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1 Notes
D&A stands for Dayan & Abbott Theoretical Neuroscience textbook ([Dayan and Abbott, 2001]).
ND stands forNeuronal Dynamics textbook by Gerstner, Kistler, Naud, & Paninski ([Gerstner et al., 2014]).

2 Biophysics

2.1 Single-Compartment Models (Soma)
We treat the neuron as a circuit (see appendix 7.3), with

• Membrane current im (amps per unit area), the outward/inward flow of positive/negative
ions

• Membrane potential V (millivolts), the voltage difference between outside and inside of the
cell

• Specific membrane capacitance cm (farads per unit area), an inherent property of the phos-
pholipid bilayer

• Total membrane resistance Rm (ohms), depends on the density and types of ion channels on
the membrane. Rm is inversely proportional to area A, via the specific membrane resistance
rm (ohms-unit area), which is the total membrane resistance when A = 1:

Rm =
rm
A

• Specific conductance gi (siemens per unit area), the inverse resistance of the membrane to
ions i, depending on the particular ion channel

• External injected current Ie(t) (amps)

Importantly, neurons actively maintain a concentration gradient with respect to the extracellular
space, generating diffusion of particular ions. Two crucial ones are potassium (K+) and sodium
(Na+) ions, which are respectively pumped in and out of the cell via the active sodium-pottasium
pump on the membrane to maintain a relatively higher/lower concentration of K+/Na+ inside
than outside the cell. By pumping out 3 Na+ ions for every 2 K+ pumped in, this pump (along
with others) creates an equilibrium resting membrane potential at about −70mV.

Note that this is a small enough potential such that ion flow is affected both by diffusion and
electrical forces (i.e. thermal energy ≈ potential energy, see D&A pg. 155). Since the membrane
current depends on ion movement, this means we need to slightly modify our usual electric circuit
equations. Specifically, to get an expression for the membrane current produced by the flow of
type j ions, we modify Ohm’s Law to incorporate the ionic flow generated by diffusion:

i(j) = gj(V − Ej)

where Ej is called the reversal potential of ion j: the membrane potential necessary to counteract
the flow produced by diffusion such that there is 0 net ion flow (i.e. 0 current). For ions that
are pushed into the cell by diffusion (i.e. higher those with higher extracellular than intracellular
concentration), their reversal potential will be of the same polarity as their charge so as to repel
them from the membrane and balance out the diffusion forces. For example, we need a highly
positive membrane potential to repel the positively charged sodium ions against their concentration
gradient. And vice-versa: we need a highly negative membrane potential to attract potassium ions
to move against their concentration gradient. In fact we have

Ion Concentration Gradient Reversal Potential Ei
K+ higher inside ∼ −75mV
Cl− higher outside ∼ −65mV
Na+ higher outside ∼ 50mV
Ca2+ higher outside ∼ 150mV
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We thus call Na+ and Ca2+ conductances depolarizing since they push the membrane potential
above zero, whereas K+ and Cl− conductances are hyperpolarizing. But it is important to note
that this classification hinges on the equilibrium potentials, which depend on the intra/extra-
cellular ion concentration gradients. In the below, we will always assume these fixed, but in reality
they may change dynamically on long timescales. For example, intra-cellular concentrations of
Cl− increase during development so that the Cl− conductance becomes depolarizing (effectively
turning GABAergic synapses into excitatory synapses).

Note that by our above equation, current is positive when the membrane potential is above the
reversal potential, which is when cations (positively charged ions) flow out and anions (negatively
charged ions) flow in to the cell. So the membrane current can be thought of as the total outflow
of cations from or inflow of anions to the cell, which we can write as:

im =
∑
j

gj(V − Ej)

where we have summed over all ionic conductances j. Importantly, the conductances gj may de-
pend on other factors. Below, we consider constant (passive) conductances and voltage-dependent
(active) conductances. In the single-compartment models we consider, we work in the approxi-
mation of the soma as having spatially uniform electric properties, such that the total membrane
capacitance is given by Cm = Acm, where A is the total surface area of the cell and cm is assumed
constant.

Using our equation for RC circuits (section 7.3), we then have dynamics

cm
dV
dt

= −im +
Ie(t)

A

where we have noted that the rate of change in membrane potential is equal to the rate of inflow
of positive ions (= negative membrane current, see end of previous paragraph) + injected external
current (which needs to be converted to current per unit area). Multiplying both sides now by the
specific membrane resistance rm, we have

τm
dV
dt

= −rmim + Ve(t)

where Ve(t) = rmIe(t)
A = RmIe(t) and τm = rmcm. τm ∼ 10− 100ms is called the membrane time

constant, which sets the timescale for changes in membrane potential. Note that it is independent
of the cell surface area (τm = RmCm = rm

A ×Acm = rmcm).

2.1.1 Passive Protein Channels

We first consider only those currents generated by the ion pumps maintaining the ionic concen-
tration gradient across the neuron cell membrane. We can generally assume that these work at a
relatively constant rate, such that we can safely make the approximation gj ≈ ḡj , where the bar
indicates ḡj is constant. Summing together all such channels j, we can express this so-called leak
current by

iL(t) =
∑
j

ḡj(V (t)− Ej) = ḡL(V (t)− EL)

where ḡL =
∑
j ḡj and EL =

∑
ḡjEj∑
ḡj

, and I have explicitly written the time-dependence of the
dynamic variables. Setting im = iL gives us the classic leaky integrate-and-fire (LIF) model neuron

τm
dV
dt

= −(V − EL) + Ve(t)

since rm = 1
ḡL

in the absence of any other currents. In this model, when the membrane potential
V reaches the spiking threshold Vth ≈ 50mV, the neuron emits a spike and V is reset to some V0.
In the absence of external input, the membrane potential decays exponentially to EL, which is
typically set to the resting membrane potential.

Using the substitution u(t) = V (t) − EL, we can quickly solve this using the method of inte-
grating factors (section 7.4.1), giving us

V (t) = EL +
1

τm

∫ t

0

Ve(t
′)e
−(t−t′)
τm dt′
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where we dropped the additive constant corresponding to the initial condition by assuming a large
t. This expression is easily interpreted as demonstrating the characteristic memorylessness of LIF
neurons: whatever external input Ve(t′) is received at time t′, its effect on the neuron membrane
potential V (t′ + ∆t) decays exponentially as ∆t grows, with time constant τm.

If Ie(t) = Ie is constant (so Ve(t) = Ve = RmIe), it turns out we can do a little more analytically.
In this case, the exact solution to the differential equation becomes

V (t)− EL = Ve + (V (0)− EL − Ve)e
−t
τm

Let the neuron spike whenever V (t) reaches the threshold Vth, then immediately resetting to V0

with no refractory period. Given that the initial condition is the reset potential V (0) = V0, we can
compute the interspike interval tisi

V (tisi) = EL + Ve + (V0 − EL − Ve)e
−tisi
τm = Vth

⇔ tisi = τm log
Ve − (V0 − EL)

Ve − (Vth − EL)

giving us the interspike interval firing rate

risi =
1

tisi
=

1

τm
log

(
1 +

Vth − V0

Ve − (Vth − EL)

)−1

≈
[
Ve + EL − Vth
τm(Vth − V0)

]
+

where the approximation holds for large Ie, since log(1 + z) ≈ z for small z, and []+ is linear
rectification. In this regime, the firing rate is linear in Ie = Ve/Rm.

In fact, this turns out to be a pretty good approximation for short periods of stimulation (D&A
fig 5.6). For longer periods of constant current injection, however, the ISI lengthens over time, a
phenomenon called spike-rate adaptation. This is easily incorporated into the LIF neuron by adding
a time-dependent hyperpolarizing potassium channel conductance that decays exponentially in
time:

τm
dV
dt

= −rmiL − rmgsra(t)(V − EK) + Ve(t)

τsra
dgsra
dt

= −gsra + τsra∆sra

∑
k

δ(t− t(k))

where t(k) is the time of the kth spike and ∆sra is the rise in the hyperpolarizing conductance at
the time of a spike (for this to be the case, it is necessary to include the τm constant in front of the
δ functions). In this model, gsra instantly jumps up by ∆sra whenever the neuron spikes, leading
to hyperpolarizing current that make it more difficult to spike soon after.

2.1.2 Active Protein Channels

To model actual action potentials, we need to incorporate non-linearities via non-constant (i.e.
active) membrane conductances gi(t). Specifically, we additionally model the opening and closing
of particular ion channels, thus allowing the conductances of the ions they are permeable to to
vary dynamically. The probability of a channel being open can depend on several factors, such as
the membrane potential, the concentration or presence of neurotransmitters or neuromodulators,
or other internal messengers such as Ca2+. Importantly, it has been experimentally observed that
the opening of ion channels tends to resemble a Poisson process (i.e. exponentially distributed
inter-opening intervals), where the probability of the channel opening is independent of its past
history (at a fixed membrane potential). Thus, the opening of any given type i channel on the
membrane can be treated as an i.i.d. Bernoulli random variable, so that, in the limit of many
channels, the law of large numbers tells us that the proportion of channels open should be ≈ the
probability of a channel being open. We can thus model the specific conductance of an ion i as

gi(t) = ḡopeni × channel i density × proportion of i-channels open at time t
= ḡiP (channel i is open at time t)

where ḡopeni is the conductance of the channel when it is open, such that ḡi is the channel i
conductance per unit area - a constant I will call themaximal conductance of channel i (a constant).
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We then model the open probability as time-varying and dependent on some other factor (e.g.
membrane potential, neurotransmitter concentration, etc.).

We consider here the Hodgkin-Huxley model, which models the opening and closing of voltage-
dependent K+ and Na+ channels. More specifically, we model the opening and closing probabilities
of different “gates” of each channel, the probability of opening or closing being dependent on the
membrane potential. For a fixed membrane potential V , we thus model the opening and closing
of a given gate m as a two-state Markov model with states {1, 2} = {open, closed} with transition
matrix

A(m) =

[
1− βm(V ) αm(V )
βm(V ) 1− αm(V )

]
where A(m)

ij is the probability of transitioning from state j to state i, where αm(V ), βm(V ) are
the probability per unit time (i.e. the rate) of gate m opening or closing, respectively, at a fixed
membrane potential V . For example, A(m)

12 might be the probability per ms of gate m closing, i.e.
transitioning from state 1 (open) to state 2 (closed).

Consider a gate with probability of being open at time t given by m(t). Letting P (·) designate
a probability proper and P̃ designating a probability per unit time (i.e. a rate), we can write down
its dynamics as

dm
dt

= P̃ (transitioning to open)− P̃ (transitioning to closed)

= P (closed)P̃ (closed→ open)− P (open)P̃ (open→ closed)

= (1−m)αm(V )−mβm(V )

= αm(V )− (αm(V ) + βm(V ))m

where we have the unique steady state

dm
dt

= 0⇔ m∞(V ) =
αm(V )

αm(V ) + βm(V )

Recalling that αm(V ), βm(V ) are rates, we can write the dynamics as

τm(V )
dm
dt

= m∞(V )−m

where the voltage-dependent time constant1 for this gate is τm(V ) = 1
αm(V )+βm(V ) . Thus, for a

fixed membrane potential V , the probability of an m-gate being open exponentially approaches
m∞(V ), with time constant τm(V ).

In the Hodgkin-Huxley model, we assume that the K+ and Na+ channels have more than one
“gate”2. The potassium ion channels have four such gates, such that the probability of a potassium
channel being open is

P (K+ open at time t) = n4(t)

with αn(V ), βn(V ) set such that n∞(V ) is a sigmoid function. We thus call the potassium conduc-
tance a persistent conductance, since it always increases with an increase in membrane potential
(i.e. depolarization). Sodium ion conductance, on the other hand, is called a transient conduc-
tance, because in addition to three gates that open with depolarization, there is one “inactivation
gate” that closes:

P (Na+ open at time t) = m3(t)h(t)

with m∞(V ) a sigmoid and h∞(V ) a flipped sigmoid (see figure 1A). Thus, as the neuron becomes
more depolarized and the n-gates open, the sodium ion channel is only transiently open before the
h-gate closes.

The full Hodgkin-Huxley model is then (here, τ is the passive membrane time constant):

τ
dV
dt

= −(V − EL)− ρ̄Kn4(t)(V − EK)− ρ̄Nam3(t)h(t)(V − ENa) + Ve(t)

τX(V )
dX
dt

= X∞(V )−X, X = m,n, h

1Not to be confused with the membrane time constant τm!!! It just happens that the standard notation for the
open probability of one of the Hodgkin-Huxley gates is m.

2The resulting exponents on each gating variable were originally fit to the data by Hodgkin and Huxley, but I
believe it turns out that their interpretation as a number of charged gates turns out to be true (ref??)

5



where, recalling that both sides were multiplied by rm = 1
ḡL

= 1∑
ḡi
,

ρ̄Z =
ḡZ∑
ḡi
, Z = Na, K

with the sum being over passive conductances i. Importantly, τm(V ) << τh(V ), τn(V ) for all
reasonable V , so the m-gates open much faster than the h-gates close with a depolarization,
allowing the sodium channels to remain open for a transient period (see fig. 1 below, D&A fig.
5.11). This transient period where sodium rushes into the cell and quickly depolarizes it is the
action potential, immediately succeeded by a closing of the sodium channels (via the slow h-gate)
and opening of the potassium channels (via the slow n-gates), thus letting potassium flow out
of the cell (recall that potassium conductance is a hyperpolarizing conductance, EK < 0) and
hyperpolarizing the cell back to its resting membrane potential.

Figure 1: Copied from ND textbook figure 2.3. A plots m∞(V ), h∞(V ), n∞(V ), B plots
τm(V ), τh(V ), τn(V ), u = V on abscissa. Arrow indicates resting potential EL = −65mV. See
section 2.2 for parameter settings - note that these plots are quantitatively quite different from the
analagous plots in D&A figure 5.10. Not sure which one is empirically correct...

2.1.3 Reduced Single-Neuron Models: Switches & Type I/Type II Model Neurons

We can get a better understanding of this four-dimensional system of equations by reducing it
to fewer dimensions. The most basic such approximation we can do is assume the dynamics of
the gating variables to operate on a much faster timescale than the passive membrane potential
dynamics (i.e. τ >> τm, τn, τh, which is approximately true for m-gates but not really for n, h)
such that we can simply set the gating variables to their respective equilibria in the membrane
potential dynamics, giving us the one-dimensional system:

τ
dV
dt

= −(V − EL)− ρ̄Kn4
∞(V )(V − EK)− ρ̄Nam3

∞(V )h∞(V )(V − ENa) + Ve(t)

For appropriate parameter settings, at Ve(t) = 0 this system will have two stable fixed points at
high and low V , separated by an unstable fixed point in between, i.e. a cubic function on the V vs
dV
dt plane with three roots, a minima between the smaller root and the middle root, and a maxima
between the middle and larger root. Changing Ve(t) then simply shifts this cubic function up and
down. Thus, if Ve(t) increase above some threshold, the smaller two roots eventually disappear,
leaving only the larger stable point. Conversely, if Ve(t) decreases below some threshold, the larger
two roots disappear and the system converges to the smaller stable point. We thus have a switch!
This would be really useful for computation (think of how a digital computer works), but it has an
unfeasible energetic cost: when the switch is at the ON state, the ion pumps need to work extra
hard to keep the membrane potential at the larger stable point. Furthermore, actual membrane
potential dynamics look nothing like this.

A more biologically realistic reduction is obtained by observing that (1) the approximation of
τm(V ) = 0 is not a bad one and (2) τh(V ) and τn(V ) are on the same order over all V . We
might then hope to replace h(t), n(t) with an artificial variable w(t) that can jointly represent their
dynamics. Rigorously, we might do this by fitting a linear model to their dynamical coupling, e.g.
h(t) ≈ an(t) + b, and setting w(t) = h(t) − b ≈ an(t) (see ND book, section 4.2.2 for details).
More generally, observations (1) and (2) suggest that lumping together (i) all the depolarizing
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current conductances (m3(t)) into a voltage-dependent variable u(t) → u∞(V ) and (ii) all the
hyperpolarizing current conductances (n4(t), h(t)) into one abstract dynamical variable w(t), with
accordingly different reversal potentials Ew, Eu and maximal conductances ρ̄w, ρ̄u, should conserve
the main dynamical properties of the full system. Doing this gives us the simplified 2-dimensional
Morris-Lecar model of action potential dynamics:

τ
dV
dt

= −(V − EL)− ρ̄ww(t)(V − Ew)− ρ̄uu∞(V )(V − Eu) + Ve(t)

τw(V )
dw
dt

= w∞(V )− w

with τw(V ) ∼ τh(V ), τn(V ). Although this model abstracts away some of the details of the original
system, it indeed seems to retain the same qualitative dynamical behaviors, evident in the similarity
of its nullclines to a more precise approximation of the Hodgkin-Huxley model (fig. 2). Crucially,
it is two-dimensional, so we can easily analyze it by examining its nullclines and fixed points in
the V − w plane.

The crucial property of this system is that its the V -nullcline is approximately cubic in V while
the w-nullcline is more linear3, producing three intersections corresponding to three different fixed
points when Ve(t) = 0 (fig. 2). We won’t derive it here, but it turns out the leftmost (i.e. smallest
V ) fixed point is always stable, corresponding to the resting membrane potential. The rightmost
fixed point is usually unstable (further discussion below), and the fixed point separating them is
a saddle. Changing Ve(t) (i.e. changing the input current Ie(t)) now shifts the V -nullcline up and
down in the phase plane. Observe that shifting the V -nullcline up results in the stable and saddle
fixed points getting closer and closer together, until eventually they merge and then disappear,
leaving only the unstable fixed point at large V . Since the derivatives around this point are still
pointing towards it, the Poincaré-Bendixson theorem4 tells us that it must then be a limit cycle. In
other words, if you increase a constant input current Ie above some threshold Iθ, the neuron starts
spiking repeatedly. In neuroscience, Iθ is called the rheobase (i.e. the constant current amplitude
necessary to produce spiking), and the change in number of fixed points that occurs mathematically
at Ie = Iθ is called a bifurcation, thus making the constant input current I a bifurcation parameter.

Figure 2: Copied from ND textbook fig. 4.3. A shows the nullclines of the Hodgkin-Huxley model
rigorously reduced by setting m(t) = m∞(V (t)) and fitting a linear function w(t) = ch − h(t) =
cnn(t) such that ch − h(t) ≈ cnn(t). B shows the nullclines of the simplifeid Morris-Lecar model.
As above, u = V on abscissa.

We might then ask what the frequency of the resulting limit cycle oscillations are, to get an idea
of the neuron’s firing rate response to a given constant input I - its so-called gain function. We

3This observation is at the heart of the classic Fitzhugh-Nagumo model, where the membrane potential dynamics
are exactly a cubic function of V and the dynamics of w are linear in V :

dz
dt

= −
1

3
z3 + z − w

τw
dw
dt

= b0 + b1z − w

where I have replaced V with an abstract variable z, reflecting the fact that these equations have completely
abstracted away from the underlying physical basis of membrane potentials and de-/hyper-polarizing currents.
Despite this, the reduced model shares the same qualitative features as the full one (e.g. type I, II dynamics, etc.).

4 If (i) the fixed point is unstable and (ii) we can construct a bounding surface around it such that all derivatives
on the boundary point toward its interior, then there must exist a stable limit cycle around the fixed point.
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consider first the case where the rightmost fixed point is an unstable node. In this case, trajectories
starting to the right of the saddle wrap around the unstable node in a counter-clockwise direction,
eventually returning to the stable fixed point (fig. 3, left). When I > Iθ and the dynamics bifurcate,
this behavior is conserved in the resulting limit cycle, such that the limit cycle oscillations pass
through the area where the stable fixed point used to be. When I is only slightly larger than
Iθ, the V -nullcline is still very near this area, such that the membrane potential derivative in
that local region is very small. As a result, the oscillatory trajectories will slow down when they
pass through there, reducing the spiking frequency. As I gets larger and larger relative to the
rheobase Iθ, the slowing down of the membrane potential dynamics in this region is alleviated
and the spiking frequency accordingly increases. Neuron models with such behavior are termed
type I, characterized by a continuous monotonically increasing gain function starting from 0 at
I = Iθ. Intuitively, such dynamics are useful for encoding a continuous quantity, such as the
overall strength of pre-synaptic input.

