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Linden, Jennifer F., Robert C. Liu, Maneesh Sahani, Christoph E.
Schreiner, and Michael M. Merzenich. Spectrotemporal structure of
receptive fields in areas AI and AAF of mouse auditory cortex. J
Neurophysiol 90: 2660–2675, 2003. First published June 18, 2003;
10.1152/jn.00751.2002. The mouse is a promising model system for
auditory cortex research because of the powerful genetic tools avail-
able for manipulating its neural circuitry. Previous studies have iden-
tified two tonotopic auditory areas in the mouse—primary auditory
cortex (AI) and anterior auditory field (AAF)—but auditory receptive
fields in these areas have not yet been described. To establish a
foundation for investigating auditory cortical circuitry and plasticity
in the mouse, we characterized receptive-field structure in AI and
AAF of anesthetized mice using spectrally complex and temporally
dynamic stimuli as well as simple tonal stimuli. Spectrotemporal
receptive fields (STRFs) were derived from extracellularly recorded
responses to complex stimuli, and frequency-intensity tuning curves
were constructed from responses to simple tonal stimuli. Both anal-
yses revealed temporal differences between AI and AAF responses:
peak latencies and receptive-field durations for STRFs and first-spike
latencies for responses to tone bursts were significantly longer in AI
than in AAF. Spectral properties of AI and AAF receptive fields were
more similar, although STRF bandwidths were slightly broader in AI
than in AAF. Finally, in both AI and AAF, a substantial minority of
STRFs were spectrotemporally inseparable. The spectrotemporal in-
teraction typically appeared in the form of clearly disjoint excitatory
and inhibitory subfields or an obvious spectrotemporal slant in the
STRF. These data provide the first detailed description of auditory
receptive fields in the mouse and suggest that although neurons in
areas AI and AAF share many response characteristics, area AAF may
be specialized for faster temporal processing.

I N T R O D U C T I O N

The mouse holds great potential as a model system for
studies of auditory cortical processing and plasticity for three
reasons. First, mouse studies can benefit from powerful genetic
engineering technologies. For example, inducible cell-specific
knockout techniques (e.g., McHugh et al. 1996; Nirenberg and
Cepko 1993) could be used to deduce the roles of different
cortical cell types in auditory perception and learning, and
mouse models of human diseases (e.g., Battey 2001; Henry and
McGinn 1992) could be used to examine the cortical causes
and consequences of auditory pathologies. Second, mice rely

heavily on audition for communication (Haack et al. 1983;
Nyby 2001), discriminating between a variety of behaviorally
significant and acoustically distinct vocalizations (Ehret 1992;
Ehret and Riecke 2002; Geissler and Ehret 2002). Third, mouse
auditory genetics, anatomy, and subcortical physiology have
already been well characterized (for a review, see Willott
2001).

Previous studies have distinguished at least five auditory
fields in mouse cortex (Stiebler et al. 1997) on the basis of
tonotopy, spontaneous activity, and general characteristics of
responses to tones, noise bursts, and frequency sweeps. These
fields include the primary auditory field (AI), the anterior
auditory field (AAF), the ultrasonic field (UF, which may be a
continuation of AI and/or AAF into ultrasonic frequency sen-
sitivities) (Hofstetter and Ehret 1992), and two higher-order
auditory areas, the secondary auditory field (AII) and the
dorsoposterior field (DP). The two tonotopic areas AI and AAF
appear to be organized as in other mammals with a reversal of
tonotopy across the high-frequency border between the two
fields. However, except for one very brief report (Shen et al.
1999), there is no published data on the structure of auditory
receptive fields in these areas. Better descriptions of auditory
receptive field structure in mouse AI and AAF are a prerequi-
site for understanding cortical processing of auditory informa-
tion in the mouse.

With that goal in mind, we here describe the auditory re-
ceptive fields of neurons recorded extracellularly in thalamo-
recipient layers of mouse AI and AAF. At each recording site,
we employed two different response characterization strate-
gies. Conventional frequency-intensity tuning curves and post-
stimulus time histograms (PSTHs) were determined from mul-
tiunit responses to isolated tone bursts to identify auditory
fields and to assess the properties of multiunit activity at each
site in a manner consistent with many previous studies of
auditory cortex responses in other species. Then spectrotem-
poral receptive fields (STRFs) were estimated from single-unit
or unit-cluster responses to dynamic random chord stimuli at
the same recording sites, to characterize the receptive fields of
single neurons or small numbers of neurons in greater spec-
trotemporal detail. Similar spectrographic reverse-correlation
methods have previously been used to characterize STRFs in
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the auditory cortex of the guinea pig (Rutkowski et al. 2002),
cat (Miller et al. 2001, 2002; Schnupp et al. 2001), ferret
(Depireux et al. 2001; Kowalski et al. 1996a), and monkey
(deCharms et al. 1998) and also to describe the properties of
auditory neurons in other brain areas and other species (e.g.,
Eggermont et al. 1983a; Escabi and Schreiner 2002; Keller and
Takahashi 2000; Qiu et al. 2003; Sen et al. 2001; Theunissen
et al. 2000; for a review, see Eggermont et al. 1983b).

These complementary analyses provide a detailed picture of
the spectral, temporal, and spectrotemporal properties of neu-
ronal responses in mouse auditory cortex. They reveal that
several features of mouse auditory responses are common to
both areas AI and AAF, including very short minimum re-
sponse latencies, broad spectral tuning, and, for nearly one-
quarter of the neurons, significant spectrotemporal inseparabil-
ity (i.e., interaction between spectral and temporal sensitivi-
ties). Areas AI and AAF differ, however, in the distributions of
both first-spike latencies and peak latencies and the durations
of responses and of receptive fields. These results are consis-
tent with findings from similar studies in other species and
suggest that although neurons in areas AI and AAF share many
response characteristics, AAF may be specialized for process-
ing faster temporal modulations. This detailed characterization
of mouse auditory receptive fields now provides a foundation
for future studies of auditory cortical processing and plasticity
in mice.

M E T H O D S

Animals

Twelve adult CBA/CaJ mice (6–15 wk old) were used in this study.
The CBA/CaJ strain was chosen because mice of this inbred strain
have excellent hearing with minimal age-related hearing loss (Zheng
et al. 1999) and are often used as a standard in studies of mouse
auditory physiology and behavior (e.g., Willott et al. 1993, 2000).

Surgical procedures

All surgical procedures conformed to protocols approved by the
University of California at San Francisco’s Committee on Animal
Research and were in accordance with federal guidelines for care and
use of animals in research. Mice were anesthetized and maintained at
a surgical plane of anesthesia with ketamine and medetomidine.
Dexamethasone was administered to control edema, atropine or gly-
copyrrolate to minimize respiratory secretions, and Ringer solution or
saline to ensure adequate hydration. Heart rate, respiration rate, and
temperature were monitored throughout each experiment; temperature
was maintained near 37.5°C with a rectal probe and a homeothermic
blanket system (Harvard Instruments). Tracheotomies were performed
on some of the mice to allow for artificial respiration with a pressure-
controlled ventilator (Kent Scientific).

Once anesthetized and prepared for surgery, each mouse was placed
in a nose clamp to immobilize its head. Topical anesthetics were
applied to the scalp, and the skin transected to expose the skull. A
hand drill and scalpel were then used to remove a section of bone over
the left auditory cortex. Silicone oil was applied to the dural surface
to keep the exposed cortex moist, and electrode penetrations were
made through the dura.

Recording procedures

All experiments were conducted in a sound-shielded anechoic
chamber (Industrial Acoustics). Auditory stimuli were delivered from
two free-field speakers (Dynaudio and Ultrasound Advice), one cov-

ering the low-frequency portion of the mouse hearing range and
another covering the ultrasound range. Animals were positioned with
the right ear near the opening of an acoustical horn (Ultrasound
Advice) and a sound-attenuating plug in the left ear so that the
free-field stimuli were presented monoaurally to the right ear. Acous-
tic calibration was performed before every experiment with a 1/4-in
Bruel and Kjaer microphone placed at the opening of the acoustical
horn so that the speaker output could be corrected to ensure a flat
frequency response (�2 dB SPL) and �2% total harmonic distortion
over the appropriate frequency range for each speaker.

Epoxylite-coated tungsten electrodes (1–4 M� impedance; Fred
Haer and Co.) were introduced into the left auditory cortex in pene-
trations orthogonal to the cortical surface. Recordings targeted
thalamorecipient layers III/IV (Smith and Populin 2001) by cortical
depth (350–600 �m below the dural surface) and by the polarity and
size of stimulus-evoked local field potentials. These criteria were
previously validated in separate histological studies (data not shown).
Neuronal responses to noise bursts, frequency sweeps, and repeated
tone bursts were then examined to determine the location of each
recording in the mouse auditory cortex map (Fig. 1), according to
criteria described by Stiebler et al. (1997). Neurons in areas AI and
AAF were identified by their nonadapting responses to repeated tone
bursts at interstimulus intervals of 400–500 ms and by a reversal of
tonotopy along the rostral-caudal axis. Neurons in area UF were
distinguished by strong tuning to ultrasonic frequencies and sensitiv-
ity to frequency sweeps. Area AII was characterized by its fractured
tonotopy and by strongly habituating neuronal responses to repeated
tone bursts. Neurons in area DP were identified by their bursty
spontaneous activity and persistent locking to repeated stimuli.

