ = eig(QTSTot Q) = eig(SF STot
−1STot STot

−1SF ) = eig(SF STot
−1SF )

and w∗ = Qu∗

Now,

SF STot
−1SF u∗ = u∗λ

⇒S−1
Tot SF SF S−1

Tot SF u∗ = S−1
Tot SF u∗λ

⇒S−1
Tot S2

F w∗ = w∗λ

So solutions are eigenvectors of S−1
Tot S2

F .



DPCA – alternative derivation
We can write the objective as:

C(U,W ) =
∑

i,t

‖x̄(k(i)) − UW Tx(i)
t ‖

2 ∝ Tr
[〈

(x̄(k(i)) − UW Tx(i)
t )(x̄(k(i)) − UW Tx(i)

t )T
〉]

= Tr
[〈

((I − UW T)x̄(k(i)) − UW T∆x(i)
t )((I − UW T)x̄(k(i)) − UW T∆x(i)

t )T
〉]

= Tr
[
(I − UW T)(I − UW T)TSF + WUTUW TS∆

]
= Tr

[
(I − UW T)(I − UW T)TSF + WW TS∆

]
= Tr

[
SF + WW TSTot − 2UW TSF

]
Differentiate wrt W to find maximum:

∂C
∂W

= 2STot W − 2SF U = 0 ⇒ W∗ = S−1
Tot SF U

So

C(U) = Tr [Sf ] + Tr
[
UTSF S−1

Tot STot S
−1
Tot SF U − 2UTSF S−1

Tot SF U
]

= Tr [Sf ]− Tr
[
UTSF S−1

Tot SF U
]

and U∗ is given by the dominant eigenvectors of SF S−1
Tot SF , giving us the same result.



DPCA – an aside

What if we require W = U (i.e. projection and reconstruction are complementary orthogonal
projections)?

Then, we can re-write the cost function again:

C(U,W ) = Tr
[
SF + WW TSTot − 2UW TSF

]
= Tr

[
SF + WW T(SF + S∆)− 2WW TSF

]
= const + Tr

[
W T(S∆ − SF )W

]

So with this constraint DPCA will find a projection which maximises the difference between
SF and S∆. Recall that LDA maximises the corresponding ratio.



DPCA – Romo data set

0 1 2 3 4
 400

 200

0

200

400

Time (s)

N
o

rm
a

liz
e

d
 f
ir

in
g

 r
a

te
 (

H
z
)

 100

 50

0

50

100

 100

0

100

0 1 2 3 4

 100

0

100

Time (s)

1 5 10 15
0

2

4

6

8

10

C
o

m
p

o
n

e
n

t 
v
a

ri
a

n
c
e

 (
%

)

1 5 10 15

40

60

80

100

Component

C
u

m
u

la
ti
v
e

 e
x
p

la
in

e
d

s
ig

n
a

l 
v
a

ri
a

n
c
e

 (
%

)

Component

C
o

m
p

o
n

e
n

t

1 5 10 15

1

5

10

15

 1  0.5 0 0.5 1

Stimulus: 6%

Decision: 5%

Condition-
independent: 91%

C
o
n
d
it
io
n
-i
n
d
.

S
ti
m
u
lu
s

D
e
c
is
io
n

In
te
r
a
c
ti
o
n

34 Hz
30 Hz
26 Hz
18 Hz
14 Hz
10 Hz

F1 < F2 F1 > F2

1 2 3

6 10 11

5 12 24

16

PCA

dPCA

Stimulus Stimulus

0.5 s 3.0 s 0.5 s

A

C

D

E

B

F1

Dot products
between axes

Correlations
between

components

F1 F2

28 16

0 1 2 3 4
Time (s)

0 1 2 3 4
Time (s)



Relating LDA and DPCA

1. LDA projections are given by generalised eigenvectors:

S∆w = λSF w

⇒S∆w + SF w = (λ+ 1)SF w

⇒STot w = (λ+ 1)SF w

so LDA projections are also generalised eigenvectors of (STot ,SF )
⇒ eigenvectors of S−1

Tot SF if inverse exists.

2. Define k(i) to be the K -dimensional indicator vector (1 for coordinate k (i), 0 else). Then
w = argmin

‖u‖=1

∑
i,t

‖k(i) − uwTx(i)
t ‖

2 yields LDA:

Let M =
〈

x(i)
t k(i)T

〉
= [x̄(1)x̄(2) . . . ].

Then Q = S−1
Tot M, u∗ = eig(QTSTot Q) = eig(MTS−1

Tot M) and w∗ = Qu∗.
So MTS−1

Tot Mu∗ = u∗λ

⇒S−1
Tot MMTS−1

Tot Mu∗ = S−1
Tot Mu∗λ

⇒S−1
Tot MMTw∗ = w∗λ
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Comparison

LDA DPCA

Cost max Tr
[
(W TS∆W )−1(W TSF W )

]
min

UTU=I
Tr
[
W TSTot W − 2W TSF U

]
Eigenprob S−1

∆ SF ≡ S−1
Tot SF S−1

Tot S2
F

RRR x(i)
t → k(i) x(i)

t → x̄(k(i))
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Continuous / ordinal covariates

I Regression
I Canonical correlation analysis: CCA
I Canonical covariance analysis: CVA / PLS



Canonical Correlations/Covariance Analysis

Data vector pairs: D = {(u1, v1), (u2, v2) . . . } in spaces U and V .

Classic CCA
I Find unit vectors υ1 ∈ U , φ1 ∈ V such that the (Pearson) correlation of uT

i υ1 and vT
i φ1

is maximised.
I As with PCA, repeat in orthogonal (wrt data covariance) subspaces.
I svd(Σ–1/2

u Σuv Σ–1/2
v )

CVA (or PLS – Partial Least Squares)
I svd(Σuv )

Probabilistic CCA
I Generative model with latent xi ∈ RK :

x ∼ N (0, I)

u ∼ N (Υx,Ψu) Ψu < 0

v ∼ N (Φx,Ψv ) Ψv < 0

I Block diagonal noise.



Modes of covariation

What form does this population-movement covariation take?

“Canonical Covariance Analysis”:

I For each reach target: find mean movement trajectory and mean firing profile (PSTH).

m̄c
t =

1
Nc

trials

∑
n

mn(c)
t r̄c

t =
1

Nc
trials

∑
n

rn(c)
t

[mt ∈ R# move params; rt ∈ R#neurons]
I For each trial: find deviation from condition means.

δmn(c)
t = mn(c)

t − m̄c
t δrn(c)

t = rn(c)
t − r̄c

t

I For all trials: find simultaneous projection of deviations in movement and activity that
have the highest covariance

(Mt ,Rt ) = argmax
∑

c

∑
n

(∑
t

MT
t δmn(c)

t

)
︸ ︷︷ ︸

matrix dot products

(∑
t

RT
t δrn(c)

t

)
︸ ︷︷ ︸
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CVA: speed profile
CVA to hspeed: Monkey H; aligned none
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CVA: speed profile aligned to movement start
CVA to hspeed: Monkey H; aligned rt5
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CVA: velocity profile aligned to movement start
CVA to hhvelo vhvelo: Monkey H; aligned rt5
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CVA: speed and velocity aligned to movement start
CVA to hspeed hhvelo vhvelo: Monkey H; aligned rt5
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