When the rightmost fixed point is a limit cycle to begin with, however, we get different behavior.
In this case, the rightmost fixed point is a limit cycle with oscillatory trajectories that pass by
just to the right of the saddle (fig. 3, right). Thus, when I is increased above the rheobase and
the stable and saddle nodes disappear, trajectories are pushed onto this limit cycle, which now
completely avoids the area where the stable point used to be. Thus, there is no slowing down in
the oscillatory trajectories and the spiking frequency immediately jumps to a high value as soon
as I > Iθ. Such neuron models are called type II, characterized by a discontinuity in their gain
function, which is 0 up until I = Iθ at which point it instantly jumps up to some initial frequency
substantially above 0. This behavior is useful for encoding a binary variable, endowing the neuron
with switch-like (ON/OFF) dynamics.

Figure 3: Copied from ND textbook figs. 4.14, 4.15. Left plot shows the derivative field with
nullclines and a trajectory in the phase plane of a type I model neuron, right plot shows the same
for a type II model neuron. As above, u = V on abscissa.

2.2 Dendrites and Axons
In multi-compartmental models of neurons, we model the axons and dendrites of a neuron as
cables. Since they are long and narrow, we assume uniformity in the radial dimension and model
variations in membrane potential along the axial/longitudinal dimension:

V (x, t)

where x is the axial/longitudinal position along the cable.
As we did in the single compartment case, we want to derive the temporal dynamics of the

membrane potential at a given position x, given by:

C
∂V

∂t
= −I + Iext(x, t)

where, as above Iext is an external injected current. We can think about the total current I by
considering a small segment of the dendrite with width ∆x centered at the longitudinal position
x. Here, we have three sources of current:

• incoming axial current from the previous segment centered at x−∆x, given by the current
at the border between the two segments: I(x− ∆x

2 )
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• outgoing axial current to the next segment centered at x+ ∆x, given by the current at that
border: I(x+ ∆x

2 )

• membrane current generated by passive and active conductances via membrane ion channels:
Im

Using Ohm’s law to convert current to voltage potential I = ∆V
R , we have:

C
∂V

∂t
= I(x−∆x)− I(x+ ∆x)− Im(x) + Iext(x, t)

=
V (x−∆x)− V (x)

RL
− V (x)− V (x+ ∆x)

RL
− Im(x) + Iext(x, t)

where we now consider the intracellular axial resistance acting on the axial current

RL =
rLl

A
=
rL∆x

πa2

where l is the cable length (in this case equal to ∆x), a is the radius of the cross-section of the
cable (A = πa2 is thus the cross-sectional area), and the constant rL ∼ 103Ωmm is an inherent
property of the neurite cytoplasm. We now approximate V (x ± ∆x) with a second-order Taylor
expansion in space:

C
∂V

∂t
≈

((
V (x)−∆x∂xV (x) + ∆x2

2 ∂2
xV (x)

)
− V (x)

)
−
(
V (x)−

(
V (x) + ∆x∂xV (x) + ∆x2

2 ∂2
xV (x)

))
RL

− Im(x) + Iext(x, t)

=
∆x2

RL

∂2V

∂x2
− Im(x) + Iext(x, t)

Assuming the axial capacitance negligible, the capacitance term on the left-hand side becomes
the membrane capacitance Cm = cmA = cm2πa∆x (where A = membrane area = dendrite
circumference × length), so we can divide both sides by the membrane area and multiply by the
specific membrane resistance to get our dynamics in terms of our good old membrane time constant:

τm
∂V

∂t
=

rm
2πa∆xRL

∆x2 ∂
2V

∂x2
− rm

2πa∆x
Im(x) +

rm
2πa∆x

Iext(x, t)

=
rma

2rL

∂2V

∂x2
− rmim(x) + rmiext(x, t)

= λ2 ∂
2V

∂x2
− rmim(x) + rmiext(x, t)

where the membrane and external currents are now in units of current per unit membrane surface
area (i.e. area of surrounding cell membrane). The constant

λ =

√
rma

2rL

(in mm2) is called the electrotonic length which, as we will see below, sets the scale of spatial (i.e.
longitudinal) variation in membrane potential along the given neurite. As before, τm sets the scale
of temporal variation.

To be able to perform some analysis on this model, we ignore the non-linear action potential-
generative active conductances contained in im, leaving only the leak current im = (V − EL)/rm
and thus giving us the passive cable equation:

τm
∂V

∂t
= λ2 ∂

2V

∂x2
− (V − EL) + rmiext(x, t)

This simplification linearizes the dynamics, thus making it amenable to analysis. Furthermore,
it is not a bad approximation whenever the membrane potential is near the resting potential
or the dendrites don’t have any active channels. Note that we have entirely ignored synaptic
conductances until now, so our analysis is restricted to the case of external (i.e. electrode) current
injection (although D&A pg. 207, top, claim that current injection can mimic the effects of a
synaptic conductance).
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In solving the passive cable equation, it is necessary to assume boundary conditions at branching
points and end points of the cable, where the dynamics will change. Different assumptions can be
made here, and in the below we take the simplest scenario: an infinite cable. Our only constraint
is then that the membrane potential remain bounded for all x, t. While no dendrite is infinite, this
is still a good approximation for sites far away from branch- or end- points of the dendrite.

We begin by considering the case of constant current injection isolated in space, i.e.

iext(x, t) = iextδ(x)

where x = 0 is the exact point at which the current is injected. This will push the membrane
potential to an equilibrium state given by

0 = λ2 ∂
2V

∂x2
− (V − EL) + rmiextδ(x)

Letting u(x, t) = V (x, t)−EL, we can solve the homogenous second-order ODE (see section 7.4.2)
for x 6= 0, where δ(x) = 0:

λ2 ∂
2u

∂x2
− u = 0

⇔ u(x) = c1e
x
λ + c2e

− xλ , x 6= 0

Since u(x) has to be bounded for x→∞,−∞, we then have:

u(x) =

{
c1e
− xλ if x > 0

c2e
x
λ if x < 0

= Θ(x)c1e
− xλ + Θ(−x)c2e

x
λ

where Θ(x) is the Heaviside function. We therefore have a discontinuity at x = 0, at which point we
still don’t know what the membrane potential is. To find this out, we solve for c1, c2 by computing
the second derivative and plugging back into the original differential equation:

λ
∂u

∂x
= −Θ(x)c1e

− xλ + c1δ(x) + Θ(−x)c2e
x
λ − c2δ(x)

= −Θ(x)c1e
− xλ + Θ(−x)c2e

x
λ + λ(c1 − c2)δ(x)

λ2 ∂
2u

∂x2
= Θ(x)c1e

− xλ + Θ(−x)c2e
x
λ + λ(−c1 − c2)δ(x) + λ2(c1 − c2)δ′(x)

= u(x)− λ(c1 + c2)δ(x) + λ2(c1 − c2)δ′(x)

The δ-functions appear from the taking the derivative of the Heaviside functions. Plugging this
back into the original differential equation at temporal equilibrium, we get

λ2 ∂
2
xu

∂x2
= u− rmiextδ(x)

⇔ u− λ(c1 + c2)δ(x) + λ2(c1 − c2)δ′(x) = u− rmiextδ(x)

⇔ −λ(c1 + c2)δ(x) + λ2(c1 − c2)δ′(x) = −rmiextδ(x)

Since there is no term on the RHS with δ′(x), we conclude that c1 = c2 = c, giving us

−2c = −rm
λ
iext = − rm

λ2πa
Iext = −RλIext

⇔ c =
Rλ
2
Iext

⇒ u(x) =
Rλ
2
Iexte

− |x|λ

at equilibrium (alternatively, we could have just assumed c1 = c2 on the grounds that the spatial
gradient of the membrane potential should be continuous). The ratio of equilibrium potential at
the injection site (x = 0) to the injected current Iext is called the input resistance Rλ of the cable.
This depends on a combination of the axial resistance and membrane resistance (in Rλ ∝ rm,

√
rL).

We have thus found that, when a constant current is injected into a dendrite at an infinitely small
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point x = x0, at equilibrium the membrane potential will drop off exponentially to each side of x0,
with characteristic length scale given by the electrotonic length λ:

V (x)− EL =
Rλ
2
Iexte

− |x−x0|λ

(see D&A fig. 6.7A for a picture). Thus, to be able to propagate a signal all the way down to
the soma, dendrites can’t be much longer than λ or the current won’t make it far enough before
decaying to 0. This provides some insight into why real dendrites are relatively short (or have
active ion channels).

Although the scenario of current being injected into an infinitely small point on the dendrite is
completely unrealistic, the above analysis is still useful for understanding the membrane potential
dynamics in a dendrite near resting potential EL (recall we’re ignoring all active conductances).
Furthermore, the solution to the passive cable equation with iext(x) = δ(x) is in fact the Green’s
function (section 7.4.3) for solving for the steady state of the more general case with an external
current that varies smoothly over space and time. In other words, since our equation is linear, we
can obtain the solution for a spatially smooth current injection by summing together the solutions
to spatially isolated currents. Let L be the linear operator corresponding to our passive cable
equation at equilibrium, i.e.

Ly = λ2 ∂
2y

∂x2
− y

Letting uδ(x) designate the solution found above, we then have that, at equilibrium,

Luδ(x) = −rmiextδ(x)

Consider now the case of a constant current injection varying smoothly over space:

τm
∂u

∂t
= λ2 ∂

2u

∂x2
− u+ rmf(x)

(where f(x) is in units of current per unit area). To solve for distribution of membrane potential
over space at the temporal equilbrium, we set ∂u

∂t = 0 and use the Green’s function (section 7.4.3)
given by uδ:

λ2 ∂
2
xu

∂x2
− u = −rmf(x)

⇔ Lu = −rmf(x)

=

∫ ∞
−∞
−δ(x− x′)rmf(x′)dx′

=

∫ ∞
−∞

Luδ(x− x′)
iext

f(x′)dx′

= L

∫ ∞
−∞

uδ(x− x′)
iext

f(x′)dx′

⇐ u(x) =
1

iext

∫ ∞
−∞

uδ(x− x′)f(x′)dx′

where we were able to go from the fourth to the fifth line since integration and differentiation are
both linear operators, and L consisted of differentiating with respect to x whereas the integral was
over a different variable x′. The awkward left arrow on the last line makes the rather technical
point that we have not shown that this is the unique solution to the ODE, only that it is a solution
(I believe a boundary condition at x = 0 would suffice to get a unique solution). Recalling that
uδ(x) ∝ e−

|x|
λ is just a rising and then decaying exponential, the resulting spatial distribution at

equilibrium will simply look like a smoothed f(x) as a result of the convolution with uδ(x).
The next case to consider is a pulse of injected current isolated in space and time:

τm
∂u

∂t
= λ2 ∂

2u

∂x2
− u+ rmiextδ(x)δ(t)
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We solve this by first taking the Fourier transform in space, which gives us a simple first-order
ODE:

τm
∂

∂t
U(ω) = −λ2ω2U(ω)− U(ω) + rmiextδ(t)

⇔ ∂

∂t
U(ω) +

λ2ω2 + 1

τm
U(ω) =

rmiext
τm

δ(t)

where we used the fact that the Fourier transform of a derivative dn

dxn f(x) is equal to (ωi)nF (ω).
Solving this, we get:

U(ω, t) = U(ω, 0)e−
λ2ω2+1
τm

t +
rmiext
τm

Θ(t)e−
λ2ω2+1
τm

t

≈ rmiext
τm

Θ(t)e−
λ2ω2+1
τm

t

by setting u(x, 0) = 0⇒ U(ω, 0) = 0. Taking the inverse Fourier transform of both sides to return
to the spatial domain, we note that the exponential term on the RHS is squared exponential in ω,
meaning we can easily compute its inverse Fourier transform by putting it into Gaussian form:

U(ω, t) =
rmiext
τm

Θ(t)e−
t
τm e−

λ2t
τm

ω2

ω→2πk
=

rmiext
τm

Θ(t)e−
t
τm

√
τm

4πλ2t

√
4πλ2t

τm
e−

4λ2t
τm

π2k2

=
rmiext

τm
√
πBt

Θ(t)e−
t
τm

√
πBte−Btπ

2k2

⇒ u(x, t) =
rmiext

τm
√
πBt

Θ(t)e−
t
τm e−

x2

Bt

=
RλIext√
4πτmt

Θ(t)e−
t
τm e−

τm
4λ2t

x2

where

B =
4λ2

τm

and we took the change of variables ω → 2πk, such that k is in units of frequency (i.e. inverse units
of x) and we could exploit our formula for the Fourier transform of a Gaussian function (section
7.6). We thus see that the pulse of current injection decays with distance from the injection site
as a Gaussian with width

√
Bt ∝ λ, which expands over time as

√
t/τm and the peak decays as

e−
t
τm /
√
t. In other words, the dynamics of the current injection are a spreading Gaussian in space

with integral decaying exponentially in time (see D&A fig 6.7B for a picture). This solution in
turn provides the Green’s function to solve for the propagation of a current injection that varies
over space and time.

If we look at a site x away from the current injection site, the current as a function of time
looks like a difference of exponentials (D&A fig 6.8A) with the peak at some t∗ > 0, later for sites
further away. We can thus try to compute a kind of “velocity” of current propagation by computing
the amount of time it will take for the current at site x to peak, and dividing the distance x from
the current injection site (i.e. the distance travelled) by the time to peak. The time of the peak t∗
is easily computed by setting the time derivative of the logarithm of u(x, t) to 0 (assuming t > 0):

0 =
d
dt

∣∣∣∣
t∗

[
− t

τm
− τmx

2

4λ2t
− 1

2
log t+ const. w.r.t. t

]
= − 1

τm
+

τmx
2

4λ2t∗2
− 1

2t∗

=
4λ2

τm
t∗2 + 2λ2t∗ − τmx2

⇔ t∗ =
−λ±

√
λ2 + 4x2

4λ
τm

=
τm
4

(√
1 + 4x2/λ2 − 1

)
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(ignoring the negative root of the quadratic, since t∗ > 0) which, in the limit of large x is:

t∗ ≈ τm
4

(
2x

λ

)
=
τmx

2λ

In this limit, the velocity of current propagation is then:

vdendrite =
x

t∗
≈ 2λ

τm

where the approximation is good for sites far away from the injection site, e.g. the soma when
current is injected at a distal dendrite.

Axons, however, often need to propagate signals over long distances and therefore require higher
speeds of propagation. Given that rL and cm are intrinsic properties of the cell cytoplasm and
phospholipid bilayer, the two parameters we can manipulate to achieve higher speeds are a (axon
radius) and rm (membrane resistance). It turns out the mammalian brain does both. To change rm,
long-range projecting axons are often myelinated : they are wrapped with layers of cell membrane
(myelin) that effectively increase the membrane resistance. We model this by taking rm → ∞.
Rearranging the passive cable equation to take this limit and then using the same strategy as
above to solve for the propagation of a pulse of injected current (Fourier transform in space →
solve differential equation in time → inverse Fourier transform of a Gaussian), we get:

cm
∂V

∂t
=
λ2

rm

∂2V

∂x2
− V − EL

rm
+ iextδ(x)δ(t)

=
a

2rL

∂2V

∂x2
− V − EL

rm
+ iextδ(x)δ(t)

⇒ lim
rm→∞

∂V

∂t
=

a

2rLcm

∂2V

∂x2
+ iextδ(x)δ(t)

⇒ V (x, t) =
iext√
πDt

Θ(t)e−
x2

Dt

D =
2a

rLcm

Note the lack of a term decaying exponentially with time, meaning that in this setting the signal
propagates as a Gaussian spreading in time, with constant integral (an intuitive result from the
fact that myelination effectively eliminates the leak current). This slowing down of the signal decay
results in faster “velocity” of the propagating signal in the axon, which we can compute as above:

0 =
d
dt

∣∣∣∣
t∗

[
−rLcmx

2

2at
− 1

2
log t+ const. w.r.t. t

]
=
rLcmx

2

2at∗2
− 1

2t∗

⇔ t∗ =
rLcmx

2

a

⇒ vaxon =
a

rLcmx

This looks like bad news: vaxon ∝ 1/x so long axons will have very slow signal propagation to their
terminals. To deal with this, it turns out that in mammalian neural systems a ∝ L. This means PEL said

this in
lecture
- refer-
ence??

PEL said
this in
lecture
- refer-
ence??

that for long and (therefore) thick myelinated axons,

vaxon =
1

rLcm
=

2πa

rLCm

Thus, we have that (approximately)

vdendrite ∝
√
a

vaxon ∝ a

For further discussion of such wiring principles at play in the mammalian brain, see Chklovskii et
al., 2002.
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Note, however, that the spatial decay of the signal remains the same in axons as in dendrites,
since the Gaussians have the same width:

B =
4λ2

τm
=

4rma

2rLrmcm
=

2a

rLcm
= D

So, although a signal originating from the soma may propagate faster down an axon, it will still
decay to 0 for any distances much further than about 2

√
Dt. Since axons need to be long to project

to different brain areas, they deal with this problem by separating segments of myelination with
so-called nodes of Ranvier where there is a high concentration of active Na+ channels that can
initiate an action potential if the membrane potential gets high enough. This is called saltatory
conductance, since the action potential “jumps” (salta, in Spanish) from one node to the next.

2.3 Synaptic Transmission
Synaptic transmission is a three-stage process:

1. An action potential arrives at the pre-synaptic terminal, thus opening voltage-dependent cal-
cium ion (Ca2+) channels and leading to an increase in the intracellular Ca2+ concentration.

2. With probability Prel, this triggers the fusion of vesicles containing neurotransmitter to the
cell membrane, leading to the release of the neurotransmitter into the synaptic cleft.

3. With probability pj , neurotransmitter binds to type-j receptors on the post-synaptic cell
membrane, causing type-j ion channels to open. If the resulting post-synaptic membrane
current is strong enough (summing over all j at the synapse), the membrane potential may
rise above threshold and trigger an action potential in the post-synaptic cell.

Crucially, steps 2 and 3 are stochastic, so our synaptic conductance-based model for the post-
synaptic membrane current at synapse s is

is = ξs
∑
j

ḡjpj(V − Ej)

ξs =

{
1 with probability Prel
0 with probability 1− Prel

where j indexes different neurotransmitter-dependent ion channel types on the post-synaptic mem-
brane at the given synaptic cleft. Our notation follows Hodgkin-Huxley model conventions, with
ḡj (= conductance of open channel j × density of channel j) and Ej (= reversal potential of
ions channel j is permeable to) as constants and pj(t) (= probability of a j-channel being open)
modelled as a gating variable with (two-state Markov model) dynamics

dpj
dt

= αj(Cj)(1− pj)− βj(Cj)pj

⇔ τj(Cj)
dpj
dt

= p(j)
∞ (Cj)− pj

τj(Cj) =
1

αj(Cj) + βj(Cj)
, p(j)

∞ (Cj) =
αj(Cj)

αj(Cj) + βj(Cj)

where Cj is the concentration (in the synaptic cleft) of the neurotransmitter that activates channel
j and Ej designates the reversal potential for the ions that channel j is permeable to. αj and βj
respectively refer to the rate of binding and unbinding of neurotransmitter to the given receptor
type. Typically, at a given synapse there will only be one type of neurotransmitter being released
by the pre-synaptic cell (the strongest version of Dale’s Law : every neuron releases only one type
of neurotransmitter at all its synaptic terminals), but I will continue with the general case.