The auditory cortex was not mapped extensively in these experi-
ments but only enough to identify the likely locations of AI and AAF.
At recording sites judged to be in thalamorecipient layers of these two
auditory fields, neuronal responses were then characterized in detail.
This characterization proceeded in two stages. In the first stage,
simple tonal stimuli (see following text) were presented with the
intensity and frequency of the tone bursts varying pseudorandomly
over either a low- or a high-frequency range. Because different
speakers were required to cover the two frequency ranges—and
because simultaneous playback from both speakers was not feasible
for technical reasons—responses to tonal stimuli in each frequency
range were recorded separately. Electrode signals were amplified
(Axon Instruments), band-pass filtered between 300 and 6,000 Hz
(Stewart) and then thresholded in software (Brainware, Tucker-Davis
Technologies) to extract the times of neuronal action potentials.
Thresholds were set above the level of noise in the recording but
usually low enough to include spikes of varying amplitude; therefore
the recorded responses to tonal stimuli typically represented multiunit
activity.

In the second stage of the characterization, repeated trials of the
dynamic random chord stimuli (see following text) were played

FIG. 1. Mouse auditory cortex. AI, primary auditory field; AAF, anterior
auditory field; UF, ultrasonic field; AII, secondary auditory field; DP, dorso-
posterior field. Note the reversal of tonotopy along the rostral-caudal axis
between AI and AAF. Diagram adapted from Stiebler et al. (1997).
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continuously for many minutes. Like the tonal stimuli, these complex
stimuli spanned either a low- or a high-frequency range; the two types
of stimuli were presented sequentially at each recording site (sepa-
rated in time by at least a few minutes). Neuronal responses to
dynamic random chord stimuli were recorded with minimal band-pass
filtering (100–10,000 Hz), and the amplified electrode signals were
sampled continuously (National Instruments) for further processing
off-line. The recordings were later band-pass filtered in software
(300–6,000 Hz, 5th-order Butterworth filters) and then analyzed
using Bayesian spike-sorting techniques (Lewicki 1994) (user inter-
face software by M. Kvale, UCSF) to extract responses from single
units or small clusters of neurons. These single-unit or unit-cluster
responses were used to estimate STRFs (see following text). Because
multiple single units or distinct neuronal clusters could often be
obtained from spike sorting of the continuous recordings, the total
number of STRFs included in the analyses of responses to dynamic
random chord stimuli differed from the number of recording sites
included in analyses of responses to tonal stimuli.

Tonal stimuli

Tonal stimuli consisted of 60-ms tone bursts, ramped up and down
with 5-ms cosine gates. The frequency and intensity of each tone burst
varied pseudorandomly over the range of possible values in the
stimulus set. Frequencies covered 2–32 kHz for the low-frequency
stimulus set and 25–100 kHz for the high-frequency stimulus set, in
1/10-octave increments. Intensities ranged from 0 to 70 dB SPL in
5-dB increments. Each of the possible frequency-intensity combina-
tions was presented only once per stimulus set. The time interval
between successive tone bursts was �400 ms.

Analysis of responses to tonal stimuli

Spike times collected during presentation of tonal stimuli were
analyzed off-line using interactive Matlab software (Ben Bonham,
UCSF). The analysis proceeded as follows. First, rastergrams in which
trials were grouped by tone frequency and/or by tone intensity were
examined to identify a time window that appeared to encompass the
maximal stimulus-evoked response. This time window, which was
determined by eye based on the concentration of spikes in the raster-
grams, averaged 37 ms in length (range: 14–70 ms) across all files
analyzed. Spike counts within this time window were then plotted as
a function of tone intensity and frequency, and the outline of the
frequency-intensity tuning curve was estimated by eye. Although
responses to both low- and high-frequency stimulus sets were col-
lected at each recording site, the stimulus-evoked response and fre-
quency-intensity tuning curve usually fell mostly within one fre-
quency range or the other, and so further analyses for each site were
performed only on the recording in the appropriate stimulus range.

Response characteristics were subsequently defined with reference
to this frequency-intensity tuning curve. The threshold was chosen to
be the minimum stimulus intensity included in the frequency-intensity
curve, and the characteristic frequency (CF) was the tone frequency
that evoked a response at threshold. Bandwidth at 10 dB above
threshold was the frequency width of the tuning curve at that intensity
level; normalized BW10 was then defined to be this bandwidth nor-
malized by the CF (i.e., the inverse of Q10). The first-spike latency
was chosen to be the apparent asymptote in a plot of response latency
versus increasing stimulus intensity for tone burst frequencies within
1/10 octave of the CF. Finally, the response duration was defined as
the time from the start of the response (defined by the first-spike
latency) to the end of the peak in the PSTH formed by averaging
responses to the subset of stimuli that fell within the frequency-
intensity range of the tuning curve. More precisely, the end of this
PSTH peak was usually defined as the time at which the spike rate fell
to within 1 SD of the mean spontaneous firing rate; this time value
was occasionally corrected if it did not correspond well to the appar-

ent end of the response peak that would have been chosen by eye. This
method for determining response duration thus produced a measure
that represented the time from the beginning of the earliest response
to the end of the longest response within the frequency-intensity
tuning curve. To address the possibility that this measure of response
duration could be biased by large variations in response latency or
duration for different stimuli within the frequency-intensity tuning
curve, the data were also analyzed using a much more restricted,
threshold-dependent measure of response duration. This alternative
measure of response duration was based on a PSTH constructed only
from responses to stimuli with frequencies within 1/10 octave of the
CF and amplitudes within 10 dB of threshold, and was defined as the
width of the first peak in the restricted PSTH that exceeded the mean
spontaneous firing rate by 1 SD.

Dynamic random chord stimuli

The dynamic random chord stimuli used in these experiments were
similar to those used in previous studies (deCharms et al. 1998;
Rutkowski et al. 2002; Schnupp et al. 2001) except that the intensity
of component tone pulses was variable. A schematic spectrographic
representation of the stimulus is shown in Fig. 2A. Tone pulses were
20 ms in length, ramped up and down with 5-ms cosine gates. The
times, frequencies, and sound intensities of all tone pulses were
chosen randomly and independently within the discretizations of those
variables (20-ms bins in time, 1/12-octave bins covering either 2–32
or 25–100 kHz in frequency and 5-dB-SPL bins covering 25–70 dB
SPL in sound level). At any time point, the stimulus averaged two
tone pulses per octave, with an expected loudness of 73 dB SPL for
the low-frequency stimulus and 70 dB SPL for the high-frequency
stimulus. Each stimulus trial was 60 s in duration and was repeated
either 20 times (for the low-frequency stimulus) or 10 times (for the
high-frequency stimulus) at each site. Sound presentation from one
trial to the next was continuous with no inter-trial interval; thus the
total duration of playback was 20 min for the low-frequency stimulus
and 10 min for the high-frequency stimulus.

Analysis of responses to dynamic random chord stimuli

STRF ESTIMATION. Responses to dynamic random chord stimuli that
exhibited extreme instability in total spike count over the 10- or
20-min stimulus presentation time were discarded from the data set
before STRF estimation. Because minor instability in a long recording
cannot easily be distinguished from true neuronal response variability,
we chose as conservative a threshold as possible for rejection of
recordings. The criterion for rejecting a recording was that the Fano
factor (variance divided by mean) for the total number of spikes per
60-s trial had to exceed 200; that is, the trial-to-trial spike-count
variance had to be �200 times greater than would be expected from
a Poisson process. We considered this criterion to be an appropriately
conservative threshold for data rejection because Fano factors typi-
cally reported for cortex are at least an order of magnitude smaller
than this threshold (Kisley and Gerstein 1999; Tolhurst et al. 1983)
and because the few recordings with Fano factors �200 tended to
exhibit smooth variations in firing rate over the 10- to 20-min record-
ing time that seemed very likely to be related to changes in the
animal’s anesthetic state. Only 7 of 198 STRF recordings (3.5%) were
rejected for exceeding the Fano factor threshold of 200, and the
majority of the remaining recordings had Fano factors �10.

Histograms of the neuronal responses to dynamic random chord
stimuli were constructed by collecting spikes from all 10–20 trials of
the sorted spike trains (e.g., Fig. 2B) into 20-ms bins aligned with the
tone-pulse components of the stimuli (e.g., Fig. 2C). STRFs for each
recording site were then estimated as explained in the following text,
using the histogrammed responses and a spectrographic representation
of the stimulus in terms of tone-pulse times, frequencies, and ampli-
tudes. Thus both stimulus and response were treated as discrete-time
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processes, with the time step (20 ms) given by the duration of
tone-pulse components of the dynamic random chord stimuli. The
strong autocorrelations present in the stimuli at all shorter time scales
made STRFs estimated with finer temporal precision noisier than
STRFs estimated with this 20-ms time step. Our Bayesian estimation
techniques (see following text) were designed to reduce noise in
STRF models by eliminating noisier modes of the models and
smoothing the reliable modes; since the reliable modes were those at
a 20-ms time scale, it was not productive to estimate the STRF with
a finer temporal precision than 20 ms.

Conceptually, the STRF estimation procedure used here was similar
to reverse-correlation on the response histogram or, more precisely, to
computation of an optimally smoothed and de-noised, autocorrelation-
corrected, spike-count-weighted average of 300-ms stimulus segments
preceding each 20-ms bin in the histogram. Mathematical details of
our STRF estimation method, called automatic smoothness determi-
nation and relevance determination (ASD/RD), are given elsewhere
(Sahani and Linden 2003a) and are described only briefly here.
Bayesian techniques were first used to derive optimal spectral and
temporal smoothing and scale parameters for each recording. The
STRF was then estimated by maximum a posteriori linear regression
between the response histogram and stimulus, using the previously
determined optimal smoothing and scale parameters to set the prior
distribution on the weights. Linear regression with no smoothing or
scaling prior yields exactly the same result as the discrete-time Wiener
filter usually associated with reverse correlation (Aertsen and Johan-
nesma 1981). When combined with Bayesian smoothing and scale
selection as done here, regression yields STRF estimates that are
better able to predict neuronal responses to novel data than the
conventional Wiener filter (Sahani and Linden 2003a). Thus this
procedure provides a better estimate of the true spectrogram-linear
component of the neuronal response function than does the Wiener
filter, which overfits more severely to the noise inevitably present in
the limited available data. Other researchers have previously used
different methods (for example, elimination of singular-value decom-
position components of the Wiener filter by cross-validation)
(Theunissen et al. 2001) to pursue the same goal of obtaining im-
proved STRF estimates.

Predicted neuronal responses were computed from each STRF by
convolving the STRF with a time-frequency representation of the

stimulus. Specifically, the predicted firing rate for each 20-ms time bin
of the response histogram was the dot-product between the 300-ms-
long STRF and the time-frequency representation of tone amplitudes
in the 300-ms stimulus segment preceding that time bin. The predic-
tion error for the STRF was then determined by comparing predicted
and measured responses to novel segments of the dynamic random
chord stimulus (i.e., stimulus segments that were not used for STRF
estimation). The average prediction error was estimated by cross-
validation, a standard statistical procedure (Duda and Hart 1973)
performed as follows. Each stimulus trial was divided 10 times into a
training segment and a test segment (9/10 and 1/10 of the 60-s
stimulus trial length, respectively), such that the 10 test segments were
all disjoint. Ten STRF estimates were then obtained from the histo-
grammed neuronal responses to each of the 10 different training
segments. For each of these 10 STRFs, we calculated the mean
squared error between the histogrammed response to the test segment
that would be predicted based on the STRF and the corresponding
histogram of actual measured responses to the test segment. These
mean squared errors for each of the ten data subdivisions were then
averaged together to yield the final estimated prediction error. A
standard error on the estimated prediction error was also obtained, by
dividing the SD of the mean squared error estimates for the 10 data
subdivisions by the square root of the number of data subdivisions.
Recordings for which the STRF prediction error was �2 SEs smaller
than could be achieved by simply predicting a constant mean response
were deemed predictive STRFs. Only these predictive STRFs (114 of
191 STRFs; see RESULTS) were included in the final analysis of STRF
characteristics.

There are two reasons why some recordings might have failed to
yield predictive STRFs. The responses of the neurons might have been
largely nonlinear in the spectrogram of the stimulus and therefore not
predictable from the spectrogram-linear STRFs. Alternatively (or
additionally), the signal-to-noise levels in those recordings might have
been too low for the predictive capabilities of the STRFs to be
detected. In work described elsewhere (Sahani and Linden 2003b), we
have shown that rodent auditory cortex responses to dynamic random
chord stimuli, including the mouse auditory cortex responses consid-
ered in the present paper, are significantly nonlinear. Consistent with
this observation, we found that factors associated with low signal-to-
noise levels, such as low spike count and high trial-to-trial variability,

FIG. 2. Dynamic random chord stimulus and corresponding stimulus-evoked responses from a mouse auditory cortex recording.
A: spectrographic representation of a 1.5-s segment of the low-frequency dynamic random chord stimulus. Each shaded rectangle
represents a 20-ms cosine-gated tone pulse centered on the indicated frequency and time, with a maximal intensity given by the
depth of shading. The high-frequency dynamic random chord stimulus was similar in structure but covered 25–100 kHz in
frequency rather than 2–32 kHz. B: measured neuronal response to the segment of the dynamic random chord stimulus shown in
A displayed as trial-by-trial spike rasters. C: histogram of spikes per trial in 20-ms bins aligned with the tone pulses in the stimulus.
Time is shown relative to the beginning of the stimulus excerpt, which was taken from the middle of a 60-s stimulus trial. The
spectrotemporal receptive field (STRF) estimation procedure involved regression of the histogrammed neuronal response against
the stimulus, a process mathematically similar to reverse correlation on the histogram.
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could account only in part for failures of recordings to yield predictive
STRFs.

STRF CHARACTERIZATION. Analysis of various features of STRFs,
including temporal and spectral profiles and spectrotemporal insepa-
rability (see following text), was based on mathematical decomposi-
tion of the STRF matrix. The STRF can be viewed as a matrix of
weights R in time-frequency space with each row corresponding to a
single frequency and each column to a single time lag (Fig. 3A). These
weights correspond mathematically to the regression coefficients from
the STRF estimation and conceptually to the sensitivity of the neuron
to different frequencies at different times preceding a spike. Like any
other matrix, the STRF matrix can be decomposed into a series of
uncorrelated components, each consisting of a single vector along one
dimension (time) and a single vector along the other (frequency).
These components can be recombined completely to obtain the orig-
inal matrix or recombined in subsets to yield various approximations
to the original matrix. The process of finding these components for
rectangular matrices (such as the 15 time bin by 24 or 48 frequency
bin STRFs considered here) is called singular value decomposition
(SVD).

The SVD of the time-frequency STRF matrix was calculated as
R � USV, with the rows and columns of the factor matrices U, S, and
V arranged so that the singular values along the diagonal of S appeared
in decreasing order. In this representation, the product of the first
column of U with the first row of V, scaled by the first singular value,
gives the spectrotemporally separable matrix (or separable model)
that best approximates the full STRF matrix R in the least-squares
sense. Thus the first column of U and first row of V may be taken to
represent the spectral profile and temporal profile for the full STRF
(illustrated in Fig. 3A as curves along the left and top edges of the
STRF). Like the comparable approach used in Depireux et al. (2001),
this procedure is preferable to averaging across time or frequency to
obtain spectral or temporal profiles, because such averages would be
confounded by reversals in tuning polarity along the averaged dimen-
sion (such as the alternation of dark and light regions along the time
dimension in Fig. 3A); it is also preferable to analyzing time or
frequency slices through the peak in the STRF, because peak-depen-
dent definitions of spectral or temporal profiles would be more sen-
sitive to noise in the STRF estimation procedure.

Temporal and spectral properties of the receptive fields were de-
fined based on the temporal and spectral profiles as illustrated in Fig.
3A. The peak latency was the time to the center of the peak in the first
subfield of the receptive field (usually an excitatory subfield, but
occasionally an inhibitory subfield). Excitatory subfield duration was
defined to be the width at half-maximum of the positive peak in
temporal profile, and inhibitory subfield duration was defined to be the
width at half-minimum of the negative peak in the temporal profile.
The receptive-field duration was then defined as the time from the
beginning of the first subfield to the end of the last subfield, a measure
insensitive to the ordering of excitatory and inhibitory subfields. In the
spectral profile, the best frequency was the frequency corresponding to
the absolute maximum (larger of positive or negative peaks) in the
spectral profile. The bandwidth was then defined to be the width at
half-height of that spectral peak, and the normalized bandwidth was
this bandwidth normalized by the best frequency.

STRF INSEPARABILITY. Time-frequency inseparability of the STRF
was assessed by comparing the predictive capabilities of rank 1
(separable) and rank 3 (inseparable) SVD approximations to the full
STRF matrix. As noted in the preceding text, the best separable (i.e.,
rank 1) approximation to the full STRF R is the matrix formed by the
product of the first column of U, first element of S, and first row of V.
More generally, the matrix formed from the product of the first n
columns of U, first n � n block of S and first n rows of V gives the
best rank n approximation to R in the least-squares sense (Fig. 3B).
Higher values of n will produce increasingly accurate approximations
to R; however, higher-rank models often performed poorly at predict-
ing responses to novel stimulus segments, indicating greater overfit-
ting to noise. We chose a rank of 3 to optimize the trade-off between
minimizing the model rank and capturing potentially important insep-
arable structure in the full STRFs, on the basis of two observations.
First, when we used a Bayesian de-noising technique related to our
STRF estimation method (Sahani and Linden 2003a) to choose the
number of relevant SVD components for each STRF, we found that
the distribution of resulting ranks had a mode of 3. Second, we noticed
that STRF approximations of rank 3 were usually qualitatively indis-
tinguishable from full-rank STRFs; that is, the rank 3 approximations
generally captured what appeared by eye to be structure rather than
noise in the full STRFs.