Solving the equation above gives us

pj(t) = p(j)
∞ (Cj) + (pj(0)− p(j)

∞ (Cj))e
− t
τj(Cj)

A useful simplification here is to assume βj to be a small constant, and to set αj(Cj) ∝ Ckj with
some exponent k such that neurotransmitter binding rate is highly dependent on the concentration
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of neurotransmitter in the synaptic cleft, with αj(0) = 0. We then model the concentration of
neurotransmitter Cj(t) as a square wave

Cj(t) = C̄jΘ(t)Θ(T − t)

with large C̄j so that p(j)
∞ (Cj) ≈ 1 at times t ∈ [0, T ]. In reality, after neurotransmitter is released

into the synaptic cleft, it is quickly removed via enzyme-mediated degradation as well as through
diffusion, making the square wave a reasonable approximation. This results in the following solu-
tion:

pj(t) =

{
1− (1− pj(0))e−(αj(C̄j)+βj)t if 0 ≤ t ≤ T
pj(T )e−βjt if t > T

which consists of a saturating (to 1) rising exponential with time constant τrise = 1
αj(C̄j)+βj

at
times t ∈ [0, T ] followed by an exponential decay with time constant τdecay = 1

βj
, where time t = 0

indicates the moment at which neurotransmitter is released into synaptic cleft.
A common further simplification is to assume instantaneous neurotransmitter release and re-

moval by letting T → 0 so that Cj(t)→ C̄jδ(t), and setting

pj(0
+) = pj(T ) = pj(0

−) + (1− pj(0−))pmaxj

where pj(0+), pj(0
−) are the probability of channel j being open at the exact moment of and

just prior to neurotransmitter release, respectively. Here, we’ve set pj(0+) to its maximum in
the previous more realistic model, given by pj(T ). In this case, pmaxj = (1 − e−(αj(C̄j)+βj)T ).
Generalizing this model to arbitrary pre-synaptic spike times {tk} gives us the following synaptic
conductance dynamics5:

dpj
dt

= −βjpj + (1− pj)pmaxj

∑
k

ξkδ(t− tk)

ξk =

{
1 with probability Prel
0 with probability 1− Prel

Note that ξk, tk are not indexed by j (in fact they should be indexed by the particular synapse s) - all
receptors j at this synapse share the same pre-synaptic spike times and neurotransmitter release
probability. In this case, we drop the ξs term in our equation for the post-synaptic membrane
current is, since the stochastic vesicle release component is now implicit in the channel opening
probabilities.

A more phenomenological model of the synaptic conductance is the difference-of-exponentials

pj(t) = pmaxj B
(
e−

t
τ1 − e−

t
τ2

)
B =

((
τ2
τ1

) τrise
τ1

−
(
τ2
τ1

) τrise
τ2

)−1

, τ1 > τ2

with rise time τrise = τ1τ2
τ1−τ2 and decay time τdecay = τ1. The normalizer B simply enforces that

the peak of the conductance be pmaxj , which occurs at t∗ = τrise log τ1
τ2
. Another more simplified

phenomenlogical model is the α-function

pj(t) =
pmaxj t

τj
e1−t/τj

which reaches its maximum pmaxj at t∗ = τj , with decay time τdecay = τj . These two models are
useful for neurotransmitter receptors with slower rise times (e.g. GABAB , NMDA).

Note that under certain simplifications, we now have a full model of brain activity. Specifically,
if we assume only one type of post-synaptic channel at each synapse and ignore the dynamics of

5 As hinted just above, this simple looking differential equation hides an analytical obstacle in that it requires
evaluating pj(tk), which is impossible to evaluate since pj is in the middle of an infinite slope jump at this point
because of the contribution of the δ-function δ(t− tk). My derivation implies circumventing this problem by simply
evaluating pj(tk) at time t−k , just before the jump. This is called an Itô integral. It is worth noting, however, that
an alternative approach would be evaluating pj(tk) in the middle of the jump, called a Stratonovich integral.
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dendrites and axons, the following equation gives us the membrane potential dynamics of any given
neuron i:

τm
dVi
dt

= −(Vi − EL)− [HH active currents]−
∑
j

ḡijξijpij(Vi − Ej)

τij(Cij)
dpij
dt

= p(ij)
∞ (Cij)− pij [insert favorite synaptic conductance model here]

ξij =

{
1 with probability P (ij)

rel

0 with probability 1− P (ij)
rel

where j indexes all synapses ij onto neuron i. This is a conductance-based model of the brain,
since we are explicitly modelling the conductances in ḡijξijpij . Alternatively (as we will do below
in section 3), we could simplify this to a current-based model by absorbing ḡijξij(Vi−Ej) into one
term Wij such that the synaptic inputs to model i (i.e. the last term in the equation for dVi

dt ) are
modelled as input currents.

In fact, this is often not such a bad simplification since we can classify all neurotransmitters
as either excitatory or inhibitory, depending on the polarity of the reversal potential of the ion
currents generated by their respective post-synaptic receptors (i.e. greater/less than the resting
potential EL for excitatory/inhibitory). A great diversity exists within each of these classes, but
it turns out we can reproduce many characteristic properties of brain dynamics with just these
two classes of synapse (section 3). Two such neurotransmitters ubiquitous in the neocortex are
glutamate (E ∼ 0mV) and GABA (E ∼ −100mV), with post-synaptic receptors given in the table.

Neurotransmitter Receptor Time constant Ions
Glutamate AMPA fast (∼ 1ms) cations

NMDA slow cations, including Ca2+

GABA GABAA fast Cl− conductance
GABAB slow K+ conductance

These are all ionotropic receptors, since the binding of a neurotransmitter to them automatically
opens an ion channel attached to the receptor. Other receptors can be metabotropic, meaning that
they trigger an intracllular signalling cascade that results in a certain type of channel opening.

2.3.1 Short-term Synaptic Plasticity: Synaptic Depression and Facilitation

The current outlook on synaptic plasticity is that, at a synapse ij, the maximal conductance term
ḡij changes on long timescales (e.g. by increasing/decreasing density of receptors) whereas the
neurotransmitter release probability P

(ij)
rel change on both short and long timescales. On short

timescales one of two things can happen:

• Synaptic depression: post-synaptic potential temporarily decreases with repeated high fre-
quency pre-synaptic spikes, since the stock of readily available neurotransmitter in the pre-
synaptic axon terminal has been depleted, thus lowering the probability of vesicle release on
the next spike.

• Synaptic facilitation: post-synaptic potential temporarily increases with repeated high fre-
quency pre-synaptic spikes, since this leads to a high influx of calcium Ca2+ ions into the
pre-synaptic axon terminal, thus increasing the probability of vesicle release on the next
spike.

We can thus model both synaptic depression and facilitation with a two-dimensional system of
ODEs explicitly modelling the dynamics of calcium ion concentration [Ca2+] in the pre-synaptic
terminal and the number of vesicles M ready for release:

Prel = f([Ca2+],M)

τCa
d[Ca2+]

dt
= −[Ca2+] + α

∑
k

δ(t− tk)

τM
dM
dt

= M0 −M −
∑
k

ξkδ(t− tk)
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with some complicated f([Ca2+],M) that is presumably monotonically increasing in [Ca2+],M .
An alternative is to abstract away and forget the calcium and vesicle number dynamics by

directly modelling the temporal dynamics of Prel:

τrel
dPrel
dt

= P0 − Prel + τrel
∑
k

δ(t− tk)×

{
−ξk(1− fD)Prel

fF (1− Prel)

where fF , fD ∈ [0, 1] (larger fF for stronger facilitation, smaller fD for stronger depression), k
indexes pre-synaptic spikes, and ξk is our usual stochastic variable taking on 1 with probability
Prel(t) and 0 otherwise (representing whether or not vesicles were released upon pre-synaptic
spike k). In other words, the release probability decays exponentially to its equilibrium value P0,
updating itself every time a pre-synaptic action potential arrives at the axon terminal according
to either a synaptic depression or facilitation update rule. Because there is a Prel term multiplied
by δ-functions on the right hand side, analyzing this equation becomes a mess (see footnote 5), so
it is actually easier work with the explicit update rules:

τrel
dPrel
dt

= P0 − Prel

Prel → ξkfDPrel + (1− ξk)Prel [synaptic depression]
Prel → Prel + fF (1− Prel) [synaptic facilitation]

where the updates occur upon a pre-synaptic spike arriving at the axon terminal.
Synaptic depression can be particularly useful for normalizing synaptic inputs and for detecting

changes in firing rate. We can see this by setting ξk = 1 to allow perfectly reliable vesicle fusion
and neurotransmitter release on every pre-synaptic spike and then computing the steady state
〈Prel〉 averaged over pre-synaptic spikes drawn from some homogenous Poisson process with rate
r. Suppose the release probability is at this average steady state, Prel = 〈Prel〉, when a single
pre-synaptic spike occurs at time tk so that:

Prel → fD〈Prel〉

Solving our ODE, the release probability at the time of the next spike tk+1 is then given by

Prel(tk+1) = P0 + (fD〈Prel〉 − P0)e
−
tk+1−tk
τrel

Having defined 〈Prel〉 as the average steady state, averaging over spike times tk+1 should give us
〈Prel(tk+1)〉 = 〈Prel〉. In other words, the release probability should on average decay to 〈Prel〉 by
the time the next spike arrives (by definition). Given that the pre-synaptic spike times are drawn
from a homogenous Poisson process, we can directly compute this average by averaging over the
exponentially distributed inter-spike intervals:

〈Prel(tk+1)〉 = P0 + (fD〈Prel〉 − P0)

∫ ∞
tk

P (tk+1 − tk)e
−
tk+1−tk
τrel dtk+1

= P0 + (fD〈Prel〉 − P0)

∫ ∞
0

re−rτe
− τ
τrel dτ

= P0 + (fD〈Prel〉 − P0)r

∫ ∞
0

e
−τ
(
rτrel+1

τrel

)
dτ

= P0 + (fD〈Prel〉 − P0)
rτrel

rτrel + 1

Setting 〈Prel(tk+1)〉 = 〈Prel〉, we then solve for the average steady state 〈Prel〉:

〈Prel〉 =
P0

(
1− rτrel

rτrel+1

)
1− fD rτrel

rτrel+1

=
P0

(1− fD)rτrel + 1

We thus see that, at high pre-synaptic firing rates r, the release probability scales with 1
r . This

means that the rate of arriving post-synaptic potentials, given by rPrel, remains approximately
constant with respect to the pre-synaptic firing rate r (at steady state). Synaptic depression thus
serves as a mechanism for normalizing pre-synaptic inputs (with potentially different firing rates)
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on different synapses to the same synaptic transmission rate (and hence the same time-averaged
post-synaptic potential amplitude, assuming individual post-synaptic potential amplitudes to be
the same across synapses), at least in the regime of high pre-synaptic firing.

Of course, this also means that the synapse cannot convey any information about smooth
changes in pre-synaptic firing rate, on the timescale of τrel. Faster changes r → r + ∆r, however,
will be detected since it takes O(τrel) time for Prel to reach its new steady state. Before reaching
it, the synaptic transmission rate will thus transiently rise to

(r + ∆r)〈Prel〉 =
(r + ∆r)P0

(1− fD)rτrel + 1

which, in the limit of high pre-synaptic firing rates, is O( r+∆r
r ). In other words, the resulting

increase in synaptic transmission rate is proportional to the relative, rather than absolute, increase
in pre-synaptic firing rate. A synapse can therefore use synaptic depression to encode the relative
magnitude of transient changes in the pre-synaptic firing rate.

2.3.2 NMDA-mediated plasticity

One of the few postulated mechanisms for long-term plasticity (section 4) is the unblocking of
NMDA receptors via back-propagating action potentials. NMDA receptors are unique in that they
have sites that magnesium Mg2+ ions bind to, thus blocking the receptor in a voltage-dependent
fashion. Namely, since Mg2+ ions have a positive charge, a high membrane potential at the post-
synaptic cell/dendrite will repel them, thus unblocking the NMDA receptors at the synapse. We
can thus model NMDA receptor conductance by incorporating a scaling factor that is sigmoidal in
the membrane potential V , this sigmoidal relationship mediated by concentration of magnesium
ions in the synaptic cleft [Mg2+]:

iNMDA = − ḡNMDApNMDA

1 + [Mg2+]
3.57 e−

V
16.8

(V − ENMDA)

(where the vesicle release probability is implicit in pNMDA).
Importantly, it turns out that when a neuron spikes, action potentials often “back-propagate” up

the dendrites, thus increasing the membrane potential near the synapses and unblocking NMDA
receptors. Furthermore, NMDA receptors are permeable to Ca2+ ions, which trigger long-term
changes at the synapse by signalling the cell to (1) open more NMDA channels and (2) produce and
insert new AMPA channels. This process is called NMDA-mediated plasticity. Note that NMDA-
mediated plasticity at a synpase can also be triggered by increases in the membrane potential
resulting from the depolarization of neighboring synapses, leading to what is called heterosynaptic
plasticity (more on the functional implications of this in section 4).

Because it requires both pre- and post-synaptic activity, NMDA-dependent plasticity is thought
to play a major role in Hebbian learning. Indeed, it has been experimentally observed that in many
cases synaptic plasticity stops when NMDA channels are blocked. From a neurocomputational
point of view, NMDA receptors can act as coincidence detectors, since they are most active under
simultaneous post- and pre- synaptic depolarization.

3 Networks

3.1 Mean-Field Analysis of Spiking Networks
We now consider the simplified network model given by the differential equations

τm
dVi
dt

= fi(Vi, t)−
∑
j 6=i

mijgj(t)(Vi − Ej) (1)

τs
dgj
dt

= −gj +
∑
k

δ(t− t(j)k ) (2)

where fi(Vi, t) represents the single neuron dynamics (e.g. leak current, Hodgkin-Huxley currents)
andmij is an abstract variable meant to represent the contributions of the neurotransmitter release
probability, the ion channel density, and the open ion channel conductance (i.e. combination of
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ξj ∼ Prel and ḡi) across all synapses between pre-synaptic neuron j and post-synaptic neuron i.
The pre-synaptic neuron j is assumed to release the same neurotransmitter at all its axon terminals,
with associated reversal potential Ej (+ve for excitatory, -ve for inhibitory). The dynamics of gj
are meant to emulate the dynamics of a synaptic conductance, under the simplification that each
pre-synaptic spike at time t(j)k instantly triggers neurotransmitter release at all its axon terminals,
leading to an instant rise in the neurotransmitter concentration at the synaptic cleft, modelled by
a δ-function in equation 2.

So we now have a set of 2N equations comprising a dynamical system that we have reason
to believe could be a good description of a vanilla neural circuit of N neurons in the brain. We
might then ask: what kinds of dynamical behaviors can we expect from such a system? Can we
derive any general principles about network dynamics from this set of equations? Unfortunately,
the non-linear terms fi(Vi, t) and gj(t)Vi(t) in equation 1 make this system very hard to analyze,
so we will require further simplifications to make any analytical headway.

The first such simplification is to simplify the non-linearities in equation 1. First, we get rid
of the non-linear interaction gj(t)Vi(t) between the membrane potential and synaptic conductance
by moving from a conductance-based model to a current-based model. Namely, we we approximate
the post-synaptic membrane potential in this interaction term by its temporal mean: gj(t)Vi(t)→
gj(t)V̄i, allowing us to rewrite equation 1 as

τm
dVi
dt

= fi(Vi, t) +
∑
j 6=i

wijgj(t)

where wij = −mij(V̄i − Ej) is interpreted as an approximate “synaptic weight” from pre-synaptic
neuron j onto post-synaptic neuron i.

We now focus on the synaptic drive

hi(t) =
∑
j

wijgj(t)

(henceforth all sums over pre-synaptic neurons j 6= i will be written shorthand as sums over j),
which is a function of time by virtue of the temporal dynamics of gj(t) (equation 2). Note that
these dynamics are such that the total current contribution of a single pre-synaptic spike k from
neuron j integrates to 1:

gj(t) = Θ(t− t(j)k )
1

τs
e−
−(t−tk)

τs

⇒
∫ ∞

0

gj(t)dt =

∫ ∞
t
(j)
k

1

τs
e−
−(t−tk)

τs dt =
[
−e−

−(t−tk)

τs

]∞
t
(j)
k

= 1

Thus, its temporal mean ḡj = 〈gj(t)〉t is in fact the mean firing rate νj of neuron j:

〈gj(t)〉t = lim
T→∞

1

T

∫ T

0

gj(t)dt

= lim
T→∞

1

T

∑
k

∫ ∞
t
(j)
k

1

τs
e−
−(t−tk)

τs dt

= lim
T→∞

1

T
nj(T ) ≡ νj

where nj(T ) designates the number of emitted spikes up until time T . We can thus rewrite the
synaptic drive to neuron i in terms of mean firing rates:

hi(t) =
∑
j

wijgj(t)

=
∑
j

wij(ḡj + δgj(t))

=
∑
j

wijνj︸ ︷︷ ︸
“quenched noise”

+
∑
j

wijδgj(t)︸ ︷︷ ︸
“dynamic noise”

= h̄i + δhi(t)
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where δgj(t) ≡ gj(t)− ḡj are 0-mean fluctuations of each gj(t) around its temporal mean ḡj , such
that

〈δhi(t)〉t =
∑
j

wij〈δgj(t)〉t = 0

We can thus express the synaptic drive hi(t) as 0-mean temporal fluctuations δhi(t) (the “dynamic
noise”) around a temporal mean h̄i (the “quenched noise” - noisy over neurons rather than over
time).

This inspires the following idea: rather than analyzing actual trajectories of our high-dimensional
non-linear system (which requires solving a set of 2N non-linear ODEs - a super hard problem),
let’s instead try to solve the following two possibly easier statistical problems:

1. characterize the distribution of time-averaged activity over all neurons in the network (arising
from the quenched noise component of the synaptic drive)

2. characterize temporal correlations in activity (arising from the dynamic noise component of
the synaptic drive)

Solving these problems naturally won’t give us temporal trajectories or anything like what we’d
get from solving the ODEs, but it will still prove useful to gain some insight into the different
dynamical regimes such a system can exhibit.

Here, we’ll focus mainly on problem #1: characterizing the distribution over time-averaged
firing rates in the population {νi}Ni=1, where “characterizing” will simply entail computing the
moments of the distribution 〈ν`〉. Our approach to doing this stems from the following two obser-
vations:

I. the time-averaged synaptic drive h̄i =
∑
j wijνj depends on the distribution of time-averaged

firing rates

II. the time-averaged firing rate νi of a neuron should depend on its time-averaged synaptic
drive h̄i

These two observations respectively suggest that we should be able to write down a set of self-
consistent equations expressing

i. the moments of the synaptic drive 〈h̄`〉 in terms of the moments of the firing rate 〈ν`〉

ii. the moments of the firing rate 〈ν`〉 in terms of the moments of the synaptic drive 〈h̄`〉

Thus, for computing Lmoments, we should be able to write down 2L equations with 2L unknowns -
a system of equations we can (at least in principle) solve. This will require a few more assumptions
along the way (namely, N → ∞, i.i.d. weights, and a saturating gain function), but it will turn
out to yield some interesting results.