Predictive capabilities of the separable and rank 3 inseparable
models for each STRF were determined by a cross-validation proce-
dure like that described in the previous section on STRF estimation.
We divided the data into a training segment and a test segment (9/10
and 1/10 of each stimulus trial, respectively), estimated a full STRF
from the training segment, and computed the SVD of this STRF to
obtain its separable and rank 3 inseparable approximations. Then we
predicted neuronal responses in the test segment of the data using both

FIG. 3. Analysis of STRFs. A: temporal and spectral profile measures. Time
is shown relative to the time bin for which the firing rate is to be predicted.
Color scale in the STRF indicates regression weight, increasing from black
(large negative weight) through dark red to medium orange (zero weight) to
yellow to white (large positive weight). Regression weight can be equated with
stimulus sensitivity; thus this example STRF suggests that the neuron will be
most active �40 ms after the onset of a 14-kHz tone pulse. The temporal and
spectral profiles of the STRF, obtained from singular value decomposition of
the STRF matrix, are shown along the top and left sides of the STRF. B:
evaluation of spectrotemporal separability. Approximations to the full STRF
can be constructed by recombining components of the STRF matrix singular
value decomposition in order of decreasing singular value. This procedure was
used to obtain, for each STRF, a separable (rank 1) model along with an
inseparable model of rank 3, which optimized the trade-off between minimiz-
ing the number of model parameters and capturing structure evident in most of
the full STRFs. If the rank 3 inseparable model of a STRF predicted neuronal
responses to novel stimulus segments significantly more accurately than the
separable model did, the STRF was judged to be inseparable. See METHODS for
details.
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the separable and rank 3 inseparable models, calculated the error in
these predictions as described previously, and computed the differ-
ence in error between the two predictions. Repeating this procedure
for each of 10 disjoint divisions of the data into a training segment and
a test segment, we were able to obtain both an estimate of the average
difference in prediction error between the two models, and a SE on
this estimate. If the average difference in prediction error between the
separable model and rank 3 inseparable model was �2 SEs greater
than zero, then the STRF was declared to be significantly inseparable.
In other words, an inseparable STRF was one for which the rank 3
inseparable model predicted responses to test data significantly more
accurately than did the separable model. Because the null hypothesis
was that the STRF was separable, this approach gave us a conserva-
tive test for inseparability. STRFs that were judged to be not signif-
icantly inseparable might either be truly separable or else simply not
distinguishable from separable given our limited data.

To obtain the prediction-based inseparability index used in popu-
lation data plots, the average difference in prediction error between
the separable model and rank 3 inseparable model was normalized by
an estimate of the total predictable stimulus-related power in the
neuronal response [the “signal power”; see Sahani and Linden
(2003b) for details on the derivation of this quantity]. Thus a value of
0.1 for the prediction-based inseparability index would mean that the
inseparable model predicted 10% more of the stimulus-related power
in the neuronal response than the separable model. [We have shown
elsewhere (Sahani and Linden 2003b) that rodent auditory cortical
responses to dynamic random chord stimuli are so nonlinear that
linear STRF models typically capture no more than half of the
stimulus-related response power; therefore a change of 10% could
represent a substantial improvement in response prediction.] For com-
parison with previous studies, we also quantified inseparability with a
SVD-based inseparability index previously used for characterizing
STRFs from ferret auditory cortex (Depireux et al. 2001) and related
to similar measures used in other studies (e.g., Sen et al. 2001). This
index, called �SVD in Depireux et al. (2001), quantifies the concen-
tration of power in higher singular values of the STRF matrix SVD

�SVD � 1 �
S1

2

�
i�1

N

Si
2

,

where S is the vector of singular values arranged in order of decreas-
ing amplitude. We applied this inseparability measure both to the full
STRF, for comparison with our prediction-based inseparability index,
and also to the first and second quadrants of the two-dimensional
Fourier transform of the STRF, to evaluate the “quadrant separability”
of our STRFs as defined by Depireux et al. (2001).

Population analyses

Population distributions were compared using the two-sample Kol-
mogorov-Smirnov test, a nonparametric test of the null hypothesis that
two distributions are similar (Lindgren 1993). Correlations between
measured population variables were quantified with the nonparametric
Spearman rank correlation test; population fractions were compared
with Fisher’s exact test; and differences in population means were
assessed with the two-sample Student’s t-test (Lindgren 1993; Zar
1996). The t-test results on means are reported in preference to
nonparametric Wilcoxon rank-sum test results on medians because the
two-sample t-test is more robust than the Wilcoxon rank-sum test to
violations of the assumption that the two distributions under consid-
eration have the same shape, and because the Gaussian approximation
to the posterior mean distribution inherent in the t-test was not
unreasonable given the sample sizes. However, in all cases in which
a significant difference in population means is reported, the difference
in population medians was also significant according to the Wilcoxon
rank-sum test.

Results of all statistical tests were deemed significant if the null
hypothesis was rejected at a significance level of 0.05. Throughout the
text, “K-S test” is used as an abbreviation for “two-sample Kolmo-
gorov-Smirnov test,” and “t-test” implies “two-sample Student’s t-
test.” Test statistic values are reported as Dn for the K-S test and tn for
the t-test, where n is the number of degrees of freedom, rs is the
Spearman rank correlation coefficient. All tests are identified as 1- or
2-tailed in the text as appropriate for the alternative hypothesis being
tested.

R E S U L T S

Database characteristics

Neuronal responses to prolonged dynamic random chord
stimuli and simple tone bursts were recorded at 35 AI sites and
31 AAF sites. Multiunit responses to tone bursts, used to
determine the position of each recording site in the AI–AAF
tonotopy, revealed no significant differences between the dis-
tributions of characteristic frequencies or response thresholds
for AI and AAF recording sites (2-tailed K-S tests and t-tests).
As shown in Fig. 4, the CF values for AI sites ranged from 6
to 40 kHz and thresholds varied from 4 to 36 dB SPL; for AAF
sites, CFs were 10–35 kHz and thresholds 4–39 dB SPL.

Off-line spike sorting and analysis of electrode signals con-
tinuously recorded during presentation of low- and high-fre-
quency dynamic random chord stimuli at each site yielded a
total of 191 STRFs. There were no significant differences
observed between AI and AAF responses to dynamic random
chord stimuli in either noise level [see Sahani and Linden
(2003b) for details on the noise power calculation] or stability
of firing rate across repeated trials (quantified as the inverse
Fano factor). Moreover, applying analysis techniques de-
scribed at length in Sahani and Linden (2003b), we found no
significant differences in the goodness-of-fit of linear STRFs
for AI versus AAF, nor for low- versus high-frequency record-
ings. Of the 191 STRF recordings analyzed, 114 (60 from AI
and 54 from AAF) proved to be predictive; that is, these STRFs
could be used to obtain significantly more accurate predictions
of neuronal responses to novel stimulus segments than could be
achieved based on knowledge of the mean firing rate alone (see
METHODS). These 114 predictive STRFs form the database for
all further STRF analyses presented in RESULTS.

Because responses to low- and high-frequency dynamic

FIG. 4. Recording site characteristics. Multiunit responses to isolated tone
bursts varying in frequency and intensity were analyzed to extract the response
threshold and characteristic frequency for each recording site. The distributions
of threshold versus characteristic frequency for recording sites in AI (U) and
AAF (F) were overlapping, with no significant differences between the 2
populations along either dimension.
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random chord stimuli were recorded and analyzed separately at
each site and because an average of 1.5 distinct single units or
small neuronal clusters could be extracted from each recording
by spike-sorting, many recording sites produced multiple pre-
dictive STRFs. STRFs in the same frequency range recorded at
the same site could be assumed to have arisen from different
neurons or distinct neuronal clusters because the spike wave-
forms had been discriminated during spike sorting. However,
because responses to low- and high-frequency dynamic ran-
dom chord stimuli were recorded and analyzed separately, low-
and high-frequency STRFs obtained from the same recording
site might have arisen either from distinct neurons or neuronal
clusters or from the same neuron or neuronal cluster respond-
ing to both low- and high-frequency stimuli. Definitive iden-
tification of the same spike waveform in separate low- and
high-frequency recordings was often not possible; therefore,
we pooled data from all predictive STRFs in the analyses
shown here, regardless of stimulus frequency range or site of
recording. To address the possibility that our results could have

been affected by the inclusion in the database of separate high-
and low-frequency STRFs for the same neurons, we also
re-analyzed all the data using only low-frequency STRFs,
which formed the majority (71%) of the predictive STRFs. All
results obtained using a database restricted to low-frequency
STRFs were similar to those reported in the following text for
the database pooling high- and low-frequency STRFs.