We start with writing down equations expressing the moments of the distribution over time-
averaged synaptic drives in terms of the moments of the distribution over time-averaged firing
rates. We first note that the synaptic drive is a big sum of N − 1 terms:

h̄i =
∑
j

wijνj

Thus, if each of the terms inside the sum are independently distributed over index i, as N →∞ (the
regime we’re interested in, since there’s lots of neurons in the brain) the Central Limit Theorem
tells us that the distribution of h̄i over index i (i.e. over the population of N neurons) becomes
Gaussian. Noting that the only terms on the right-hand-side that vary over index i are the synaptic
weights, we conclude that if the synaptic weights are independently sampled then the distribution
over time-averaged synaptic drives in the population will approach a Gaussian in the large N limit.
For analytical convenience, we therefore incorporate the following structural constraint into our
model:

the synaptic weights wij are independent and identically distributed (i.i.d.) with mean w̄
and variance σ2

w
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While the assumption of i.i.d. weights may not hold in the brain, it might still allow our model to
provide useful insights into how actual neural circuits operate6.

We can now easily take the limit of large N and invoke the CLT to write:

h̄i = µh +
√
Nσhξi ξi ∼ N (0, 1)

where

µh = 〈h̄i〉i =
∑
j

〈wij〉iνj = w̄
∑
j

νj = Nw̄ν̄ (3a)

Vari[h̄i] =
∑
j

Vari[wij ]ν2
j = σ2

w

∑
j

ν2
j = Nσ2

wν
2 ≡ Nσ2

h (3b)

where I have defined the `th moment of the firing rates as

ν` ≡ 1

N

∑
j

ν`j

and the i subscript on the expectation and variance operators indicates an expectation over the
random variation along index i. We also used the fact that, because the wij ’s are identically
distributed, ∀j, k 〈wij〉i = 〈wik〉i = w̄ (and similarly for the second moment and therefore the
variance).

Having written down a whole distribution over time-averaged synaptic drives h̄i in terms of
the first and second moments of the time-averaged firing rates νi, we now turn to the problem of
expressing the latter in terms of the former. This becomes easy once we have a way of transforming
the time-averaged synaptic drive to a neuron into its time-averaged firing rate:

νi = φi
(
h̄i
)

where the so-called “gain function” φi(·) is some non-linear function depending on the single neuron
dynamics fi(Vi, t) of neuron i. Generally, we’ll take φi(·) = φ(·) to simply be a scaled sigmoid
saturating at νmax ∼ 100Hz, reflecting the fact that firing rates cannot be negative and neurons
can only fire at a finite rate. Further justification for the sigmoid shape is provided by Wilson
& Cowan (1972): the time-averaged firing rate should be directly proportional to the probability
of having suprathreshold input per unit time, approximately equal to the cumulative probability
density of h̄i from spiking threshold to infinity. If h̄i has a unimodal distribution (which, as we
just showed, it does under the assumption of i.i.d. weights), then this cumulative distribution
will be a sigmoid7. Moreover, the sigmoid captures the main ingredients of what a neuronal gain
function should look like: positive, monotonically increasing, and saturating. That said, most of
the subsequent analysis is agnostic as to what the form of the gain function is, so any reasonable
saturating function should do.

With this gain function in hand, we can easily express any moment of ν as a function of the
mean µh and variance Nσ2

h of the time-averaged synaptic drives h̄i. In the limit of N → ∞, the
law of large numbers give us: I think

that’s
the one

I think
that’s
the one

ν` = lim
N→∞

1

N

∑
i

φ
(
h̄i
)`

=

∫
φ(h̄)`P (h̄) dh̄ =

∫
φ(µh +

√
Nσhξ)

` e
− ξ

2

2

√
2π

dξ (4)

Putting equations 3 and 4 together gives us the following set of four self-consistent equations
describing the mean and variance of h̄i and νi over the population:

µh = Nw̄ν̄

σ2
h = σ2

wν
2

ν =

∫
φ(µh +

√
Nσhξ)

e−
ξ2

2

√
2π

dξ

ν2 =

∫
φ(µh +

√
Nσhξ)

2 e
− ξ

2

2

√
2π

dξ

6Recall the famous UCL graduate statistician George Box: “all models are wrong; some models are useful”
7If h̄i had a multimodal distribution, then φ(·) would look like a stack of sigmoids, with an inflection point at

each mode.
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Numerically solving this system of equations gives us access to µh and σ2
h, which allow us to

compute any moment ν` of the time-averaged firing rates using equation 4.
We can now make a few simple observations about the distribution over time-averaged firing

rates that will give some critical insights into how these depend on the distribution over synaptic
weights wij . First, consider the case of Var[h̄i]→ 0. In this limit, ν` → φ`(µh), such that ν2 = ν2

and Var[ν] = 0, meaning that
P (ν)→ δ(ν − ν̄)

On the other hand, as Var[h̄i]→∞, νi = φ(h̄i)→ {0, νmax}, so that

P (ν)→ 1

2
δ(ν) +

1

2
δ(ν − νmax)

where νmax is the maximum of the saturating gain function φ(·) (it is easy to verify that this
distribution has the exact moments given by equation 4, namely ν` = 1

2ν
`
max). Given that actual

observed firing rates are variable across neurons and generally lie somewhere between 0 and their
maximum, these two results tell us that Var[h̄i] should be greater than 0 and finite. We thus require
that σ2

w ∼ 1/N , so that in the limit of N →∞, Var[h̄i] = Nσ2
wν

2 ∼ O(1). Furthermore, the mean
time-averaged synaptic drive µh scales with N , meaning that in the large N limit νi → 0 or νmax
(depending on whether w̄ is negative or positive, respectively). We should thus also enforce that
the mean weight w̄ ∼ 1/N . This is our first result: in a randomly fully connected current-based
network with sigmoidal gain functions, the mean and variance of the weights need to scale with
1/N for the dynamics not to saturate.

Another possibility could be to set wij =
w̃ij
N with w̃ij i.i.d. with mean and variance w̃, σw̃2 ∼

O(1), so that w̄ = w̃
N ∼ O(1/N). However, this would entail σ2

w = σw̃
N2 ⇒ Var[h̄i] ∼ O( 1

N ), quickly
leading to constant firing rates across the network (i.e. P (ν) = δ(ν− ν̄)) as N →∞. This problem
illustrates the fine-tuning required to obtain realistic dynamics in a randomly fully connected
network: it is hard to keep µh low while also ensuring Var[h̄i] ∼ O(1). A viable alternative along
these lines would be wij =

w̃ij√
N
, in which case Var[h̄i] ∼ O(1). But in this case µh ∼ O(

√
N),

thus only partially solving the problem since the mean synaptic drive will still (albeit slowly) tend
towards the saturated regime as N →∞.

Such dense connectivity structure - in which every neuron is connected to every other neuron -
evidently requires strong restrictions on the weights for the network to be able to generate realistic
dynamics. This might also explain why it is rarely found in nature, where cortical connectivity
rates, for example, are on the order of 10%. We can incorporate such sparse connectivity structure
into our mean field equations by adding a parameter K << N that controls the mean number of
outgoing connections per neuron, so that the probability that any any two neurons are connected
- called the connectivity rate - is equal to K/N (because the network is randomly connected). We
can then write

wij = ζijw̃ij

ζij ∈ {0, 1} ∼ Bernoulli (K/N)

w̃ij i.i.d. with mean w̃ and variance σ2
w̃

⇒ µh = Nw̄ν̄ = N
K

N
w̃ν̄ = Kw̃ν̄

⇒ σ2
h = σ2

wν
2

=
(
〈ζ2〉

〈
w̃2
〉
− 〈ζ〉2〈w̃〉2

)
ν2

=

(
K

N
(σ2
w̃ + w̃2)− K2

N2
w̃2

)
ν2

=
K

N

(
σ2
w̃ +

(
1− K

N

)
w̃2

)
ν2

since ζij , w̃ij are independent. Writing it in this form makes it easy to interpret: in the large N
limit, the variance of the synaptic drive Var[h̄i] = Nσ2

h is proportional to the variance of the (on
average) K non-zero input connections plus a correction for the remaining absent connections with
weight 0. Thus, Var[h̄i] ∼ O(K) is independent of N regardless of σ2

w̃. If we want to maintain
the connectivity rate p = K/N constant, however, K ∝ N so we will need w̃, σw̃ ∼ 1/

√
K for
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the firing rates to maintain variable non-saturating firing rates. However, it is still the case that
µh ∼ O(

√
K) so we will need either a really small p or a really small constant of proportionality

kh = µh/
√

(K).
We can generalize the above analysis to the more realistic case of E/I networks that obey Dale’s

Law, where we have four types of synaptic weights wQR
ij > 0 from R neurons onto Q neurons,

R,Q ∈ {E,I} standing for excitatory (E) or inhibitory (I). The synaptic drive to a Q neuron is then
given by

hQ
i (t) =

∑
j∈E

wQE
ij g

E
j (t)−

∑
j∈I

wQI
ij g

I
j(t) + IQ

where, for generality, I have also included an external constant input current IQ injected equally
into all Q neurons. Assuming a fixed connectivity rate p = K/N , and setting

wQR
ij = ζQR

ij

w̃QR
ij√
K

ζQR
ij ∼ Bernoulli(p)

w̃QR
ij i.i.d. with mean w̄QR ∼ O(1) and variance σ2

wQR
∼ O(1)

IQ =
ĪQ√
K

we can exactly repeat the above derivation, giving us, in the largeN limit (for both subpopulations):

ν`Q =

∫
φ`
(√

K
(
w̄QEνE − w̄QIνI + ĪQ

)
+ σξ

) e−
ξ2

2

√
2π

dξ (5a)

σ2 = σ2
QE + σ2

QI (5b)

σ2
QR =

(
σ2
wQR

+ (1− p)w̄2
QR

)
ν2

R (5c)

In this case, we can hope for realistic dynamics even for unbounded N : if w̃QE , w̃QI are picked
carefully enough so that w̃QEνE − w̃QIνI ≈ 0 (the so-called balanced regime), then, under infinites-
imally small external input ĪQ, σ ∼ O(1) and we are guaranteed to stay within a brain-like regime
of time-averaged firing rates.

In sum, for a current-based network model with

• saturating gain function φ(·)

• synaptic drive

hi(t) =
∑
j

wijgj(t) + Iexti (t) =
∑
j

wijνj + Ii︸ ︷︷ ︸
h̄i

+
∑
j

wijδgj(t) + δIi(t)︸ ︷︷ ︸
δhi(t)

• connectivity rate p = K/N

• random i.i.d. non-zero weights wij with mean w̄ and variance σ2
w

• random i.i.d. time-averaged inputs Ii ∼ O(
∑
j wijνj) with mean Ī and variance σ2

I

the following holds in the large N →∞ limit:

ν` =

∫
φ

(
Kw̄ν̄ + Ī +

√
K((σ2

w + (1− p)w̄2)ν2 + σ2
I )ξ

)`
e−

ξ2

2

√
2π

dξ

For such a network to have realistic dynamics (i.e. different firing rates across the population), it
is therefore necessary that

σ2
w ∼

1

K
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We now briefly turn to problem #2 outlined above: characterizing temporal correlations in
network activity. For this, we turn to the dynamic noise component of the synaptic drive, given
by

δhi(t) =
∑
j

wijδgj(t)

where δgj(t) ≡ gj(t)− ḡj are 0-mean fluctuations of the input synaptic conductances. It turns out
that with i.i.d. weights, in the limit of large N two things happen: (i) the weights and fluctuations
decouple, and (ii) the fluctuations across pairs of different neurons become uncorrelated. Intuitively,
this is can be shown to be true when the connectivity is very sparse, when K << N (i.e. p << 1,
[Vreeswijk and Sompolinsky, 1998]). Somewhat less intuitively, it turns this is also true in E/I
networks in the so-called “balanced state”, where the total excitatory and inhibitory input to a given
neuron are correlated and cancel each other out ([Renart et al., 2010, Rosenbaum et al., 2017])8.
Thus, we again find ourselves with a big sum of independent random variables. In this case,
however, we have a dynamical variable that is a function of time, so the CLT tells us that in the
large N limit δhi(t) becomes a draw from a Gaussian process.

Thus, all we need to fully characterize the statistics of the synaptic drive fluctuations δhi(t) is
their mean and covariance. By construction, their mean is 0, and their covariance is captured by
the cross-correlation function

Cij(τ) = 〈δhi(t)δhj(t+ τ)〉t
where, following the above notational convention with expectations, the expectation is over time
t. Given that in the large N limit neurons are uncorrelated, Cij = 0 whenever i 6= j. Furthermore,
in our homogenous randomly connected network model, there is nothing to distinguish one neuron
from another, so the only thing we really care about is the population mean autocorrelation
function:

C(τ) =
1

N

∑
i

Cii(τ)

=
1

N

∑
i

〈δhi(t)δhi(t+ τ)〉t

=
1

N

∑
i

∑
j,j′

wijwij′ 〈δgj(t)δgj′(t+ τ)〉t

=
1

N

∑
i,j

w2
ij 〈δgj(t)δgj(t+ τ)〉t

=
∑
j

(
1

N

∑
i

w2
ij

)
〈δgj(t)δgj(t− τ)〉t

' Nw2∆(τ), ∆(τ) =
1

N

∑
j

〈δgj(t)δgj(t− τ)〉t

where the fourth equality follows from our assumption of no correlations, and the last approxima-
tion follows from the weights being i.i.d. and therefore self-averaging in the N →∞ limit.

We now have a full statistical characterization of the synaptic drives in a spiking network
with i.i.d. weights (exact in the N → ∞ limit under a few extra assumptions - namely, no
correlations), as a function of the statistics of the spiking output (namely, the first and second
moments of the time-averaged firing rates ν̄, ν2 and the population mean autocorrelation of synaptic
conductances ∆(τ)). However, unlike in the case of the quenched noise h̄i, it is not clear how to
relate correlations in synaptic drives C(τ) to correlations in synaptic conductances ∆(τ) to obtain a
set of self-consistent equations we can solve for C(τ),∆(τ). To my knowledge this has never been
done analytically for a particular spiking neuron model fi(Vi, t) (except under the assumption
of Poisson firing, which makes everything pretty straightforward given you know the f-I curve:
[Grabska-Barwińska and Latham, 2014]).

However, in simplified rate-based models, the output autocorrelation ∆(τ) can be solved
analytically to provide substantial insight into the possible dynamical regimes of the network

8For a brief overview of the 20+ years it took for theorists to figure out why this was the case, see [Latham, 2017]
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([Sompolinsky et al., 1988, Mastrogiuseppe and Ostojic, 2017]). For example, consider a randomly
connected tanh network with dynamics

ẋi = −xi +

N∑
j=1

wijφ(γxj)

with i.i.d. 0-mean weights wij ∼ N (0, 1/N). In this case, the “synaptic conductances” are given by
gj(t) = φ(γxj(t)), where γ parametrizes the steepness of the non-linearity φ(·) = tanh(·). Given
this simple relationship between the synaptic conductances and the neurons’ “potentials” xi, one
can show through some tedious but straightforward algebra that the autocorrelation satisfies the
following differential equation:

∆(τ)− d2∆

dτ2
= C(τ)

with the following intuitive boundary conditions:

• ∆(τ) ≤ ∆(0) since the autocorrelation will always be highest at 0 time lag

• ⇒ d∆
dτ

∣∣∣
τ=0

= 0 since τ = 0 is an extremum of the function

• ⇒ d2∆
dτ2

∣∣∣
τ=0

< 0 since τ = 0 is a maximum

Along with the above ODE, these boundary conditions allow you to make general statements about
the shape of ∆(τ), which gives qualitative insights into the trajectories of the system. Particularly,
for certain values of γ, ∆(τ)→ 0 as τ →∞, indicating that trajectories diverge over time and the
system is chaotic ([Sompolinsky et al., 1988]).

3.2 Wilson-Cowan Equations
Given our above equations for the means of the distribution over time-averaged firing rates νQ, we
might then use them to model the macroscopic dynamics of the population. Since νE, νI depend
on each other, given some initial condition or perturbation they will evolve over time until settling
at an equilibrium, i.e. a solution to the pair of equations given by equation 5 for Q = E,I. We can
thus model these dynamics by writing a simple differential equation for each subpopulation mean
time-averaged firing rate νQ, with equilibrium given by the right-hand-side of equation 5:

τEν̇E = ψE(νE, νI)− νE

τIν̇I = ψI(νE, νI)− νI

where, as per equation 5,

ψQ(νE, νI) =

∫
φQ

(√
K (w̄QEνE − w̄QIνI) + IQ + σξQi

) e−
ξ2

2

√
2π

dξ

(assuming the same mean number of outgoing connections for each subpopulation, athough one
could also easily carry out the derivation of 5 but for different subpopulation connectivity rates
KQ). Thus, ψQ(νE, νI) is just a Gaussian-smoothed version of the corresponding individual neuron
gain function φQ(·). In the case of sigmoidal sigmoidal φQ(·), then, ψQ(·) will be sigmoidal as well.
Note that we have explicitly included constant external inputs IE, II to each subpopulation.

These are called the Wilson-Cowan equations, and can be alternatively derived from very
general assumptions (Wilson & Cowan, 1972). We now want to analyze this two-dimensional
dynamical system to try to understand the following experimental observations of the mammalian
neocortex:

1. low time-averaged firing rates (∼ .2Hz)

2. network oscillations

3. UP and DOWN states of high and low average membrane potential, respectively, which are
particularly common under anesthesia and last on the order of seconds
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4. bumps of membrane potential that last on the order of 10’s of milliseconds, separated by
DOWN states on the order of seconds

It turns out our simplified model of time-averaged population mean activity can produce all four
of these patterns, under certain regimes.

To see this, we turn to a stability analysis of our two-dimensional system to get an idea of its
qualitative behavior. The nullclines of this system are given by

νE = ψE(νE, νI)

νI = ψI(νE, νI)

We can draw these nullclines by plotting ψQ as a function of νQ and finding where it cross the unity
line νQ = ψQ(νQ, νR), for different values of νR. By plotting all of these intersections in the νI − νE

plane at their corresponding values of (νE, νI), we get the νQ-nullcline. This is done in figure 4,
with Q = E in the top graph (A) and Q = I in the bottome left graph (B), giving us the νE and
νI nullclines in black and grey, respectively, in the bottom right graph (C). Here a generic pair of
sigmoidal ψE, ψI functions are used, with IE = II = 0.

Figure 4: Copied from Latham et al. (2000). φQ = ψQ on the labels

We now proceed to analyze each of the fixed points, given by the three intersections of the
nullclines in figure 4C. It turns out we can do a lot geometrically, without explicitly parametrizing
any of the equations above. Let (ν∗E, ν

∗
I ) designate the location of one such fixed point, such that

ν∗E = ψE(ν∗E, ν
∗
E)

ν∗I = ψI(ν
∗
I , ν
∗
E)

As per standard stability analysis (section 7.5), we can find out if this fixed point is stable by
looking at the Jacobian matrix of the dynamical system evaluated at the fixed point, here given
by

J =

[
τ−1
E (ψE,E − 1) τ−1

E ψE,I

τ−1
I ψI,E τ−1

I (ψI,I − 1)

]
where we define

ψQ,R ≡
∂ψQ

∂νR

∣∣∣∣∣
ν∗E,ν

∗
I

We then know that the fixed point will be stable iff the trace and determinant of J are negative
and positive, respectively, giving us the following conditions for the stability of (ν∗E, ν

∗
I ):

1− ψI,I

τI
>
ψE,E − 1

τE
(ψE,E − 1)(ψI,I − 1) > ψE,IψI,E
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It turns out we can verify these conditions geometrically by expressing the slopes of the nullclines
in terms of the partial derivatives ψQ,R. To do so, we consider a perturbation from the fixed point
(ν∗E, ν

∗
I ) → (ν∗E + δEνE, ν

∗
I + δEνI) along the νE-nullcline - hence the E subscript on the δ’s. Since

we know the equation for the nullcline, we can use this to compute its slope at the fixed point via
a first-order Taylor approximation:

ν∗E + δEνE = ψE(ν∗E + δEνE, ν
∗
I + δEνI)

≈ ψE(ν∗E, ν
∗
I ) + δEνE

∂ψE

∂νE

∣∣∣∣∣
ν∗E,ν

∗
I

+ δEνI

∂ψE

∂νI

∣∣∣∣∣
ν∗E,ν

∗
I

= ν∗E + δEνEψE,E + δEνIψE,I

⇔ δEνE = δEνEψE,E + δEνIψE,I

⇔ δEνI

δEνE

=
1− ψE,E

ψE,I

Performing the same calculation for the νI-nullcline, we have that the slopes of the excitatory and
inhibitory nullclines at the fixed point are given by, respectively

mE =
δEνI

δEνE

=
1− ψE,E

ψE,I

mI =
δIνI

δIνE

=
ψI,E

1− ψI,I

Because ψQ,E > 0, ψQ,I < 0 we then know that

mI > 0 always

mE

{
< 0⇔ 0 < ψE,E < 1

> 0⇔ ψE,E > 1

We can now relate our stability conditions on the partial derivatives ψQ,R to statements about the
nullcline slopes at the fixed point:

mE < mI ⇔ (ψE,E − 1)(ψI,I − 1) > ψE,IψI,E

mE < 0⇒ 1− ψI,I

τI
>
ψE,E − 1

τE

The first statement tells us that for the fixed point (ν∗E, ν
∗
I ) to be stable, the slope of the in-

hibitory nullcline at this point has to be steeper than that of the excitatory nullcline. This is
intuitive: the inhibitory population mean firing rate νI has to be more sensitive to changes in the
excitatory population mean firing rate than the excitatory population itself for the negative feed-
back to be strong enough to generate a stable state. Graphically, this translates to the inhibitory
nullcline intersecting the excitatory nullcline at (ν∗E, ν

∗
I ) from below.

The second condition tells us that if the excitatory nullcline has negative slope at (ν∗E, ν
∗
I )

(i.e. the fixed point lies on a stable branch of the νE-nullcline), we know that the fixed point is
stable, otherwise (the fixed point lies on an unstable branch of the νE-nullcline) we don’t know - it
depends on the values of ψE,E, ψI,I, τE, τI. Particularly, given similar τE ≈ τI, we can see from our
original stability conditions that the fixed point will be stable for highly negative ψI,I and small
ψE,E. In other words, if mE > 0 at the fixed point, then the fixed point will only be stabile if
there is weak coupling between excitatory firing rates - i.e. weaker positive feedback - and strong
coupling between inhibitory neurons - i.e. stronger disinhibiton. This latter requirement might
seem counterintuitive, but it makes sense mathematically when you consider that it is the only
coupling able to pull local perturbations from an equilibrium back to it: E-E coupling repels them
further away and E-I,I-E couplings rotates them around the equilibrium, but I-I coupling brings
them back. Thus, a strong I-I coupling - i.e. a highly negative ψI,I - is necessary for a fixed point
on an unstable branch of the νE-nullcline to be stabile. Note that in the case of mE > 0, a small
ψE,E implies a small mE, i.e. a more shallow positive slope (recall that ψE,I < 0 so in this case
ψE,E ≥ 1). So as the excitatory nullcline slope gets larger at the fixed point, it becomes more
unstable (eventually leading to a Hopf bifurcation).
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Using these conditions, we can now go back to our standard E-I nullclines in figure 4C and
conclude that the left and right intersections correspond to stable fixed points (withmE < mI,mE <
0) and the fixed point in between is therefore unstable (thus separating their basins of attraction).
Thus, this set of nullclines is inconsistent with the observation of low average firing rates in cortex.
While the rightmost stable state is at a high firing rate, the leftmost one is at (0,0), corresponding
to the state where no neurons are firing and thus no neurons can or will fire (thus making it stable).
To get a stable state at a low firing rate, one can see graphically that we need the excitatory and
inhibitory nullclines to both shift upwards such that the leftmost intersection is pushed out of
the origin. Recalling that ψE(νE, νI), ψI(νE, νI) are monotonically increasing functions of IE, II, we
can shift the nullclines up by simply increasing the external current inputs IE, II, which until now
were set to 0. This corresponds to shifting the ψE, ψI curves in figure 4A,B to the left and right,
respectively. It turns out that if we increase IE, II enough so that ψE(0, 0), ψI(0, 0) > 0 (i.e. shift
the ψE, ψI curves until the y-intercept is above 0, see regime 3 in figure 2 of Latham et al., 2000),
we end up with nullclines roughly looking like those in figure 5, with an equilibrium at low mean
firing rates. Biologically, this shift in the equilibrium gain functions such that their y-intercepts are
above 0 can be interpreted as there being a number of endogenously active cells in the population,
which can have non-zero firing rates in the abscence of any recurrent input from the rest of the
population. Our analysis thus suggests that an external current input strong enough to endow each
subpopulation with endogenously active cells is necessary for networks to have a stable equilibrium
at low average firing rates, like what is observed in the mammalian neocortex (Latham et al. 2000).
In a real brain, this external current could come from upstream inputs, membrane potential noise,
or some single-cell intrinsic membrane currents.

Figure 5: Copied from Latham et al. (2000). Axes as in figure 4C.

But we still have to confirm that the new equilibrium we have found is stable. As drawn in the
figure, the equilibrium lies on the unstable branch of the excitatory nullcline (i.e. mE > 0), meaning
that its stability depends on the strength of the E-E and I-I coupling. We could instead push the
inhibitory nullcline further up so that it intersects the excitatory one on its leftmost stable branch,
but this would create a stable equilibrium where the mean inhibitory firing rate is greater than
the mean excitatory firing rate. Such a regime is rarely seen in real brains, and it can be shown
that the minimum of the excitatory nullcline is so small (∼ .01Hz) that this equilibrium would
correspond to unrealistically low excitatory firing rates (Latham et al., 2000). We thus conclude
that the equilibrium has to be on the unstable branch of the excitatory nullcline as in figure 5, so
its stability depends on the E-E and I-I coupling.

We can regulate this coupling by changing the mean synaptic weight strengths w̄EE, w̄II. But
note that this also results in shifts of the nullclines: namely, increasing excitatory synaptic weights
w̄EE(w̄IE) leads to upward shifts of the excitatory(inhibitory) nullclines while increasing inhibitory
synaptic weights w̄EI(w̄II) lowers them. Since a rise in the excitatory/inhibitory nullcline pushes
the equilibrium to higher/lower mean firing rates, this translates to high w̄EE, w̄II pushing the
equilibrium mean firing rates up and high WEI,WIE pushing them down. Summing this all up, a
randomly connected network with endogenously active cells will have a stable equilibrium with low
mean firing rates (observation #1) if the mean E-E connection strenghts are weak (to stabilize
and lower the equilibrium), the mean E-I and I-E connection strenghts are strong (to lower the
equilibrium), and the mean I-I connection strengths are strong (to stabilize) but not too strong
(to lower).

On the other hand, if the connectivity is such that the E-E/I-I connections are too strong/weak,
then the mean firing rate equilibrium becomes unstable. But we now note that the derivatives
on the boundaries of figure 5 all point inwards: anything above(below) the νI-nullcline has a
downward(upward) facing derivative (since νI > (<)ψI(νE, νI)), and anything left(right) of the νE-
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nullcline has a rightward(leftward) facing derivative (since νE < (>)ψI(νE, νI)). By the Poincarè-
Bendixson Theorem (footnote 4), then, there must be a limit cycle around this unstable equilibrium.
In other words, a randomly connected network with strong E-E connections and weak I-I conenc-
tions can exhibit oscillations, like those observed in the cortex (observation #2). This transition
from stable to unstable + oscillations is called a Hopf bifurcation.

Finally, we consider the more biologically realistic case of dynamics under spike-frequency
adaptation. We consider a parameter regime where there are few endogenously active cells, such
that the nullclines look like those in figure 6. We incorporate spike-frequency adaptation into our
model simply by expressing the external current input IQ as a dynamical variable:

IQ = θQ − gQ

τSFA

dgQ

dt
= GQνQ − gQ

where GQ is a constant, θQ reflects the number of endogenously active cells under no adaptation
(in the form of some kind of external current), and Q ∈ {E, I}. Thus, as the mean firing rate
of subpopulation Q increases, gQ increases, pushing IQ below 0 as the endogenously and non-
endogenously active cells are silenced via spike-frequency adaptation. This results in a downward
shift of the nullclines, as illustrated in figures 6 A→B→C. In this parameter regime where θQ is not
too big, this results in a series of bifurcations: as the nullclines shift from A to B, a new 0-firing
rate equilibrium is created, to which the network is forced to in the shift from B to C as the original
non-zero firing rate equilibrium is destroyed. Once the firing rates drop to this new equilibrium, gQ

goes to 0 and IQ → θQ, pushing the equilibrium back up to its non-adapted state. Crucially, τSFA,
on the order of seconds, is much larger than τE, τI, so the network settles to equilibrium between
the bifurcations. This leads to bursting: transitions between states of high mean firing rates (UP
states) and states of very low mean firing rates (DOWN states), which last on the order of seconds
(namely, on the order of spike-frequency adaptiation time τSFA). We thus see that, in this regime,
randomly connected networks can replicate observation #3. (Latham et al., 2000)

Figure 6: Copied from Latham et al. (2000).

Finally, we note that the nullclines in figure 6B can also generate observation #4, in the abscence
of spike-frequency adaptation. In this case, we have a stable equilibrium at 0 mean firing rate and a
stable or unstable equilibrium at higher firing rate separated by a saddle. If this higher equilibrium
is unstable, then any perturbation to the lower stable equilibrium that pushes it rightward beyond
the saddle will lead to a trajectory that loops around the high firing rate equilibrium before
returning to the 0 mean firing rate equilibrium. This is evocative of bump responses, where
perturbation or stimulus-evoked responses lead to a short period of high membrane potential (and
thus high firing rates) before quickly returning to a DOWN state (observation #4).

3.3 Hopfield Network
We consider a fully-connected network ofN+1 neurons with discrete states given by si(t) ∈ {1,−1}.
We model their dynamics in discrete time, using the update

si(t+ 1) = sign

 N∑
j=1

Wijsj(t)


where

sign[x] =

{
1 if x ≥ 0

−1 else
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The crucial property of the Hopfield network is its connectivity matrix, given by

Wij =
1

N

M∑
m=1

ξ
(m)
i ξ

(m)
j , Wii = 0

ξ
(m)
i =

{
1 with probability 1

2

−1 with probability 1
2

All connections are thus symmetric Wij = Wji, with no autapses.
Suppose now that ∀i si(t) = ξ

(m′)
i . We then have

si(t+ 1) = sign

∑
j 6=i

Wijsj(t)


= sign

∑
j 6=i

1

N

M∑
m=1

ξ
(m)
i ξ

(m)
j ξ

(m′)
j


= sign

 1

N

∑
j 6=i

ξ(m′)
i ξ

(m′)
j ξ

(m′)
j +

∑
m 6=m′

ξ
(m)
i ξ

(m)
j ξ

(m′)
j


= sign

 1

N

∑
j 6=i

ξ(m′)
i +

∑
m6=m′

ξ
(m)
i ξ

(m)
j ξ

(m′)
j


= sign

ξ(m′)
i +

1

N

∑
j 6=i

∑
m 6=m′

ξ
(m)
i ξ

(m)
j ξ

(m′)
j


= sign

[
ξ

(m′)
i + ηi

]
Since each of the terms inside the sum are independently distributed, in the limit of large N we
can use the CLT to approximate ηi with a Gaussian random variable:

ηi → µ+
σ√
N
ζi, ζi ∼ N (0, 1)

µ =

〈 ∑
m6=m′

ξ
(m)
i ξ

(m)
j ξ

(m′)
j

〉
=
∑
m 6=m′

〈ξ(m)
i 〉〈ξ(m)

j 〉〈ξ(m′)
j 〉 = 0

σ2 =
∑
m6=m′

〈
ξ

(m)
i

2〉〈
ξ

(m)
j

2〉〈
ξ

(m′)
j

2
〉

=
∑
m 6=m′

(1)(1)(1) = M − 1

Thus, we have:

si(t+ 1) = sign

[
ξ

(m′)
i +

√
M − 1

N
ζi

]
, ζi ∼ N (0, 1)

In other words, as long as M << N , si(t) = ξ
(m′)
i is an equilibrium of the system, since si(t) ≈

si(t+ 1).
Generalizing the above for all possible m′, the system has M such equilibria, each being a local

minimum of the network’s energy given by

E = −1

2

∑
i,j

Wijsisj

The Hopfield network thus implements a kind of associative memory, whereby feeding it some
input leads it to converge to the equilibrium state - or “memory” - most similar to the input. The
Hopfield network can store M such memories as long as it has many more neurons than memories
N >> M , namely at least 1000 neurons for every 138 memories (i.e. M

N ≤ 0.138; Amit, Gutfreund
& Sompolinsky, 1987).
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4 Functional Models of Synaptic Plasticity
Aside from NMDA-mediated plasticity, long-term plasticity is generally not well understood and
thus generally modelled more phenomenologically. Rather than thinking about neurotransmitter
release probabilities and neurotransmitter receptor conductances, here we directly model changes
to the “weight” Wij = ḡijP

(ij)
rel of a synapse from pre-synaptic neuron j onto post-synaptic neuron

i. More specifically, we will model these changes as a function of pre- and post- synaptic activity:

τw
dWij

dt
= fij(rj , ri)

with rj , ri for the pre- and post- synaptic cell activity (e.g. firing rate), respectively. τw sets the
timescale of synaptic plasticity, analagous to a learning rate (large τw → small learning rate).

Experimentally, a proxy for measuring Wij is the change in membrane potential in a post-
synaptic neuron induced by triggering an action potential in a pre-synaptic neuron, called the
post-synaptic potential (PSP) amplitude. A classic experimental setup consists of inducing high-
frequency (∼ 100Hz) bursts of action potentials simultaneously in both the pre- and post- synaptic
neurons and then measuring the PSP amplitude. Such a stimulation protocol will usually lead to
a jump in the PSP amplitude that can last on the order of hours. However, if you block protein
synthesis, the PSP amplitude decays back to its baseline level before the burst protocol soon
afterwards. We thus distinguish between “early” and “late” long-term potentiation (LTP), where
late LTP requires protein synthesis and early LTP does not9. Similarly, long-term depression
(LTD) can be triggered via a low-frequency (∼ 2Hz) bursting protocol. D&A fig. 8.1 shows the
classic picture of this, where LFP amplitude in a hippocampal slice was used as a proxy for PSP
amplitude (note the initial transient increase after the high frequency protocol, reflecting early
LTP).

We now turn to phenomenological models of synaptic plasticity that can produce both LTD
and LTP, as well as an array of other experimental observations. To facilitate analysis, we begin
by considering a single post-synaptic neuron with linear dynamics:

τ
dv
dt

= −v + wTu

For the rest of this section I adopt the convention of v and ui for pre- and post- synaptic neuron
activity. Importantly, we additionally assume that synaptic plasticity occurs on a much slower
timescale than the neural dynamics (i.e. τ << τw), such that we can assume that the post-synaptic
activity has converged to its equilibrium

v = wTu

Later we consider feed-forward and recurrent networks of neurons.

4.1 Hebb Rule
One interpretation of the above observation is the occurence of Hebbian plasticity: “neurons that
fire together wire together.” Since the high-frequency stimulation is likely to induce post-synaptic
firing, synapses should strengthen because of co-occurence of high pre- and post- synaptic activ-
ity. Conversely, low-frequency stimulation is less likely to induce post-synaptic spikes, leading to
weakening of the synapses and thus LTD. This gives us the basic Hebb learning rule:

τw
dw
dt

= vu

Averaging over pre-synaptic inputs from trial to trial (e.g. over a lifetime) and taking the equilib-
rium post-synaptic activity v = wTu = uTw, we have:

τw

〈
dw
dt

〉
= 〈uv〉 = 〈uuT〉w = Qw

where Q is the correlation matrix over pre-synaptic activity input patterns. We thus call the Hebb
learning rule a correlation-based plasticity rule.

9This has lead to the synaptic tagging hypothesis, which postulates that simultaneous pre- and post- synaptic
activity leads to the “tagging” of synapses, signalling the cell to insert more receptors there.
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It is easy to see that the Hebb rule will lead to LTP whenever pre- and post- synaptic activity
is correlated, but it can’t lead to LTD if the activity vectors are positive. For this, we introduce
an activity threshold:

τw
dw
dt

= (v − θv)u

or
τw

dw
dt

= v(u− θu)

If the pre- or post- synaptic activity is now below its corresponding threshold, the derivative of w
becomes negative and LTD occurs. A natural setting for this threshold is the mean background
firing activity θv = 〈v〉, θu = 〈u〉. Again averaging over all inputs over time, the result of adding a
threshold gives us a covariance-based plasticity rule:

τw

〈
dw
dt

〉
= 〈u(v − 〈v〉)〉 = 〈u

(
uTw − 〈uT〉w

)
〉 =

(
〈uuT〉 − 〈u〉〈u〉T

)
w = Cw

where C is the covariance matrix of the input patterns. One can easily verify that using a pre-
synaptic activity threshold θu = 〈u〉 instead of a post-synaptic activity threshold leads to the same
average dynamics. However, having one or the other threshold leads to entirely different biological
predictions:

• If only a post-synaptic activity threshold θv is included, then plasticity is induced at the ith
synapse (i.e. dwi/dt 6= 0) iff there is pre-synaptic activity at that synapse (i.e. ui > 0). This
is called homosynaptic plasticity.

• If only a pre-synaptic activity threshold θu is included, then plasticity is induced at the ith
synapse whenever there is post-synaptic activity (i.e. v > 0), even if there is no pre-synaptic
activity at that synapse (i.e. ui = 0). This leads to heterosynaptic plasticity.

• If both thresholds are included, then the model counterintuitively predicts that there should
be LTP when both pre- and post- synaptic activity are below threshold

Because the weight dynamics are linear, we can easily analyze the result of applying these simple
Hebbian synaptic learning rules. We first note that because C is symmetric, its eigenvectors ei are
orthogonal and form a complete basis for the space of w. We can thus write

w(t) =
∑
i

ci(t)ei

where the coefficients are simply equal to the scalar projection of w onto each eigenvector, given
simply by ci(t) = wTei when we assume the eigenvectors to be normalized (‖ei‖ = 1). Solving the
above differential equation for the covariance-based Hebb learning rule then gives us:

w(t) =
∑
i

ci(0)e
λit

τw ei

where λi is the eigenvalue of C corresponding to eigenvector ei. As t → ∞, the eigenvector with
the largest eigenvalue λ1 dominates, giving

lim
t→∞

w(t) ∝ e1

as long as w(0) is not perpendicular to e1 (such that c1(0) = 0). Thus, this learning rule leads to
post-synaptic activity v proportional to the projection of pre-synaptic input u onto the direction
of maximum variance of the input patterns observed during learning, i.e. the principal eigenvector
of the covariance matrix C:

v ∝ eT1 u

A similar analysis holds for the basic correlation-based Hebb rule with no thresholds, with the
exact same result whenever the inputs have mean 0 such that Q = C (see D&A fig. 8.4 for the
difference whenever Q 6= C).

This analysis only holds, however, if the weights are allowed to change unboundedly, which does
not occur with real synapses. Not only can they not grow unboundedly, but they cannot switch
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from excitatory to inhibitory. Constraining all synapses to be excitatory, we should thus impose a
lower bound at 0 along with a reasonable upper bound. In this case, the above theoretical result
will still hold as long as the initial condition w(0) is far enough away from any of the boundaries
such that there is enough time for e1 to dominate the dynamics.

In fact, the consideration of bounding synaptic weight changes brings up two general problems
with the basic Hebb rule:

1. Without any bounds on the size of the wi, the Hebb rule is unstable:

τw
d‖w‖
dt

= 2wTτw
dw
dt

= 2wTCw

which is necessarily always positive sinceC is a covariance matrix and therefore positive semi-
definite. In other words, as long as the learning rule is in effect the weights will continue
increasing. In a network setting, this will quickly lead to runaway excitation.