Data from single-unit and cluster recordings were also
pooled in all STRF analyses. Among the recordings in the
STRF database, 40% from AI and 15% from AAF appeared to
be single units based on the combined results of Bayesian
spike-sorting (Lewicki 1994) and visual inspection of spike
waveforms chosen randomly from throughout each 10- or
20-min recording. No significant differences between STRFs
derived from single-unit recordings and STRFs obtained from
cluster recordings were observed for any of the receptive-field
parameters examined here. Figure 5 displays six representative
mouse STRFs from AI and AAF and illustrates the similarity
of single-unit and cluster STRFs; there are no clear differences
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FIG. 5. Examples of STRFs from mouse auditory
cortex. As in Fig. 3, light and dark areas in each plot
correspond, respectively, to excitatory and inhibitory
subregions of the receptive field, and orange back-
ground indicates no stimulus sensitivity (i.e., regions
outside the receptive field). Color shading was scaled
independently for each plot to fit the range of spec-
trotemporal weights in each STRF, with medium
orange fixed to regression weight 0. Negative time
axis indicates time preceding the time bin in which
spikes evoked by the stimulus would occur. Each
STRF may therefore be viewed as a spectrogram-
linear estimate of the preferred stimulus for the neu-
ron, which would be a sound onset with slightly
different frequency content and AM characteristics
for each example shown. A, C, and E: AI STRFs. B,
D, and F: AAF STRFs. The STRFs in B and E were
derived from single-unit recordings, whereas the
other STRFs were obtained from cluster recordings.
Note that the single-unit and cluster STRFs appear to
be very similar in structure and that the time course
of the AI STRFs is generally more elongated than
that of the AAF STRFs.
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between the STRFs derived from single-unit recordings in Fig.
5, B and E, and the cluster STRFs shown in the other panels of
the figure.

STRF temporal structure

The examples of AI and AAF STRFs shown in Fig. 5
demonstrate the observed temporal differences between AI and
AAF. All six STRFs in the figure suggest tuning to sound
onsets in a similar frequency range, but the temporal structure
of the AI STRFs (Fig. 5, A, C, and E) differs from that of the
AAF STRFs (Fig. 5, B, D, and F) in two ways. First, the peaks
of the excitatory subfields (lightest regions) are shifted farther
left in the AI than in the AAF STRFs. This shift indicates that
there was a longer delay for the AI neurons than for the AAF
neurons between the moment at which a preferred stimulus
occurred, and the time at which the neuron most reliably fired
a spike; in other words, the STRF peak latency was longer for
these AI neurons than for the AAF neurons. Second, the
combined excitatory and inhibitory subfields (light and dark
regions, respectively) seem to extend across more time bins in
the AI than in the AAF STRFs. This elongation implies that the
preferred stimuli (or more precisely, the stimuli that would best
activate the linear filter approximation to the true neuronal
response function) for the AI neurons were more slowly mod-
ulated in amplitude than the preferred stimuli for the AAF
neurons, or equivalently, that excitatory/inhibitory receptive-
field duration was longer for the AI than the AAF example
neurons.

These observations hold across the database of AI and AAF
STRFs, as shown in Fig. 6. Distributions of STRF peak laten-
cies were different for AI and AAF (Fig. 6A); the AI distribu-
tion was significantly shifted to larger values (1-tailed K-S test,
P � 0.0005, D114 � 0.39), and the mean peak latency was 17
ms longer for AI than for AAF (mean � SE, 44 � 2 ms for AI
and 27 � 2 ms for AAF; 1-tailed t-test, P � 0.0001, t112 �
5.87). Similarly, despite their considerable overlap, the distri-
butions of AI and AAF receptive-field durations differed (Fig.
6B), again with a significant shift in the AI distribution toward
larger values (1-tailed K-S test, P � 0.0001, D114 � 0.39).
Mean receptive-field duration was nearly 30 ms longer for AI
than for AAF (135 � 5 ms for AI and 108 � 4 ms for AAF;
1-tailed t-test, P � 0.0001, t112 � 3.94). Excitatory subfields
appeared to contribute more to this difference in receptive-field
duration than inhibitory subfields, but both excitatory and
inhibitory subfield durations were significantly longer in AI
than in AAF (1-tailed K-S tests and t-tests, P � 0.05 in all
cases; subfield data not shown). Thus both peak latency and
receptive-field duration were longer for STRFs in AI than in
AAF, and the difference in receptive-field duration involved
both excitatory and inhibitory subfields.

As would be expected given these differences between AI
and AAF, peak latency and receptive-field duration were sig-
nificantly correlated across the entire STRF database; the cor-
relation was strongest for peak latency and excitatory subfield
duration (2-tailed Spearman rank correlation test, rs � 0.65,
P � 0.0001). Peak latency and excitatory subfield duration
were also correlated within AI alone (rs � 0.72, P � 0.0001),
and (less strongly) within AAF alone (rs � 0.29, P � 0.05),
indicating that these temporal properties of receptive fields

co-varied not only between auditory fields but also across
STRFs recorded within each field.

STRF spectral structure

As suggested by the examples shown in Fig. 5, AI and AAF
STRFs appeared to be more similar in spectral structure than in
temporal structure; however, some small differences between
the two auditory fields were evident in the population analyses.
STRFs in both areas had broad frequency tuning, but the STRF
bandwidths tended to be slightly larger in AI than in AAF.
Figure 7 displays the distributions of normalized bandwidth
(STRF peak width at half-height, normalized by STRF best
frequency) for all STRFs in which the STRF peak did not fall
near the edge of the STRF frequency range (61 of the 114
predictive STRFs). The normalized bandwidth distribution for
AI was significantly shifted to larger bandwidths (1-tailed K-S
test, P � 0.005, D61 � 0.43), and the mean bandwidth for AI
was larger than for AAF (mean � SE, 1.14 � 0.10 for AI and
0.86 � 0.08 for AAF; 1-tailed t-test, P � 0.05, t59 � 2.21).
Thus while frequency tuning was broad in both auditory areas,
STRF bandwidths were broader in AI than in AAF. Because AI
STRFs also tended to have longer times to peak and longer
receptive-field durations than AAF STRFs, spectral and tem-
poral STRF measures were correlated across the entire popu-
lation of recorded STRFs (2-tailed Spearman rank correlation
test, P � 0.05 for all comparisons). This trend toward co-

FIG. 6. Temporal differences between AI and AAF STRFs. �, the mean for
each population with the total width of the horizontal line in each symbol
indicating 2 SEs. 1, AI data; ■ , AAF data. A: STRF peak latencies. B:
receptive-field durations, encompassing excitatory and inhibitory subfields.
Both peak latencies and receptive-field durations were significantly longer in
AI than in AAF.
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variation in spectral and temporal measures was also evident
within AI alone but did not reach significance within AAF
alone.

In addition to their rather broad bandwidths, recordings from
AI and AAF often shared another spectral characteristic: ultra-
sound sensitivity. While most of the recording sites produced
only low-frequency STRFs, more than one-third of the 66
recording sites (13 sites in AI, 13 sites in AAF) yielded
predictive STRFs in both the low (2–32 kHz)-and high (25–
100 kHz)-frequency ranges. (Frequency-intensity tuning
curves collected at these sites also showed both low-frequency
and ultrasound sensitivity.) Of these 26 sites, 11 sites (3 in AI,
8 in AAF) gave low- and high-frequency STRFs with clearly
distinct low- and high-frequency peaks; 13 sites (9 in AI, 4 in
AAF) yielded STRFs that displayed broad frequency tuning
extending smoothly from low frequencies to 50 kHz or above;
and the remaining 2 sites (1 each in AI and AAF) produced
ultrasound STRFs with high-frequency sensitivity confined to
the 25- to 32-kHz region of overlap between the two stimulus
frequency ranges.

Figure 8 shows ultrasound STRFs of the first type, derived
from sites that were judged during mapping with tonal stimuli
to be tuned to lower frequencies consistent with the tonotopic

organization of AI and AAF. All four of these recording sites
also produced predictive low-frequency STRFs with distinct
receptive-field peaks below 25 kHz, as well as frequency-
intensity tuning curves with low-frequency tuning peaks but
also some sensitivity in the ultrasound range (not shown). Our
single-electrode recordings did not provide definitive proof that
the same neurons were responding both to lower frequencies
and to higher frequencies at these sites; indeed, it is possible
that the low- and high-frequency responses at these sites reflect
the sensitivities of separate and differently tuned neurons.
However, in either case, the results indicate that neurons with
ultrasound sensitivity exist at recording sites judged to be
within the boundaries of AI and AAF as well as within the
previously defined ultrasound field.

STRF spectrotemporal structure

Analysis of temporal or spectral properties of STRFs re-
quires the simplifying assumption that STRFs may be viewed
as separable so that the temporal or spectral profiles of the
receptive field can be examined separately. This simplification,
although useful for highlighting obvious differences between
AI and AAF, obscures the complexity that was observed in
some of the mouse STRFs. Nearly one-quarter of the STRFs
recorded in both AI and AAF had significantly inseparable
spectrotemporal structure—i.e., structure that could not be
described fully without reference to an interaction between
spectral and temporal features of the receptive field. Three
representative examples of such spectrotemporally inseparable
STRFs are shown in Fig. 9. Each set of two panels displays the
separable model of the STRF on the left, for comparison with
the rank 3 inseparable model of the STRF (see METHODS) on the
right. (For most STRFs, including these 3 examples, the rank 3
inseparable model was nearly indistinguishable by eye from
the full STRF.) As explained in METHODS, these STRFs were
judged to be inseparable because the inseparable model signif-
icantly outperformed the separable model at prediction of
neuronal responses to novel segments of the dynamic random
chord stimulus. Inseparable features of the STRFs, which pre-
sumably account for the improvements in response prediction,
can be identified by comparing the two models. In Fig. 9A, the
inseparability appears as offset excitatory and inhibitory sub-
fields in the inseparable model; the excitatory subfield is

FIG. 7. Spectral differences between AI and AAF STRFs. Normalized
bandwidth is defined as frequency width at half-height of the STRF peak,
normalized by the peak frequency (see METHODS). STRFs for which the peak
fell at an edge of the frequency range were excluded from this analysis because
no reliable estimate of STRF bandwidth could be obtained in those cases.
Other conventions as in Fig. 6. Note that although STRFs in both AI and AAF
had broad frequency tuning, the STRF bandwidths in AI tended to be slightly
larger than those in AAF.

A B

C D

FIG. 8. Examples of ultrasound STRFs. All re-
cordings were made at sites judged to be in AI (A
and C) or AAF (B and D) on the basis of tonotopic
mapping with low- and high-frequency tone
bursts, and all 4 sites produced predictive low-
frequency STRFs with distinct receptive-field
peaks below 25 kHz. The AI ultrasound STRF in
C was derived from a single-unit recording; the
other STRFs shown were obtained from cluster
recordings. Other plotting conventions are as in
Fig. 5.
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shifted to lower frequencies than the inhibitory subfield pre-
ceding it. The inseparable model in Fig. 9B displays a different
form of inseparability: a smooth slant in both the excitatory and
inhibitory portions of the receptive field, suggesting tuning to
fast frequency sweeps. Figure 9C combines features of both of
the other two examples in what appear to be multiple stacked
excitatory and inhibitory subfields displaced along a spectro-
temporal slant.

Across the population, a total of 26/114 STRFs (23%) had
significantly inseparable spectrotemporal structure, like that
shown in the examples in the preceding text. Significantly
inseparable STRFs appeared in similar proportions in both
areas AI and AAF (16/60 STRFs in AI versus 10/54 STRFs in
AAF; Fisher’s exact text, P � 0.5), and among both single-unit
and cluster recordings (8/32 single-unit STRFs vs. 18/82 clus-
ter STRFs; Fisher’s exact test, P � 0.8). There were no

significant differences between AI and AAF STRFs (or single-
unit or cluster STRFs) in their degree of spectrotemporal
inseparability, so all data from the two auditory fields were
pooled in Fig. 10A to illustrate the total population spread in
two measures of STRF inseparability. The prediction-based
inseparability index, explained in METHODS, quantifies the im-
provement in neuronal response predictions that could be ob-
tained using an inseparable rather than a separable STRF
model. Significantly inseparable STRFs (i.e., those for which
the prediction-based inseparability index was significantly
greater than 0) are indicated (F) in the scatter plot and in both
marginal histograms. The distribution of the prediction-based
inseparability index is compared in the scatterplot to the dis-
tribution of a SVD-based inseparability index similar to that
used in previous studies of STRF inseparability (Depireux et
al. 2001; cf. Sen et al. 2001). Values of the two inseparability
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FIG. 9. Examples of inseparable STRFs.
Each row of panels displays the separable
model (left) and rank 3 inseparable model
(right) for the same STRF. For all 3 examples
shown, the inseparable model predicted neuro-
nal responses to novel stimulus segments sig-
nificantly more accurately than the separable
model did. A: AI STRF from a single-unit re-
cording. The excitatory and inhibitory subfields
are offset both spectrally and temporally in the
inseparable model; this spectrotemporal feature
is not captured in the separable model. B: AAF
STRF from a cluster recording. Note the pro-
nounced slant in the inseparable model of the
receptive field. C: AAF STRF, from a cluster
recording. The inseparable model in this case
has multiple offset excitatory and inhibitory
subfields and also a spectrotemporal slant in the
receptive field.
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indices were significantly correlated across the population (2-
tailed Spearman rank correlation test, rs � 0.46, P � 0.0001).
Note, however, that values of the SVD-based inseparability
index were quite low even for STRFs with significantly insep-
arable STRFs according to the prediction-based measure.
[Quantitatively similar results were obtained even when the
SVD-based measure was defined relative to only the first 3

singular values of the SVD, as in Sen et al. (2001)]. For further
comparison with previous studies, Fig. 10B shows the distri-
bution of the SVD-based inseparability index applied to the
first and second quadrants of the two-dimensional Fourier
transform of each STRF; the strong peak near zero in both
distributions suggests that STRFs in mouse auditory cortex
tend to be “quadrant separable” (Depireux et al. 2001).

Responses to tonal stimuli

The major findings of the STRF analysis regarding the
structure of receptive fields in AI and AAF were confirmed by
analysis of multi-unit responses to tonal stimuli. Figure 11
displays smoothed frequency-intensity tuning curves and cu-
mulative PSTHs for responses to tonal stimuli at the same AI
and AAF recording sites that produced the STRFs depicted in
Fig. 5, A and B. To facilitate comparison of the frequency-
intensity tuning curves and STRFs, solid lines along the top of
each plot show the frequency tuning curve averaged over the
25- to 70-dB SPL intensity range spanned by tone pips in the
dynamic random chord stimulus, and dashed lines show the
spectral profile for the corresponding STRF from Fig. 5. Like
their corresponding STRFs, the tuning curves from these AI
and AAF sites had similar spectral tuning, with maximum
sensitivity to sounds in the 10- to 16-kHz frequency range and
comparable response bandwidths. However, the PSTHs at the
two recording sites were very different; both first-spike latency
and response duration were longer for the AI than for the AAF
site. The longer response duration at the AI site arose not
simply from wider variation in response latency for tones of
different frequencies, but from more prolonged responses to
individual tone bursts (not shown). Thus these AI and AAF
responses to tonal stimuli, like the corresponding STRFs for
the same recording sites, appeared to be quite different in
temporal structure despite their similar spectral characteristics.

Results for the entire population of AI and AAF recording
sites are illustrated in Fig. 12. As shown in Fig. 12A, the
distribution of first-spike latencies for AI sites was significantly
shifted toward longer values relative to the distribution for
AAF sites (1-tailed K-S test, P � 0.0001, D66 � 0.55). More-
over, although the very shortest response latencies recorded in
the two fields were similar (5–6 ms), the mean first-spike
latency for AI was longer than the mean latency for AAF
(mean � SE, 17 � 1 ms for AI and 11 � 1 ms for AAF;
1-tailed t-test, P � 0.0001, t64 � 4.28). Likewise, although AI
and AAF response durations spanned a similar range (Fig.
12B), the distribution was significantly shifted toward longer
durations for AI than AAF (1-tailed K-S test, P � 0.005, D66
� 0.42), and the mean of the AI distribution was 20 ms longer
than the mean of the AAF distribution (59 � 4 ms for AI, 39 �
3 ms for AAF; 1-tailed t-test, P � 0.0001, t64 � 4.24). (Similar
results were obtained when response duration was measured
only for stimuli with frequencies near the CF and amplitudes
near threshold; see METHODS.) In contrast, normalized band-
widths at 10 dB above threshold were very broad in both AI
and AAF (Fig. 12C) with no significant difference observed
between the AI and AAF distributions (2-tailed K-S test, P �
0.8) or between the distribution means (0.48 � 0.03 for AI,
0.54 � 0.05 for AAF; 2-tailed t-test, P � 0.3). No significant
correlations were observed between any of these response
measures, except for a correlation between response duration

 

 

 

 

FIG. 10. Spectrotemporal separability of STRFs. A: population measures of
STRF separability. The scatter plot compares 2 different indices of insepara-
bility in STRFs: a measure based on the extent to which neuronal response
predictions can be improved using an inseparable rather than a separable model
of the STRF, and a measure of spectral concentration in higher components of
the singular value decomposition of the STRF matrix (as in Depireux et al.
2001). Histograms along side and the top of the scatter plot are marginal
distributions for the prediction-based and SVD-based inseparability indices,
respectively. F and ■ , STRFs for which the prediction-based inseparability
index was significantly greater than 0 (i.e., significantly inseparable STRFs).
The Spearman rank correlation coefficient is indicated and was significant.
Note that a sizeable minority of the STRFs were significantly inseparable
according to the prediction-based inseparability test and that the values of the
SVD-based inseparability index for these STRFs were often low (0.06–0.45).
B: population measures of quadrant separability, after Depireux et al. (2001).
Separability was quantified for the 1st and 2nd quadrants of the 2-dimensional
Fourier transform of the STRF, using the SVD-based inseparability measure
from A. Top: the distribution of this SVD-based inseparability index for the
first quadrant, which would include representations of ripple stimuli whose
spectral envelopes moved downward in frequency over time (Depireux et al.
2001). Bottom: the distribution for the 2nd quadrant, which would include
representations of upward moving ripple stimuli. Note that the distributions are
strongly peaked at 0, suggesting that the STRFs tend to be quadrant separable.
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and normalized BW10 for AAF recording sites (2-tailed Spear-
man rank correlation test, rs � 0.53, P � 0.005).