2. Since all synaptic weights wi are allowed to grow unboundedly simultaneously, there is no
competition between them. In light of the above the result, in a population of neurons
receiving the same feed-forward input, Hebbian learning on the feed-forward weights will
lead to a highly redundant representation whereby each neuron is activated in exactly the
same way by each input (i.e. proportional to its projection onto the principal eigenvector of
C). This greatly limits the power of Hebbian learning in a network.

We now turn to two extensions of the basic Hebb rule that fix these issues.

4.2 BCM rule
The BCM rule (Bienenstock, Cooper & Munro, 1982) addresses the stability and competition issues
by introducing a dynamic “sliding threshold”:

τw
dw
dt

= vu(v − θv)

τθ
dθv
dt

= v2 − θv

where τθ < τw. Since an increase in ‖w‖ leads to an increase in v, the sliding threshold enforces
stability by quickly and strongly increasing the threshold for LTP to prevent the weights from
increasing further. Furthermore, a large increase in wi can make this happen in the absence
of growth in the other wj 6=i, thus preventing them from growing by pushing up the threshold,
effectively implementing competition between weights.

4.3 Synaptic Normalization
The BCM rule effectively implements weight stability and competittion by using the post-synaptic
activity v as a proxy for the size of the weights. Alternatively, we could directly address the
weight strengths by directly constraining the Lp norm ‖w‖p =

∑
i w

p
i . This is called synaptic

normalization. Constraining the L1 norm leads to subtractive normalization, whereas constraining
the L2 norm leads to multiplicative normalization.

4.3.1 Subtractive Normalization

The learning rule that constrains the L1 norm of w is given by

τw
dw
dt

= v(u− ū1)

where 1 is a vector of ones and

ū =
1

Nu

K∑
i=1

uk =
1Tu

Nu
=
‖u‖1
Nu
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is a scalar, where Nu is the number of pre-synaptic inputs. It is easy to verify that this rule
constrains the total sum of synaptic weights:

d‖w‖1
dt

=
∑
i

dwi
dt

= v
∑
i

ui − vNuū = 0

Since the same quantity vū is being subtracted from the derivatives of each weight dwi
dt , this

synaptic normalization rule is termed subtractive.
As above, we consider this rule in the expectation over inputs, plugging in the equilibrium value

for v:

τw

〈
dw
dt

〉
= 〈vu〉 − 〈ūv〉1 = 〈uuT〉w − 1

Nu
1T〈uuT〉w1 = Qw − 1TQw

Nu
1

Taking the eigenvalue expansion of Q and recalling that its eigenvalues are orthogonal (because Q
is symmetric) such that w(t) =

∑
i ci(t)ei, ci(t) = eTi w, we have:

τw
dw
dt

=

Nu∑
i=1

λici(t)ei −
λici(t)1

Tei
Nu

1

Recalling that the orthogonality of the eigenvectors of Q implies eTi ej = δij , we note that we have
a differential equation for each cj(t):

τw
dcj
dt

= τwe
T
j

dw
dt

= λjcj(t)−
∑Nu
i=1 λici(t)1

Tei
Nu

eTj 1 = λjcj(t)−
∑Nu
i=1 λici(t)1

Tei√
Nu

cos θj

where θj is the angle between the vectors ej and 1. We thus see that the subtractive normalization
only operates on directions of growth of w close to the identity line 1, i.e. directions ej in which
all the weights grow at about the same rate. Directions of growth ej perpendicular to 1 are left
unaffected, since the normalization term in the derivative of the corresponding coefficient cj will be
0, leaving only standard Hebbian dynamics τw

dcj
dt = λjcj(t) (exponential growth with rate equal

to the corresponding eigenvalue). Consider the case where ej ∝ 1, such that cos θi = δij ⇔ eTi 1 =
δij
√
Nu. We then have:

τw
dci
dt

= λici(t)− λjcj(t)δij = (1− δij)λici(t)

⇒ ci(t) = ci(0)e
(1−δij)λit

τw

⇒ w(t) = cj(0)ej +
∑
i6=j

ci(0)e
λit

τw ei

If ej ∝ 1 happens to be the principal eigenvector of Q, then in the limit t → ∞ w will grow
in the direction of the eigenvector with the second highest eigenvalue. Otherwise, the long run
limit is unaffected by subtractive normalization. The above analysis is easily generalized to the
covariance-based Hebb rule by simply incorporating a pre- or post- synaptic activity threshold.

We can use this rule to model ocular dominance in a post-synaptic neuron. Consider two inputs
u =

[
uR uL

]T coming from each eye. Assuming the statistics to each eye are the same, we have:

Q =

[
〈uRuR〉 〈uRuL〉
〈uRuL〉 〈uLuL〉

]
=

[
qv qc
qc qv

]
which has two eigenvectors

e1 =
1√
2

[
1
1

]
, λ1 = qv + qc

e2 =
1√
2

[
1
−1

]
, λ2 = qv − qc

Since there is likely to be some covariance between the inputs to the two eyes, qc > 0 ⇒ λ1 > λ2

and e1 is the principal eigenvector. Thus, without any normalization, Hebbian learning of the
feed-forward input weights will lead to strengthened input connections from both eyes. But since
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e1 ∝ 1, subtractive normalization can force the weight vector to grow in the direction of e2

instead. Imposing a lower bound of 0 on the weights, this will lead to a 0 weight for one of the eyes
and a large weight for the other (equal to the sum over the initial weights, since the subtractive
normalization enforces d‖w‖1

dt = 0), thus producing ocular dominance in the post-synaptic activity.
Now for some caveats. From a biological perspective, the subtractive normalization rule is

difficult to reconcile with known synaptic mechanics since it requires normalization by a global
signal ū. In other words, the weight dynamics at synapse i requires knowledge of the inputs at
all other synapses. It is unclear how this could happen biologically. Another characteristic of
subtractive normalization is that the competition between weights is very strong, since the global
subtractive term is relatively stronger for weights with smaller derivatives. Indeed, without a lower
bound on the weights, this rule will lead to driving weights below 0. With a bound at 0, it will
tend to produce a solution with 1 big positive weight and all others set to 0.

4.3.2 Multiplicative Normalization

Also called the Oja Rule (Oja, 1982), the synaptic learning rule that constrains the L2 norm of w
is given by

τw
dw
dt

= vu− αv2w

where α is a positive constant that bounds the L2 norm of w:

d‖w‖2
dt

= 2wT(vu− αv2w) = 2v2(1− α‖w‖2)

which converges to ‖w‖2 = 1
α . Since the normalization term αv2wi is proportional to each weight,

we call this type of synaptic normalization multiplicative.
The Oja rule leaves our result for covariance-based synaptic learning rules intact, with the

addition of a guarantee of convergence. Specifically, one can easily verify that this rule will lead
to w(t) → e1/

√
α as t → ∞. The Oja rule is also more biologically feasible than subtractive

normalization since it only requires local signals for each synaptic weight change.

4.4 Spike-Timing Dependent Plasticity (STDP)
Another classical experimental finding is spike-timing-dependent plasticity (STDP) (Markram et
al, 1997; Bi & Poo, 1998), whereby synaptic plasticity is only induced when action potentials in
the pre- and post- synaptic cells occur within ∼ 50ms of each other, the magnitude of the plasticity
decaying with increasing latency. If the post-synaptic spike occurs after the pre-synaptic spike,
LTP occurs; if, on the other hand, the post-synaptic spike precedes the pre-synaptic spike, then
LTD occurs. The classical picture can be seen in D&A fig. 8.2. This can be easily implemented
in spiking networks. In a continuous activity network like those we have been considering in
this section, we can approximate it using a function H(τ) that gives the weight change when
tpost − tpre = τ , tpost, tpre being adjacent post- and pre- synaptic spike times (e.g. the line in fig.
8.2B):

τw
dw
dt

=

∫ ∞
0

dτH(τ)v(t)u(t− τ) +H(−τ)v(t− τ)u(t)

where sign(H(τ)) = sign(τ) such that the first and second terms inside the integral induce LTP
and LTD respectively.

Like the basic Hebb rule, the STDP learning rule is unstable. It does, however, implement
competition between weights: an increase in wi makes it easier for an increase in ui to lead to
higher v regardless of the state of the other inputs uj 6=i, thus possibly increasing v(t−τ)uj 6=i(t) and
inducing LTD at those synapses. This tends to lead to a highly bimodal distribution of feed-forward
weights.

Interestingly, the STDP rule can lead to invariant responses. We can approximately solve the
above differential equation by ignoring the changes in v over time caused by the changes in w:

w =
1

τw

∫ T

0

dtv(t)

∫ ∞
−∞

dτH(τ)u(t− τ)

where we have also assumed w(0) = 0 and ignored small contributions from the end points of the
integral. In this approximation, our final learned w depends on the temporal correlation between

35



the post-synaptic activity v(t) and the pre-synaptic activity u(t) temporally filtered by the STDP
kernel H(τ). Consider now the scenario of u(t) arising from an object moving across the visual
field. If the filter H(τ) filters the resulting sequence of inputs over the amount of time the object
is present, then it will strengthen the synapses from all pre-synaptic cells responding to the object
while it moves, regardless of its position. In the long run, the resulting weights will thus lead
to post-synaptic responses independent of the position of the object, producing position-invariant
responses to the object such as those seen in inferotemporal cortex (IT).

STDP can also produce predictive coding responses in a recurrent network with fixed feedfor-
ward weights. Consider a set of post-synaptic neurons with equally spaced homogenous tuning
curves (e.g. for orientation) and an input stimulus that traverses the stimulus space in the same
direction on each presentation (e.g. a clockwise rotating bar). As the stimulus is repeated, the
tuning curves will then gradually shift in the opposite direction, since each neuron’s recurrent input
from neurons selective for the previous stimulus state will be strengthened. On each subsequent
presentation, then, a given post-synaptic neuron is more and more likely of firing earlier and earlier.
In the long run, this will produce predictive responses anticipating subsequent input according to
the input stimulus it was trained on. Such behavior is observed in hippocampal place cells (D&A
pgs 312-3).

4.5 Plasticity in a Network
As briefly mentioned above, our analysis of the basic Hebb rule implies that if we impose it on a
feed-forward network of neurons with no recurrent connections, they will all learn the same input
weights, aligned to the principal eigenvector of Q (or C). This results in a completely redundant
representation of the input where all post-synaptic neurons have exactly the same response to
every input. By adding recurrent connections to the network, we can hope to avoid this.

We consider a linear recurrent network, of the form

τ
dv
dt

= −v + Wu + Mv

where W are the feed-forward connection weights and M are the recurrent connection weights.
Again assuming τ << τw, we will take the network activity at its stable equilibrium 10:

v = Wu + Mv⇔ v = KWu

where K = (I−M)−1. The basic Hebb rule is then:

τw
dW
dt

= 〈vuT〉 = KWQ

Under certain conditions on K, we can use subtractive normalization to generate ocular domi-
nance bands in a population of neurons arranged in 1D space. Consider visual input from each eye
u =

[
uR uL

]T as above, with Q again as before. In this case, W =
[
wR wL

]
is an N×2 matrix,

where N is the number of neurons in the population. Using Hebbian learning with subtractive
normalization for each set of feed-forward weights

[
wRi wLi

]
to each neuron (i.e. each row of W)

ensures that w+ = wR + wL be constant over time. Thus, we can write

τw
dw+

dt
= τw

dwR

dt
+ τw

dwL

dt
= 0

⇒ τw
dw−
dt

= τw
dwR

dt
− τw

dwL

dt
= (qv − qc)Kw− 6= 0

as long as the weights are changing. Components of w− = wR − wL that are highly positive
indicate post-synaptic activity vi dominated by right eye input, whereas those that are highly
negative reflect dominance by left eye input. If K is translation invariant - Kij = f(|i− j|) where
the indexes i, j designate each post-synaptic neuron’s position in 1D space as well as their position

10Rewriting the dynamics as

τ
dv
dt

= (M− I)v + Wu

we see that the recurrent network will have stable dynamics as long as the largest eigenvalue of M− I is less than
0, i.e. the largest eigenvalue of M is less than 1.
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in the matrix - then one can show that the principle eigenvectors of K lead to ocular dominance
bands (see D&A pgs. 303-304).

An alternative approach to ensure Hebbian learning doesn’t lead to redundant representation is
to impose a non-linearity in the network that induces competition in post-synaptic activity. Purely
linear recurrent interactions induce very weak competition, limiting the amount of differentiation
achievable through Hebbian learning. So we introduce divisive normalization in post-synaptic
activity:

vi =
∑
j

Mijzj

zi =
(wT

i u)α∑
j(w

T
j u)α

where α controls the strength of competition. For large α, for example, only zi with largest wT
i u

survive, with all others reduced to near 0. While the latter equation implements competition
for feedforward input between all post-synaptic neurons, the first equation allows for cooperation
between nearby neurons when the recurrent connections M are excitatory and local. Running Heb-
bian learning on the feedforward weights wi in this setting is called competitive Hebbian learning.
The nonlinear competition allows for strong differentiation of the post-synaptic neurons, which
depend on higher order statistics beyond covariances (so in this case we cannot analyze the weight
dynamics purely in terms of the eigenvectors of the correlation/covariance matrix). Indeed, the
basic Hebb rule in this setting can produce ocular dominance bands in a population without the
need for subtractive normalization.

By abstracting away from any physical grounding, competitive Hebbian learning can allow
the formation of highly structured cortical maps. In such models, called competitive feature-based
models, we assume the inputs ui take on the values of different parameters of the stimulus (e.g.
ocularity, orientation, location), such that Nu is the number of parameters used to characterize
the stimulus and Wij directly represents the selectivity of neuron i for parameter j. We can then
accordingly modify our post-synaptic activity variable, e.g. by assuming homogenous Gaussian
tuning curves for each parameter:

zi =
exp

[
−
∑
j

(uj−Wij)
2

2σ2
j

]
∑
n exp

[
−
∑
j

(uj−Wnj)2

2σ2
j

]
The cooperation can then be introduced either via recurrent connections (self-organizing map) or
via an extra cooperative term in the learning rule (elastic net). In the self-organizing map model,
we assume the above equation for vi, with M such that all recurrent connections are excitatory
and local, to generate similar selectivities in nearby neurons. We then modify the basic Hebb rule
to push a neuron’s selectivity towards those inputs that excite it most:

τw
dWij

dt
= 〈vi(uj −Wij)〉

This is called the feature-based learning rule. The alternative is the elastic net model, which
assumes vi = zi and instead introduces an extra term in the learning rule to encourage similar
selectivities between nearby neurons:

τw
dWij

dt
= 〈vi(uj −Wij)〉+ β

∑
n∈neighborhood of i

Wnj −Wij

This is called the elastic net rule. Using ocularity, orientation, and location as stimulus parameters,
these two models can produce orientation and ocular dominance cortical maps akin to those found
in primates (i.e. with ocular dominance bands and iso-orientation countours with pinwheels; D&A
fig. 8.10).

Note that the above models of plasticity in a network assume fixed non-plastic recurrent weights
M. Instead of making this strong assumption (likely to be false), we could instead apply synaptic
learning rules to learn both the feedforward and recurrent weights simultaneously. By using a
Hebbian rule for the feedforward weights and an anti-Hebbian rule for the recurrent weights, we
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can then hope to decorrelate the post-synaptic activity to avoid redundant representation:

τw
dWij

dt
= 〈viuj〉 − α〈v2

i 〉Wij

τM
dMij

dt
= −〈vivj〉+ βMij

with Mii set constantly to 0. By incorporating multiplicative normalization for the feedforward
weights (i.e. Oja rule) and picking a suitable τM and β, this rule results in individual feedforward
weights wi (i.e. rows of W) aligned to different eigenvectors of Q = 〈uuT〉, and Mij = 0. Indeed,
anti-Hebbian plasticity is thought to be the predominant form of plasticity at the synapses of
parallel fibres onto Purkinje cells in the cerebellum.

Alternatively, we could directly address the issue of redundant representation in a network by
deriving a learning rule for M that sets correlations in post-synaptic activity to 0, i.e.

〈vvT〉 = cI

By substituting in the equilibrium value of v, we have

〈vvT〉 = KW〈uvT〉 = cI

⇔ cK−1 = W〈uvT〉
⇔M = I− c−1W〈uvT〉

This gives us the anti-Hebbian Goodall rule:

τM
dM
dt

= I−W〈uvT〉 −M

which, if it converges, will converge to the desired matrix derived above. In addition to decorrelating
post-synaptic activity, it also equates the individual variances. The Goodall rule, however, is non-
local because of the Wu term, which implies the dynamics of any recurrent synapse weightMij will
depend on the activity at all the feedforward synapses on neuron i (although this could be easily
addressed by assuming the feedforward mapping is the identity, i.e. W = I). Our above result
also requires the diagonal of M to be non-zero, so autapses are implied. These two characteristics
make this rule somewhat biologically implausible. Computationally, it is also limited by its purely
linear dynamics, which limit it to only removing redundancies in second-order statistics.

4.6 Plasticity for Supervised Learning
So far, we have only considered unsupervised learning rules, where the network is asked to learn
some useful set of weights given a set of training inputs. Although somewhat less relevant biologi-
cally, we might also ask how Hebbian learning performs in a supervised setting, where we want the
weights to be modified such that a given target output v is achieved in response to a corresponding
input u. It turns out that an interplay of Hebbian and anti-Hebbian learning is again crucial. We
first analyze the case of applying Hebbian learning to see its limitations, which we then address
with anti-Hebbian learning.

We first consider the problem of binary classification, using the perceptron binary classifier
model:

v =

{
+1 if wTu− γ ≥ 0

−1 else

where the components of u are also either 1 or −1. We analyze the simplified case of γ = 0, using
the basic Hebb rule with multiplicative normalization:

τw
dw
dt

= 〈vu〉 − αw =
1

D

D∑
i=1

v(i)u(i) − αw

where D is the number of observed data points. Note that the post-synaptic activity is indexed
as well, since in the supervised setting we observe input-output pairs (v(i),u(i)) rather than just
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inputs. We assume a random set of such pairs and ask how well the perceptron has learned the
trained associations on convergence of the Hebbian learning rule to

w =
1

αD

D∑
i=1

v(i)u(i)

Setting α = K
D , where K is the number of input components, we have that for an arbitrary input

u(j) from the training data set, the perceptron will output

v
(
u(j)

)
= wTu(j) =

1

K

D∑
i=1

v(i)u(i)Tu(j) =
v(j)u(j)Tu(j)

K
+

1

K

D∑
i6=j

v(i)u(i)Tu(j) = v(j) + η(j)

which looks like a noisy version of the desired output. Indeed, in the limit of large D, the Central
Limit Theorem tells us that

lim
D→∞

K

D − 1
η(j) = lim

D→∞

1

D − 1

D∑
i 6=j

v(i)u(i)Tu(j) ∼ N
(
µ,

σ2

D − 1

)

where µ, σ2 are the mean and variance of each of the D − 1 terms in the sum11:

µ = 〈v(i)u(i)Tu(j)〉 = 0

σ2 = Var(v(i)u(i)Tu(j)) = K

Thus, for large D,

η(j) ∼ N
(

0,
D − 1

K

)
(since Var[η] =

(
D−1
K

)2 Var [ K
D−1η

]
=
(
D−1
K

)2 K
D−1 = D−1

K . In this limit, we can get a closed form
expression for the probability that the perceptron correctly classifies an arbitrary input from the
training set:

P
(
v(u(j)) = v(j)

)
= P (v(j) = 1)P (v(u(j)) = 1|v(j) = 1) + P (v(j) = −1)P (v(u(j)) = 0|v(j) = −1)

= 0.5P (η(j) > −1) + 0.5P (η(j) < 1)

= erf

(√
K

D − 1

)
11 I found this to be a surprisingly non-trivial result, so I derive it here. Let z be the number of positive terms

in the sum implied by the dot product u(i)Tu(j). Since we have assumed each input component and output to be
random and independent, z ∼ Binom(K, 0.5). Recalling that uk ∈ {+1,−1}, we can rewrite the dot product as
u(i)Tu(j) = z − (K − z) = 2z −K. We thus have:

µ = 〈v(i)u(i)Tu(j)〉

= 2〈v(i)z〉 − 〈(v(i))〉K

= 2

 K∑
a=0

P (v(i) = +1)P (z = a)a+
0∑

a=−K

P (v(i) = −1)P (z = −a)a


=

K∑
a=0

P (z = a)a−
K∑

a=0

P (z = a)a = 0

σ2 = 〈(v(i)u(i)Tu(j))2〉 − µ2

= 〈v(i)2(2z −K)2〉

= 4〈z2〉 − 4K〈z〉+K2 since v(i)
2

= 1 always

= 4(Var[z] + (0.5K)2)− 4K(0.5K) +K2

= 4(0.25K + 0.25K2)− 2K2 +K2

= K
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where erf(·) is the error function, or standard Gaussian cumulative distribution. Of course, this
gives us a measure only of the storage capabilities of the perceptron following Hebbian learning
with a large training data set. It is thus intuitive that the perceptron should be able to store trained
associations when the dimensionality of the input is greater than the number of inputs (K > D),
in which case it is easy to find a manifold that can linearly separate the trained inputs12. We have
no guarantees for generalization when the input associations have some structure to be learned - in
fact, the setting of K > D is likely to lead to overfitting. Furthermore, this is a highly restrictive
setting: we need a large D for the above theoretical results (using the CLT) to hold, and an even
larger K to achieve good storage. One of the main reasons for this highly limited performance is
that the Hebbian learning rule is sensitive only to correlation structure in the training data, with
no regard to the actual responses of the perceptron. We might hope to do better by gauging the
weight updates according to the direction of any errors the perceptron is making. This leads to
the perceptron learning rule:

w→ w + ε(v(i) − v(u(i)))u(i), γ → γ − ε(v(i) − v(u(i)))

which increases the weights whenever the perceptron misclassifies in the negative direction (−1
instead of +1, such that v(i) − v(u(i)) = 2 > 0) and decreases them when it makes an error in the
opposite direction (such that v(i) − v(u(i)) = −2 < 0). If it correctly classifies the given input,
the weights are left unchanged. Thus, this learning rule requires repeated exposure to all inputs,
in which case it can be proved that it will converge to perfect classification whenever each class
of inputs (i.e. +1,−1) are linearly separable. Note that if we expand the weight update rule by
multiplying out the terms inside the parenthesis we get a Hebbian and an anti-Hebbian term.

We can get further insight into why we should include such anti-Hebbian learning by considering
supervised learning compliment to classification: regression. Here, we want to approximate an
arbitrary function h(u) via a linear sum of basis functions fi(u):

h(u) ≈ v(u) =
∑
i

wifi(u)

If the set of basis functions {fi(·)} can represent a class of functions via a linear sum, we say that it
is complete with respect to that class. If the set of corresponding weights {wi} is not unique for the
given target function, then we say it is overcomplete. From a neural perspective, we might consider
a population of N neurons with tuning curves fi(u) responding to a stimulus u. A downstream
post-synaptic neuron that linearly sums its pre-synaptic inputs can then represent any function of
the stimulus in a class such that the N tuning curves form a complete set of basis functions for it.
More generally, for any arbitrary target function h(u), we can hope that the post-synaptic activity
v(u) provides a good approximation of h(u) if the synaptic weights w minimize the mean squared
error over some set of N observed input stimuli, i.e.

0 =
∂

∂w

1

2

N∑
i=1

(
h(u(i))− v(u(i))

)2

=

N∑
i=1

(
h(u(i))− v(u(i))

)
f(u(i))

⇔ w =

(
N∑
i=1

f(u(i))f(u(i))T

)−1 N∑
i=1

h(u(i))f(u(i))

=
〈
f(u)f(u)T

〉−1 〈h(u)f(u)〉

where f(u) =
[
f1(u) f2(u) . . . fN (u)

]T. Can we learn such a set of weights with a Hebbian
learning rule? Consider again the basic Hebb rule with multiplicative normalization, which in this
case would coverge to:

w =
1

α
〈h(u)f(u)〉

In light of our above result, this set of synaptic weights will yield a good approximation of h(u)
if
〈
f(u)f(u)T

〉
= αI, i.e. if the post-synaptic activity is decorrelated across the set of observed

12Note that the perceptron is only capable of replicating associations that are linearly separable (which implies a
maximum of 2K different associations).
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stimuli. Given a fixed set of stimuli, this is called a tight frame condition on the basis functions.
Specifically, it implies that for any two observed stimuli u(i) 6= u(j), f(u(i)) is orthogonal to f(u(j)).
Thus, Hebbian learning is only effective under highly restrictive conditions. We see now that
the issue stems from the fact that the Hebbian learning rule does not account for correlations
in the responses to different inputs. Indeed, our analysis shows that it will only perform well if
post-synaptic responses are completely decorrelated. In this light, it is easy to see how adding an
anti-Hebbian term should alleviate this problem by decorrelating the post-synaptic responses. In
fact, an anti-Hebbian term falls out of the derivation the delta rule, which is exactly equivalent to
stochastic gradient ascent on the mean squared error:

w→ w + ε
(
h(u(i))− v(u(i))

)
f(u(i))

This rule is directly analagous to the perceptron learning rule above, incorporating an anti-Hebbian
term that makes it sensitive to the direction of the post-synaptic neuron’s errors to enforce the
appropriate weight changes.

Turning now to stochastic networks, we can derive an analagous weight update rule for density
estimation with a Boltzmann machine. In this case, minimizing the KL divergence between the
output distribution of a Boltzmann machine and some target conditional or joint distribution
(equivalent to maximizing the likelihood of the observed training data) results in a very similar
weight update rule that again consists of the difference between a Hebbian and anti-Hebbian term.
It is thus called a contrastive Hebb rule. Due to the stochastic nature of the networks output, in
this case the two terms are in fact implemented in separate phases, emphasizing the role of the
anti-Hebbian learning in decorrelating the network output:

1. Wake phase: the Boltzmann machine is fed data, and the feed-forward and/or recurrent
weights are updated with a Hebb rule. The network thus learns the correlation structure in
the training data.

2. Sleep phase: the Boltzmann machine generates random samples in response to data inputs,
and the weights are updated with an anti-Hebbian rule. The network thus modifies its weights
to decorralte its stochastic output.

See D&A pgs 322-6 for more details.

5 Neural Coding

5.1 Information Theory
Consider a stimulus S that can take on M different values, and we want to transmit a messages
about its identity at any given trial or point in time. The most straight-forward way of doing this
is to use binary code, requiring messages of length L given by 2L = M ⇔ L = log2M But note
that in this code all stimuli are encoded with the same length message. This is a wasteful use of
bits when you consider that some stimuli will be more likely than others - our messages about the
stimulus could be much shorter on average if we used shorter strings to represent the values that
occured the most frequently. It turns out that the optimal length for a message encoding S = s,
is in fact given by the inverse of its probability13:

L(s) = log2

1

p(s)

Using this code, the average length of our messages will then be:

H[p] = −
M∑
s=1

p(s) log2 p(s)

This is called the entropy, and it gives the minimum average message length (i.e. the average
message length when using the optimal code) with respect to sending messages about some signal
S with probability distribution p(S = s) = p(s). Thus, the entropy is a functional of the probability

13For a nice intuitive demonstration of this, see http://colah.github.io/posts/2015-09-Visual-Information/
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mass function p(s). In the limit of 0 uncertainty where p(S = s) = δ(s−s′), one can easily see that
the entropy goes to 0: we don’t need to even send a message about the stimulus if everyone knows
that it is always going to be S = s′. On the other hand, if the stimuli are uniformly distributed
p(S = s) = 1

M , the entropy reaches its maximum, which can be derived via Jensen’s inequality:

H[p] =

M∑
s=1

p(s) log2

1

p(s)

Jensen

≤ log2

M∑
s=1

p(s)

p(s)
= log2M = −

M∑
s=1

1

M
log2

1

M

Note that we can generalize all the above to any type of discrete code beyond binary values
(i.e. bits). The only change required is to change the base of the logarithm to whatever unit
of information is being used. The convention is to use nats, in which case we use the natural
logarithm.

What if we don’t use the optimal code? For example, what if we are mistaken about the true
p(s) and instead construct our code optimally with respect to some other distribution q(s)? Our
average message length is then give by the cross-entropy :

Hq[p] = −
∑
s

p(s) log q(s)

which will be longer than the average message length using the optimal code. We can see this by
simply taking the difference in message lengths under the two codes, given by the Kullback-Leibler
Divergence:

KL[p(s)||q(s)] = Hq[p]−H[p]

= −
∑
s

p(s) log q(s) +
∑
s

p(s) log p(s)

=
∑
s

p(s) log
p(s)

q(s)

⇒ −KL[p(s)||q(s)]
Jensen

≤ log
∑
s

p(s)
q(s)

p(s)
= 0

⇔ KL[p(s)||q(s)] ≥ 0⇔ Hq[p] ≥ H[p]

where the inequality follows from Jensen’s inequality.
Another thing we can ask is how to update our code in the face of new information about

the stimulus. Consider, for example, that we observe the firing rate r of a cell that responds
to the stimulus S according to the probability distribution p(R = r|S). Using Baye’s rule to
get p(S|R = r), we then update our code accordingly, using p(s|R = r) instead of p(s) for the
distribution of the signal we are trying to communicate. Averaging over all possible responses R,
we then have that our minimum average message length is given by the conditional entropy :

H[S|R] =
∑
r

p(r)

(
−
∑
s

p(s|r) log p(s|r)

)
= −

∑
r,s

p(s, r) log p(s|r)

We can now use this to ask: how much does knowing R = r improve our code? We can
measure this by computing the resulting decrease in entropy (i.e. reduction in average message
length), called the mutual information:

I[S,R] = H[S]−H[S|R]

= −
∑
s

p(s) log p(s) +
∑
r,s

p(s, r) log p(s|r)

= −
∑
s,r

p(s, r) log p(s) +
∑
r,s

p(s, r) log
p(s, r)

p(r)

=
∑
s,r

p(s, r) log
p(s, r)

p(s)p(r)
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One can easily see that if the random variables R,S are independent (such that p(r, s) = p(r)p(s)),
their mutual information is 0, since in this case observing R won’t tell you anything about S (so
p(s|r) = p(s) and thereforeH[S|R] = H[S]). Note as well that the mutual information is symmteric
(unlike the KL Divergence). Lastly, note that the mutual information is always positive: knowing
more about the stimulus S (i.e. conditioning p(S) → p(S|R)) can only decrease your uncertainty
about S (i.e. decrease the entropy). One can see this most easily by reexpressing the mutual
information as a Kullback-Leibler divergence:

I[S,R] = KL[p(s, r)||p(s)p(r)] ≥ 0

⇔ H[S|R] ≤ H[S]

Suppose we apply a series of transformations to the stimulus S, giving us a Markov chain of
the form S → R1 → R2 such that R2 ⊥⊥ S|R1. The data processing inequality then tells us that
the information about S contained in R2 cannot be more than that contained in R1: information
can never increase. This follows from the fact that conditioning only decreases entropy, such that

H[S|R2] ≥ H[S|R1, R2] = H[S|R1]

⇔ H[S|R2] ≥ H[S|R1]⇒ I[S,R2] ≤ I[S,R1]

where the equality in the first line follows from the Markov independence structure. In more detail,
we can prove this by again using the fact that the mutual information is always positive:

∀r2 0 ≤ I[S,R1|R2 = r2]

=
∑
s,r1

p(s, r1|r2) log
p(s, r1|r2)

p(s|r2)p(r1|r2)

=
∑
s,r1

p(s, r1|r2) log
p(s|r1, r2)

p(s|r2)

=
∑
s,r1

p(s, r1|r2) log p(s|r1, r2)−
∑
s

p(s|r2) log p(s|r2)

⇒ 0 ≤
∑
s,r1,r2

p(r2)p(s, r1|r2) log p(s|r1, r2)︸ ︷︷ ︸
−H[S|R1,R2]

−
∑
s,r2

p(r2)p(s|r2) log p(s|r2)︸ ︷︷ ︸
H[S|R2]

=
∑
s,r1,r2

p(s, r1, r2) log p(s|r1)︸ ︷︷ ︸
−H[S|R1]

+H[S|R2]

= −H[S|R1] +H[S|R2]⇔ H[S|R2] ≥ H[S|R1]

where we used the fact that p(s|r1, r2) = p(s|r1) (by the Markov structure) to go from the fifth
line to the sixth line, giving us H[S|R1, R2] = H[S|R1].

We can generalize the above notions to other probabilistic objects. Consider a stochastic process
S = {S1, S2, . . .}. We define its entropy rate as

H[S] = lim
n→∞

H[S1, . . . , Sn]

n

= lim
n→∞

H[Sn|Sn−1, . . . , S1] +H[Sn−1|Hn−2, . . . , S1] + . . .+H[S1]

n

= lim
n→∞

H[Sn|Hn−1, . . . , S1]

where the last equality holds under the assumption of stationarity of the conditional distribution.
We can also generalize entropy to continuous random variables s ∈ R with probability density

functions p(s). In this case, however, the conventional definition of entropy breaks down, because
you need an infinite number of bits to encode a real number. This becomes evident in directly
deriving the entropy of s: to obtain probabilities from the probability density function p(s), we
must bin the possible values of s ∈ R into discrete equally sized bins si and then take the limit of
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infinitely small bin sizes ∆s→ 0:

H[s] = −
∑
i

p(si)∆s log p(si)∆s

= −
∑
i

p(si)∆s log p(si)− log ∆s

∆s→0−→ −
∫
p(s) log p(s)ds+∞

Thus, for continuous random variables, we use the differential entropy

h(s) = −
∫
p(s) log p(s)ds

We can similarly define the conditional differential entropy, and in fact the KL divergence and
mutual information need no modification since the ∞ terms cancel each other.

As illustrated above, the entropy of a random variable is a measure of our uncertainty about it
(i.e. uncertainty ∝ optimal average message length). We can thus use it to derive the distribution
(in a Bayesian sense) of a random variable whose true probability distribution we don’t know. In
the case that we know nothing about it, we have no idea what values are more likely than others,
so we should assign it a uniform probability distribution - the probability distribution with highest
entropy. But consider now the case where we know the mean µ of a random variable X but nothing
else. What probability distribution should we assign to it? Given that we know nothing else about
X, we should assign the probability distribution with highest (differential) entropy, under the
constraint that it have a mean set at µ:

0 =
δ

δp

[
H[p] + λ0

(∫
p(x)dx− 1

)
+ λ1

(∫
xp(x)dx− µ

)]
=

δ

δp

[
−
∫
p(x) log p(x) + λ0

(∫
p(x)dx− 1

)
+ λ1

(∫
xp(x)dx− µ

)]
= − log p(x)− 1 + λ0 + λ1x

⇔ p(x) ∝ eλ1x

where λ0, λ1 are Lagrange multipliers to enforce the constraints the p(x) be a probability distri-
bution with mean µ. In other words, if all we know is the mean of X, we should assume it is
exponentially distributed, with that mean. This is the maximum entropy distribution of a random
variable with fixed mean. Applying this result to the distribution of time intervals between events
in a point process with a constant mean rate, we get that the maximum entropy point process
with fixed constant mean rate is a homogenous Poisson process (with exponentialy distributed
inter-event intervals). What if we also knew the variance σ2 of X? I’m not

sure this
is enough
to prove
this

I’m not
sure this
is enough
to prove
this

0 =
δ

δp

[
H[p] + λ0

(∫
p(x)dx− 1

)
+ λ1

(∫
(x− µ)2p(x)dx− σ2

)]
= − log p(x)− 1 + λ0 + λ1(x− µ)2

⇔ p(x) ∝ eλ1(x−µ)2

i.e. the maximum entropy distribution of a random variable with fixed mean and variance is
Gaussian. We can verify this by considering an arbitrary probability density q(x) with the same
mean µ and variance σ2 and calculating its KL divergence with the Gaussian p(x):

KL[q||p] =

∫
q(x) log

q(x)

p(x)
dx

= −h(q)−
∫
q(x) log p(x)dx

= −h(q) +
1

2
log 2πσ2 +

1

2σ2

∫
q(x)(x− µ)2dx

= −h(q) +
1

2
log 2πσ2 +

1

2σ2
σ2
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= −h(q) +
1

2
log 2πσ2 +

1

2

= −h(q) +
1

2
log 2πσ2e

Noting that

h(p) =
1

2
log 2πσ2 +

1

2σ2

∫
p(x)(x− µ)2dx =

1

2
log 2πσ2e

the positivity of the KL divergence gives us:

KL[q||p] = −h(q) + h(p) ≥ 0⇔ h(p) ≥ h(q)

In other words, any probability distribution with the same mean and variance will have less entropy
than the Gaussian.

Information theory can be useful for analyzing channels, whereby information about some
source/stimulus S is transmitted via a channel that outputs responses R according to a probability
distribution p(R|S). This conditional probability distribution completely characterizes the channel,
so we would like a way to measure how good the channel is without reference to the intrinsic
properties of S or R, such as their respective marginal distributions p(S), p(R). The natural way
to measure how useful the responses R are for communicating information about S is the mutual
information I[S,R], but this indeed depends on p(S) (and p(R), but we can always calculate this
using p(r) =

∑
s p(s)p(r|s)). We thus define the capacity of a channel to be

CR|S = sup
p(S)

I[S,R]

which gives the theoretical limit on the amount of information that can be transmitted through
the channel. To use this channel optimally, then, you should ensure the distribution over inputs
p(S) saturates the channel capacity. This distribution can be found using an iterative EM-like
algorithm called the Blahut-Arimoto algorithm.

However, usually we are constrained by a fixed input distribution p(S). The problem then
becomes finding an encoding p(S̃|S) that maximizes I[S,R], where the encoded message S̃ is now
the input to the channel. Given that, by the information-processing inequality,

I[S,R] ≤ I[S̃, R] ≤ CR|S

one way to find a good p(S̃|S) is to maximize I[S̃, R] so that our upper bound on I[S,R] saturates
the channel capacity. We can do this by maximizing the marginal entropy over the channel outputs
H[R] with respect to p(S̃), since

I[S̃, R] = H[R]−H[R|S̃]

Under no constraints on the moments of R, this translates to finding the encoding p(S̃|S) such
that the channel outputs R are uniformly distributed (i.e. the maximum entropy distribution).
One approach to this is called histogram equalization. Consider a deterministic encoding s̃ = f(s)
and i.i.d. noise corrupted outputs r = s̃+ η, where η is a 0-mean random variable representing the
noise. We want to find the deterministic function f(s) that ensures p(R = r) = 1

rmax
be uniform

(between 0 and rmax, e.g. firing rate of a neuron). Since in this case p(r) ≈ p(s̃), this implies
deriving an encoding function f(s) such that p(s̃) = 1

rmax
. Our first step is thus to express p(s̃) in

terms of f(s). Given s, s̃ such that
p(s)ds = p(s̃)ds̃

we can express p(s̃) as

p(s̃) = p(s)
ds
ds̃

= p(s)
1

f ′(s)

Thus, our encoding function is given by

1

rmax
= p(s)

1

f ′(s)
⇔ f(s) = rmax

∫ s

−∞
p(s′)ds′

In other words, the encoding s → s̃ consists of the maximum channel response rmax scaled by
the cumulative probability of the input s. Thus, the regions of s-space with highest probability
density are diluted into very large regions of s̃-space, since the cumulative density changes the most
over these regions. Regions of low probability density, on the other hand, are regions where the
cumuluative density is relatively flat, so the encoding concentrates into smaller regions in s̃-space,
thus spreading the probability equally around the encoded input s̃ space.
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5.2 Fisher Information
Consider a neuron that fires n spikes in response to a stimulus s according to a probability dis-
tribution P (n|s). The question we are after is how much information does the neuron’s spiking
activity n contain about s? A natural way of framing this is: given n, how well can we estimate s?