Overall these findings corroborate the results of the STRF
analysis by demonstrating that temporal properties of auditory
responses were longer on average in AI than in AAF and that
the frequency tuning of the responses in both areas was very
broad. Indeed, recording site by recording site, there were
significant positive correlations between traditional measures
of responses to tonal stimuli and STRF measures derived from
responses to dynamic random chord stimuli. As illustrated in
Fig. 13, characteristic frequencies of frequency-intensity tun-
ing curves were correlated with peak frequencies of STRFs
(Fig. 13A; 2-tailed Spearman rank correlation test, rs � 0.65,
P � 0.0001); first-spike latencies for responses to tonal stimuli
were correlated with STRF peak latencies (Fig. 13B; rs � 0.66,
P � 0.0001); normalized BW10s for tuning curves were cor-
related with normalized STRF bandwidths (Fig. 13C; rs �
0.46, P � 0.005); and the durations of responses to tonal
stimuli were correlated with excitatory subfield durations for
STRFs (Fig. 13D; rs � 0.33, P � 0.005). These correlations
suggest strong analogies between traditional receptive-field
measures based on responses to tonal stimuli and STRF mea-
sures based on responses to dynamic random chord stimuli.

D I S C U S S I O N

We have shown that the temporal properties of auditory
receptive fields in mouse AI and AAF differ; peak latency and
receptive-field duration (measured from STRFs) and first-spike
latency and response duration (measured from responses to
tonal stimuli) were all significantly longer in AI than in AAF,
although the earliest response latencies and the range of recep-
tive-field and response durations were similar in the two areas.
Spectrally, AI and AAF responses tended to be broad, with
similar bandwidths for responses to tonal stimuli and slightly
larger bandwidths in AI than in AAF for STRFs computed
from responses to dynamic random chord stimuli. Ultrasound
responses were also evident in both areas at recording sites that
showed tonotopically appropriate sensitivities at lower fre-
quencies. Finally, nearly one-quarter of the STRFs in both AI
and AAF had significantly inseparable spectrotemporal struc-
ture, which usually took the form of clearly disjoint excitatory

and inhibitory subfields or a pronounced spectrotemporal slant
in the receptive field. These results provide the first detailed
description of auditory receptive-field properties in the mouse
and demonstrate that mouse auditory responses can be spec-
trotemporally complex. The data also suggest that although
neuronal response characteristics in AI and AAF are quite
similar overall, area AAF may be specialized for faster tem-
poral processing than area AI. In this section, we consider each
of the major results in the context of previous work in other
species, and then discuss the relative contributions of the two
different types of receptive-field analysis that have been ap-
plied together here.

Temporal differences between AI and AAF

The finding that auditory responses in area AI generally have
longer latencies and durations than responses in area AAF may
at first seem surprising, because areas dubbed “primary sen-
sory” fields are usually thought to be those with the fastest
responses. The anatomical connections of areas AI and AAF in
the mouse have not been compared in detail, so there is as yet
no definitive anatomical evidence to support the parcellation of
auditory fields described by Stiebler et al. (1997) [except for
UF; see Hofstetter and Ehret (1992)]. Therefore one possible
explanation for the observed pattern of temporal differences is
that area “AAF” is actually true primary auditory cortex and
area “AI” a secondary but tonotopic posterior auditory field.

This possibility, although it cannot yet be ruled out, seems
unlikely for two reasons. First, although first-spike latencies
are significantly longer on average in AI than in AAF, the
earliest response latencies in the two areas are similar. Thus
there is evidence to suggest that areas AI and AAF in the
mouse receive concurrent thalamic input, as do areas AI and
AAF in other species (Andersen et al. 1980; Budinger et al.
2000; Imaizumi et al. 2002; Winer 1992). Second, previous
studies in cat and ferret support the hypothesis that area
AAF may be specialized for faster temporal processing than
AI. Response latencies have been reported to be shorter in
AAF than AI in recent studies of both cat (Eggermont 1998)
and ferret (Kowalski et al. 1995) auditory cortex as we have
now shown for mouse auditory cortex. Investigations of cat
auditory cortex have also demonstrated that AAF neurons

FIG. 11. Examples of responses to tonal stimuli taken from
the same recording sites that produced the STRFs shown in Fig.
5, A and B. Solid curves (top) indicate the frequency tuning of
responses to tonal stimuli within the 25- to 70-dB SPL intensity
range spanned by the dynamic random chord stimulus; dashed
curves display spectral profiles for the corresponding STRFs
from Fig. 5, scaled to facilitate comparison. Frequency-intensity
tuning curves (top panels) show firing rate as function of both
tone frequency and sound level, with lighter regions represent-
ing higher neuronal firing rates. Frequency-intensity tuning
curves and frequency tuning curves were smoothed for display
with a Gaussian of SD 1.5 bins. Cumulative poststimulus time
histograms (bottom panels) display firing rate in 5-ms bins,
summed over all stimuli used to construct the tuning curves. The
black bar above each poststimulus time histogram (PSTH) in-
dicates the duration of the tone burst (cosine gating with 5-ms
rise/fall time not shown). A: AI recording site. B: AAF site. Note
that the tuning curves at the AI and AAF sites appear similar,
but the PSTHs are quite different; both first-spike latency and
response duration were longer at the AI site. Also note that the
frequency tuning is similar to that observed in the STRFs
obtained from the same sites (Fig. 5, A and B).
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can follow significantly faster temporal modulations than AI
neurons (Schreiner and Urbas 1988); this result is consistent
with the observation of shorter receptive-field and response
durations in mouse AAF than in mouse AI. Therefore we
conclude that the assignment of auditory areas outlined by
Stiebler et al. (1997) is most likely correct and that area
AAF in the mouse, like area AAF in other species, may be
more capable of fast temporal processing than area AI. It is
also possible that the temporal processing capabilities of
AAF were especially obvious in these experiments because

the recordings were all obtained from the left hemisphere;
the left hemisphere appears to be specialized for auditory
temporal processing in rodents (Fitch et al. 1993) as well as
in humans (Zatorre and Belin 2001).

Spectral similarity of AI and AAF

Neurons in mouse AI and AAF share a similar range of
receptive-field bandwidths as measured from tuning curves
constructed from responses to tonal stimuli. This finding is
consistent with the conclusions of comparable studies of audi-
tory receptive fields in AI and AAF of gerbil (Redies et al.
1989; Thomas et al. 1993) and cat (Knight 1977; Phillips and
Irvine 1982), although bandwidths have been reported to be
larger in AAF than in AI of ferret (Kowalski et al. 1995).
Analysis of STRFs derived from responses to dynamic random
chord stimuli revealed slightly larger STRF bandwidths in AI
than in AAF. No previous results from other species are
directly comparable in this case because bandwidths in AI and
AAF have not been compared in other animals using STRFs or
broadband stimuli. However, previous studies do suggest that
response bandwidth measures may differ depending on the
bandwidth of the stimulus used to evoke the neuronal response
(Brugge et al. 1998; Calhoun and Schreiner 1998; Ehret and
Schreiner 2000; Schreiner and Mendelson 1990) and therefore
that responses to tonal stimuli and dynamic random chord
stimuli might be expected to have subtly different spectral
characteristics (see Responses to complex versus tonal stimuli).

The absolute magnitudes of response bandwidths in mouse
AI and AAF seem to resemble those in primary auditory cortex
of other rodents (Kilgard and Merzenich 1999; Redies et al.
1989; Sally and Kelly 1988; Thomas et al. 1993) but appear
broader on average than auditory receptive-field bandwidths in
the ferret (Kowalski et al. 1995; Phillips et al. 1988), cat
(Schreiner and Mendelson 1990; Sutter and Schreiner 1995),
and monkey (Cheung et al. 2001; Recanzone et al. 1999). The
relatively broad frequency tuning observed in mouse auditory
cortex might therefore be a feature of all rodent auditory
receptive fields or perhaps even a general characteristic of
auditory responses in animals for which avoiding predators is
a more common activity than hunting prey.

The observation that some neurons in mouse AI and AAF
show ultrasound sensitivity is also consistent with previous
studies; Stiebler et al. (1997) reported responses with both
low-frequency and ultrasound peaks in AI and AAF near the
borders with UF. In the present experiments, we did only a
sparse mapping of the auditory cortex, to reserve sufficient
time for detailed characterization of neuronal responses at
likely AI and AAF sites. Therefore it is possible that our
recordings that showed ultrasound sensitivity were also on the
borders of the ultrasound field UF and that the electrodes
picked up activity from neurons in that field. If so, however,
the borders dividing UF, AI, and AAF are very indistinct.
Ultrasound sensitivity was observed in STRFs from single-unit
as well as cluster recordings at recording sites showing low-
frequency tuning that was clearly tonotopically appropriate to
AI or AAF. Moreover, we found sites with ultrasound sensi-
tivity in both AI and AAF, and the topographic organization of
mouse auditory cortex makes it very unlikely that AI sites with
tuning to frequencies much lower than 40 kHz would be
adjacent to neurons in UF. Thus either AI, AAF, and UF

FIG. 12. Temporal and spectral properties of responses to tonal stimuli.
Conventions as in Figs. 6 and 7. A: first-spike latencies. B: response durations.
C: bandwidths at 10 dB above threshold, normalized by characteristic fre-
quency. Note that first-spike latencies and response durations were signifi-
cantly longer at AI than at AAF recording sites, while bandwidths in the 2
auditory fields were similar.
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neurons are extensively intermingled along the borders be-
tween the auditory fields or else the observed ultrasound
STRFs represent the activity of ultrasound-sensitive AI and
AAF neurons rather than UF neurons. The presence of ultra-
sound sensitivity in AI and AAF may reflect the importance of
these high frequencies in mouse communication sounds (Ehret
1992; Haack et al. 1983; Nyby 2001).

Spectrotemporally inseparable responses

Nearly one-quarter of STRFs recorded in both AI and AAF
were spectrotemporally inseparable as demonstrated by the fact
that an inseparable model of the STRF predicted neuronal
responses to novel stimulus segments significantly more accu-
rately than did the best separable model of the STRF. Insepa-
rable spectrotemporal structure in the STRFs usually appeared
in the form of disjoint excitatory and inhibitory subfields or a
pronounced spectrotemporal slant in the receptive field (e.g.,
Fig. 9). These inseparable STRFs suggest neuronal selectivity
to sound combinations and frequency sweeps, as has been
observed in many other species (e.g., deCharms et al. 1998;
Mendelson et al. 1993; Nelken and Versnel 2000; Nelken et al.
1994; Orduna et al. 2001; Suga et al. 1979; Tian and Raus-
checker 1998). Such STRFs might be specialized for detection
of specific sounds with ecological relevance to mice; complex
spectrotemporal features are evident in many mouse vocaliza-
tions (Ehret and Riecke 2002; Geissler and Ehret 2002; Haack
et al. 1983) as well as in other natural sounds (Attias and
Schreiner 1997; Nelken et al. 1999).

Previous studies in cat (Miller et al. 2002), ferret (Depireux
et al. 2001), and monkey (deCharms et al. 1998) auditory
cortex, and additionally in cat inferior colliculus (Qiu et al.
2003) and songbird auditory nuclei (Sen et al. 2001), have also
reported some STRFs with complex, clearly inseparable struc-
ture. Relative to the STRF populations in some of these pre-
vious investigations (e.g., Depireux et al. 2001; Sen et al.
2001), the values of SVD-based inseparability indices for

mouse STRFs were quite low; nevertheless, many of these
mouse STRFs proved to be significantly inseparable in a test
based on the accuracy of neuronal response predictions. The
most comprehensive previous studies of spectrotemporal in-
separability in STRFs have focused on ferret auditory cortex
(Depireux et al. 2001; Kowalski et al. 1996a,b) and have
reported that receptive fields in ferret AI are “quadrant sepa-
rable” (i.e., separable when mapped with spectrally sinusoidal
“ripple” stimuli moving in only 1 direction) but not “fully
separable” (i.e., separable when mapped with ripple stimuli
moving in 2 directions). As shown in Fig. 10, we found that
mouse auditory receptive fields also tend to be quadrant sep-
arable but not necessarily fully separable. Similar results were
obtained in both AI and AAF, suggesting that whatever infor-
mation processing constraints underlie quadrant separability
(Depireux et al. 2001) are shared by both auditory fields.

Responses to complex versus tonal stimuli

There are several reasons why the results of the analysis of
responses to tonal stimuli might have been expected to differ from
the results of the STRF analysis of responses to dynamic random
chord stimuli, even though the data for the two analyses were
collected from the same recording sites. First, thresholded multi-
unit recordings were used for analysis of responses to tonal
stimuli, while spike-sorted single-unit or small-cluster recordings
of responses to dynamic random chord stimuli were used to derive
the STRFs. (Although we found no significant differences be-
tween single-unit and cluster recordings in the STRF analysis, the
multiunit recordings of responses to tonal stimuli likely included
many more neurons than STRF cluster recordings and so might
have shown more discrepancies from single-unit data.) Second,
there are known to be profound nonlinearities in the responses of
auditory cortex neurons to wide- versus narrow-band sounds. In
particular, the apparent bandwidth of the receptive field depends
in part on the bandwidth of the stimulus used to measure it
(Brugge et al. 1998; Calhoun and Schreiner 1998; Ehret and

FIG. 13. Correlations between measures of responses to iso-
lated tonal stimuli and related STRF measures derived from
responses to dynamic random chord stimuli. Data for AI and
AAF sites are pooled to emphasize site-by-site correlations. A:
tuning curve characteristic frequency vs. STRF best frequency.
B: first-spike latency from responses to tonal stimuli vs. STRF
peak latency. C: normalized BW10 from tuning curves vs.
normalized STRF bandwidth. D: duration of peak response to
tonal stimuli vs. STRF excitatory subfield duration. Plots A and
C include only recording sites for which the STRF peak did not
fall on the edge of the frequency range. The x axis in plots B
and D is coarsely discretized because STRF temporal measures
were limited to the 20-ms temporal resolution of the STRF (see
METHODS). Spearman rank correlation coefficients are indi-
cated; all correlations were significant.
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Schreiner 2000; Schreiner and Mendelson 1990). Finally, as
spectrogram-linear approximations to true (nonlinear) recep-
tive fields, STRFs are limited even in their description of
responses to dynamic random chord stimuli. In fact, we have
shown elsewhere that linear STRFs account for no more than
half of the stimulus-dependent variability in neuronal re-
sponses to dynamic random chord stimuli (Sahani and Linden
2003b); this finding holds true for the STRFs considered here
as well as for STRFs from rat auditory cortex.

With these considerations in mind, it is noteworthy that the
results of our analysis of responses to tonal stimuli were so
consistent with the results of the STRF analysis. The only
discrepancy between the two population analyses occurred in
the comparison of frequency tuning in AI and AAF; the STRF
analysis found that AI STRFs were slightly but significantly
broader in bandwidth than AAF STRFs, while the analysis of
responses to tonal stimuli found no significant difference be-
tween the two auditory fields in normalized bandwidth at 10 dB
above threshold. This small divergence in the findings from the
two spectral analyses is not surprising given not only that
narrow- and broad-band stimuli would be expected to evoke
different responses in auditory cortex (Brugge et al. 1998;
Calhoun and Schreiner 1998; Schreiner and Mendelson 1990;
Ehret and Schreiner 2000; Schreiner and Mendelson 1990) but
also that the two bandwidth measures are defined differently
with respect to stimulus intensity. Indeed, the consistency in
the results of the two analyses is much more striking than this
minor difference. Recording site by recording site, STRF mea-
sures correlated with related frequency-intensity tuning curve
or PSTH measures from the same recording sites. This corre-
lation suggests that the two approaches provide broadly con-
sistent and complementary accounts of receptive-field structure
and lend assurance that the first-order approximation inherent
in the STRF captures the same receptive-field features ex-
tracted by more traditional response measures.

However, despite the similarities, the two analyses also
provide different information about receptive-field structure.
For example, responses to isolated tone bursts can be used to
estimate first-spike latencies, which cannot be determined from
responses to a continuous stimulus like the dynamic random
chord stimulus. Frequency-intensity tuning curves can be used
to examine response properties such as bandwidth as a function
of intensity, whereas examination of intensity-dependent prop-
erties is considerably more difficult (although theoretically
possible) in analysis of STRFs. Conversely, the STRF analyses
simplify examination of the inhibitory subregions of receptive
fields, which are difficult to characterize in low-firing auditory
neurons using isolated tone bursts. Most importantly, however,
STRFs provide information about the incidence and form of
spectrotemporally inseparable receptive fields, information that
cannot be extracted from responses to isolated tonal stimuli.
The two types of analysis applied here therefore produced not
only consistent but also complementary results, with the STRF
analysis providing the added benefit of information about com-
plex structure in auditory receptive fields. The first-order de-
scriptions of responses provided by both of these analysis methods
have demonstrated that mouse AI and AAF receptive fields differ
in their temporal properties and can display complex spectrotem-
poral structure. Given this complexity of some mouse receptive
fields, and the known limitations of both traditional analysis
methods and linear STRF analysis, the obvious remaining chal-

lenge is to move beyond these first-order descriptions to a more
complete account of mouse auditory receptive fields that includes
nonlinear properties of neuronal responses.
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