We can get a reasonable answer by computing the posterior distribution P (s|n) in the infinite
data limit, i.e. the limit of N → ∞ in a data set {ni}Ni=1 of N i.i.d. recordings of the neuron’s
response to some stimulus s0:

logP (s|{ni}) = logP ({ni}|s) + logP (s)− logZ

=

N∑
i=1

logP (ni|s) + logP (s)− logZ

⇒ lim
N→∞

logP (s|{ni}) = N 〈logP (n|s)〉P (n|s0) − logZ

where in the last line we dropped all terms that don’t scale with N and used the law of large
numbers to replace the infinite sum over N data points with its true mean (an expectation over
the true distribution of n, given by the probability distribution over neural responses to the actually
presented stimulus s0, P (n|s0)). We then approximate this distribution to second order around
the true stimulus value s0:

logP (s|{ni}) ≈ N

(
〈logP (n|s0)〉+ (s− s0)T

〈
d
ds

∣∣∣∣∣
s0

logP (n|s)

〉

+
1

2
(s− s0)T

〈
d2

ds2

∣∣∣∣∣
s0

logP (n|s)

〉
(s− s0)

)
− logZ

= N(s− s0)T

〈
d
ds

∣∣∣∣∣
s0

logP (n|s)

〉
− 1

2
(s− s0)T

(
−N

〈
d2

ds2

∣∣∣∣∣
s0

logP (n|s)

〉)
(s− s0)− logZ ′

where we absrboed all terms constant w.r.t. s (namely, the first one) into the normalizer. We now
note that〈

d
ds

∣∣∣∣∣
s0

logP (n|s)

〉
=

∫
dnP (n|s0)

1

P (n|s0)

d
ds

∣∣∣∣∣
s0

P (n|s) =
d
ds

∣∣∣∣∣
s0

∫
dnP (n|s) =

d
ds

∣∣∣∣∣
s0

1 = 0

Exponentiating, we then have:

P (s|{ni}) ≈
1

Z ′
exp

[
−1

2
(s− s0)T

(
−N

〈
d2

ds2

∣∣∣∣∣
s0

logP (n|s)

〉)
(s− s0)

]
= N

(
s

∣∣∣∣∣s0,
1

N
J(s0)−1

)

where

J(s0) = −

〈
d2

ds2

∣∣∣∣∣
s0

logP (n|s)

〉
P (n|s0)

is called the Fisher information matrix, giving us the rate at which the variance of the approximate
Gaussian posterior in the large data limit decreases with increasing N . Note, however, that this
approximate posterior is only valid at values of s near the true stimulus s0.

We can get a more precise intuition for what the Fisher information means by realizing that it
is in fact equal to the variance of the gradient of the log likelihood with respect to the stimulus
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(also called the score function):

J(s0) = −

〈
d
ds

∣∣∣∣∣
s0

1

P (n|s)
d
ds
P (n|s)

〉
P (n|s0)

= −

〈
1

P (n|s0)

d2

ds2

∣∣∣∣∣
s0

P (n|s)

〉
P (n|s0)

+

〈
1

P (n|s0)2

(
d
ds

∣∣∣∣∣
s0

P (n|s)

)(
d
ds

∣∣∣∣∣
s0

P (n|s)

)〉
P (n|s0)

= −
∫

dn
d2

ds2

∣∣∣∣∣
s0

P (n|s) +

〈(
d
ds

∣∣∣∣∣
s0

logP (n|s)

)2〉
P (n|s0)

=

〈(
∇ logP (n|s)

∣∣∣
s0

)(
∇ logP (n|s)

∣∣∣
s0

)T
〉
P (n|s0)

= covP (n|s0)

[
∇ logP (n|s)

∣∣∣
s0

]
where in the last line we recalled from above that 〈∇ logP (n|s)〉 = 0 such that the square of
the derivative (the outer product of the gradient with itself) is in fact the (co)variance. For a
one-dimensional stimulus, the Fisher information is thus easily interpreted as a measure of the
sensitivity of the population response to changes in the stimulus (i.e. the squared derivative).
Again, we note that the Fisher information is only a local measure of information, since the
derivatives are evaluated at the stimulus value s0.

It also turns out that the Fisher information has a very specific statistical meaning even when
N is finite. Consider an estimator ŝ(x) of the stimulus s0, based on some data x (e.g. a series of
i.i.d. noisy measurements of s0, a neural response, etc.), with bias given by

b(s0) = 〈ŝ(x)〉P (x|s0) − s0

We will see that the Fisher information gives a lower bound on the variance of this estimator. We
first realize that we can express the square of the derivative of the bias in terms of the square of
the expected derivative of the log likelihood:

b′(s0) =

∫
dx ŝ(x)

d
ds0

P (x|s0)− 1

=

∫
dx ŝ(x)P (x|s0)

d
ds0

logP (x|s0)− 1

=

〈
ŝ(x)

d
ds0

logP (x|s0)

〉
P (x|s0)

− 1

⇒ (b′(s0) + 1)2 =

〈
ŝ(x)

d
ds0

logP (x|s0)

〉2

P (x|s0)

=

〈
(ŝ(x)− 〈ŝ(x)〉) d

ds0
logP (x|s0)

〉2

P (x|s0)

where in the last line we simply realized that

−〈ŝ(x)〉P (x|s0)

〈
d
ds0

logP (x|s0)

〉
P (x|s0)

= −〈ŝ(x)〉P (x|s0)

(∫
dx

d
ds0

P (x|s0)

)
= 0

so we are free to add in the term. By the Cauchy-Schwarz inequality14, for any two random
14For any given inner product 〈·, ·〉, it is always the case that 〈u, v〉 ≤ 〈u, u〉〈v, v〉. For the above result, called the

covariance inequality, we define the inner product

〈u, v〉 ≡ E[uv] =

∫ ∫
dudv P (u, v)uv

(one can easily verify that this is indeed a proper inner product - it is symmetric, linear, and positive definite) such
that E[XY ] ≤ E[X2]E[Y 2].
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variables X and Y , 〈XY 〉2 ≤ 〈X2〉〈Y 2〉, so

(b′(s0) + 1)2 ≤
〈
(ŝ(x)− 〈ŝ(x)〉)2

〉〈( d
ds0

logP (x|s0)

)2
〉

= Var[ŝ(x)]J(s0)

⇔ Var[ŝ(x)] ≥ (b′(s0) + 1)2

J(s0)

Thus, the Fisher information J(s0) contributes to a lower bound on the variance of any estimator.
Particularly, if the estimator is unbiased (in which case b′(s0) = 0), the inverse Fisher information
exactly gives that lower bound.

5.3 Zhang & Sejnowski (1999): Optimal Tuning Curve Widths
Consider a population of neurons a = 1, . . . , N coding for a stimulus s ∈ RD, with homogenous
tuning curves given by

fa(s) = rmaxφ

(∑D
d=1(sd − cad)2

σ2

)
= rmaxφ

(
ξa

σ2

)
where cad are the tuning curve center in each dimension, and φ(·) is a monotonically decreasing
function (e.g. φ(x) = e−x for Gaussian tuning curve). Note that because we enforce the tuning
curve widths σ to be the same for each stimulus dimension, the resulting tuning curves fa(s) are
circularly symmetric. We then assume that each neuron’s response is independently distributed
according to a probability distribution dependent on its tuning, i.e. P (r|s) =

∏
a P (ra|fa(s)). The

Fisher information for the population is then given by the sum of the Fisher information for each
neuron:

J(s) =

〈
− d2

ds2
logP (r|s)

〉
=

〈
− d2

ds2

∑
a

logP (ra|fa(s))

〉

=
∑
a

〈
− d2

ds2
logP (ra|fa(s))

〉
=
∑
a

J(a)(s)

The question we ask now is: what tuning curve width σ maximizes the population Fisher informa-
tion?

We begin by deriving the Fisher information matrix for a single neuron a. Using the squared
first derivative form, we have

J
(a)
ij (s) =

〈
d
dsi

logP (ra|fa(s))
d
dsj

logP (ra|f(s))

〉
Applying chain rule, we can get an expression for the two derivatives:

d
dsi

logP (ra|fa(s)) =
1

P (ra|s)
∂P (ra|fa(s))

∂si

=
1

P (ra|s)
∂P (ra|fa(s))

∂fa(s)

∂fa(s)

∂φ(ξa/σ2)

∂φ(ξa/σ2)

∂ξa
∂ξa

∂si

=
1

P (ra|s)
∂P (ra|fa(s))

∂fa(s)
rmax

φ′(ξa/σ2)

σ2
2(si − cai )

We thus have:

J
(a)
ij (s) = Ka(ξa)

(si − cai )(sj − caj )

σ4

where

Ka(ξa) =

〈
4

(
1

P (ra|s)
∂P (ra|fa(s))

∂fa(s)
rmaxφ

′(ξa/σ2)

)2
〉
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is the only term where the expectation appears since it is the only term dependent on the activity
ra over which the expectation is defined. Defining

ξai =
si − ci
σ

such that ξa = σ2
∑
i ξ
a
i

2, we note that since φ(ξa/σ2) is a monotonically decreasing function of
ξai

2, it is symmetric around ξai = 0. Thus, φ′(ξa/σ2)2 and fa(s) are as well, so Ka(ξa) is also
symmetric around ξai = 0.

We now assume that the neuron tuning centers are uniformly distributed across the stimulus
space, with P (cai ) = pc. Taking the limit of N → ∞ to approximate sums with integrals, we can
then write

Jij(s) =
∑
a

J
(a)
ij (s)

≈
∫

dca1

∫
dca2 . . .

∫
dcaD pcJ

(a)
ij (s)

≈
∫

dca1

∫
dca2 . . .

∫
dcaD pcKa(ξa)2

(si − cai )(sj − caj )

σ4

To evaluate this integral, we exploit the fact that Ka(ξa) is symmetric around ξai = 0 by performing
the change of variables cai → ξai , such that dcai = −σdξai :

Jij(s) ≈
1

σ2

∫
σdξa1

∫
σdξa2 . . .

∫
σdξaD pcKa(ξa)ξai ξ

a
j

=
σD

σ2

∫
dξa1

∫
dξa2 . . .

∫
dξaD pcKa(ξa)ξai ξ

a
j

Because Ka(ξa) is symmetric around ξai = 0, we have that∫ ∞
−∞

dξai pcKa(ξa)ξai =

∫ 0

−∞
dξai pcKa(ξa)ξai +

∫ ∞
0

dξai pcKa(ξa)ξai

= −
∫ ∞

0

dξai pcKa(−ξa)ξai +

∫ ∞
0

dξai pcKa(ξa)ξai

= −
∫ ∞

0

dξai pcKa(ξa)ξai +

∫ ∞
0

dξai pcKa(ξa)ξai = 0

Therefore, when i 6= j

Jij(s) ≈
σD

σ2

∫
dξa1 . . .

∫
dξai−1

∫
dξai+1 . . .

∫
dξaD ξaj

∫
dξai pcKa(ξa)ξai = 0

When i = j, on the other hand, we have

Jii(s) ≈
σD

σ2

∫
dξa1

∫
dξa2 . . .

∫
dξaD pcKa(ξa)ξai

2 = σD−2A

where A is independent of σ.
We have thus found that the total Fisher information in the population is proportional to σD−2,

where D is the dimensionality of the stimulus. This yields a few surprising results regarding the
optimal tuning curve width σ:

• If D = 1, you want the tuning curves as narrow as possible, down to the smallest resolution
between neighboring cai (but not smaller than this).

• If D = 2, the Fisher information is completely independent of the tuning curve widths.

• If D > 2, the wider the tuning width the better. Optimality is achieved when the width of
the tuning curve spans the stimulus space.

Furthermore, it turns out that if you allow the tuning curve widths to vary between stimulus di-
mensions (i.e. allow fa(s) to not be circularly symmetric), then maximizing the Fisher information
gives you a cartesian code whereby the optimal tuning curve width is narrow in some dimensions
and wide in others.
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5.4 Olshausen & Field (1996): Sparse Coding

5.5 Correlations and Population Coding

5.6 Coding Uncertainty
DDPCs

6 Suggested Papers
• Network dynamics

– [Wilson and Cowan, 1972]

– [Hopfield, 1982]

– [Seung, 1996]

– [Latham et al., 2000]

– Mean-field analysis:

∗ [Sompolinsky et al., 1988]
∗ [Vreeswijk and Sompolinsky, 1998]
∗ [Renart et al., 2010]
∗ [Rosenbaum et al., 2017]
∗ [Mastrogiuseppe and Ostojic, 2017]

• Correlations and information

– [Zohary et al., 1994]

– [Abbott and Dayan, 1999]

– [Moreno-Bote et al., 2014]

– [Kohn et al., 2016]

• Coding

– [Olshausen and Field, 1996]

– [Zhang and Sejnowski, 1999]

• Optimality

– [Ernst and Banks, 2002]

– [Kording and Wolpert, 2004]

• Characterizing neural responses

– [Simoncelli et al., 2004]
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7 Appendices

7.1 Important Constants In Neuroscience

Symbol Value Name Notes
- 1011 number of neurons in human brain
K 1000 avg connections per neuron in cortex? (PEL)
Vrest −70mV resting membrane potential
Vth −50mV spiking threshold in reality not fixed
ENa 50mV Na+ reversal potential
EK −90− 70mV K+ reversal potential
ECl −65− 60mV Cl− reversal potential
ECa 150mV Ca2+ reversal potential
τm 10− 100ms membrane time constant τm = cmrm = CmRm, independent of

membrane surface area
rm 1MΩmm2 specific membrane resis-

tance
membrane resistance of a neuron with
surface area A given by Rm = rm

A , rm
varies with V

cm 10nF/mm2 specific membrane capaci-
tance

membrane capacitance of a neuron with
surface area A given by Cm = cmA

A .01mm2 neuronal surface area
rL 1kΩmm intracellular resistivity a property of cell cytoplasm; longitudi-

nal resistance in a neurite of length L
and cross-sectional radius a is given by
RL = L×rL

πa2

a 2µm cross-sectional radius of a
dendrite

velocity of signal propagation in axon,
dendrite scales with a,

√
a

λ 1mm electrotonic length of a den-
drite

λ =
√

rma
2rL

, sets the scale of spatial de-
cay of a constant current injection (for
infinite length dendrite) → dendrites
can’t be much longer than this

Rλ ∼MΩ input resistance Rλ = rm
λ2πa , the ratio of equilibrium po-

tential to injected current (for constant
current injection in infinite cable)

gopeni 25pS open channel conductance
- 1mV EPSP
- 1ms PSP rise time constant in CA3 pyramidal cell
- 5ms PSP decay time constant in CA3 pyramidal cell

7.2 Useful Approximations and Maths Facts
• log(1 + z) ≈ z for small z

• (1 + z/n)n → ez for big n

• tanh(z) = ex−e−x
ex+e−x

7.3 Electrical Circuits

Name Symbol Units
Charge Q C = 6.2× 1018 electrons (coulombs)
Current I A = C/s (amps = coulombs per second)
Voltage V V = J/C (volts = potential energy joules per coulomb)
Resistance R Ω = V/A (ohms = volts per amp)
Capacitance C F = C/V (farad = coulomb per volt)
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We therefore have:

I =
dQ
dt

CV = Q⇔ C
dV
dt

= I

R =
I

V
⇔ ∆V = IR (Ohm’s Law)

We can interpret these latter two equations as telling us that

• capacitance C determines how much current I is needed to change the voltage at a given rate
dV
dt

• resistance R determines how much current I is needed to change the volltage by a given
amount ∆V

7.4 Solving Differenetial Equations
7.4.1 First-Order ODEs: Method of Integrating Factors

Consider a differential equation of the form:

dy
dx

+ p(x)y(x) = g(x)

Because of the y(x) term isolated from the derivative on the left-hand side, we can’t solve this by
straight-forward integration. We can deal with this, however, via the product rule by multiplying
both sides by the integrating factor

v(x) =

∫
p(x)dx⇔ dv

dx
= p(x)

which gives us:

d
dx
y(x)ev(x) =

dy
dx
ev(x) +

dv
dx
y(x)ev(x)

=

(
dy
dx

+ p(x)y(x)

)
ev(x)

= g(x)ev(x)

such that we can now simply integrate both sides to get our solution:∫
d
dx
y(x)ev(x)dx =

∫
g(x)ev(x)dx

⇔ y(x) = e−v(x)

∫
g(x)ev(x)dx

7.4.2 Homogenous Second-Order ODEs

Consider a differential equation of the form

d2y

dx2
+ p

dy
dx

+ qy(x) = 0

with p, q constant coefficients. Let y′′ = d2y
dx2 , y

′ = dy
dx . We now note that if we can find a pair a, b

such that p = −(a+b), q = ab, we can turn this homoegenous second-order ODE into a homogenous
first-order ODE:

y′′ + py′ + qy = y′′ − (a+ b)y′ + aby

= (y′ − ay)′ + b(ay − y′)
= 0

⇔ (y′ − ay)′ = b(y′ − ay)
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Making the substitution u = y′ − ay and solving the resulting first-order ODE we then have:

u′ = bu

⇔ u(x) = Cebx

⇒ y′ − ay = Cebx

⇔ (ye−ax)′ = Ce(b−a)x

⇔ y(x) = c1e
ax + c2e

bx

Unless a = b, in which case the fourth line becomes

(ye−ax)′ = C

⇔ y(x) = eax(c1x+ c2)

So all we need to do to solve a homogenous second-order ODE with constant coefficients p, q
is to find a, b such that p = −(a + b), q = ab. We can do this easily by noting that a, b are the
solutions to the quadratic equation

r2 + pr + q = r2 − (a+ b)r + ab = (r − a)(r − b) = 0

We call this equation the characteristic equation of the above second-order ODE. Using the
quadratic formula, we then have:

a, b =
−p±

√
p2 − 4q

2

7.4.3 Nth-order Inhomogenous ODEs: Green’s Function

Consider a differential equation of the form

dny
dxn

+
dn−1y

dxn−1
+ . . .+

dy
dx

+ y(x) = g(x)

Recalling that differentiation is a linear operation, we can define the linear operator L:

Ly(x) =
dny
dxn

+ . . .+
dy
dx

+ y(x)

We now find a function G(x, s) such that

LG(x, s) = δ(s− x)

This is called a Green’s function, which depends on the linear operator L.
Once we have found the Green’s function, we can use it to solve the differential equation by

noting that ∫
LG(x, s)g(s)ds = g(x)

Crucially, since L is a linear operator with respect to x (not s), we can pull it out of the integral.
We can thus rewrite the differential equation as:

Ly(x) = g(x)

=

∫
LG(x, s)g(s)ds

= L

∫
G(x, s)g(s)ds

⇔ y(x) =

∫
G(x, s)g(s)ds

which will hopefully be an easy integral if the Green’s function G(x, s) is of a nice form.
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7.5 Dynamical Systems Analysis
Consider a dynamical system of the form

dx
dt

= f(x, y)

dy
dt

= g(x, y)

Since the dynamics depend only on the variables x, y themselves and nothing else, we call such a
system autonomous. To understand this system, we would like to know the behavior of trajectories
of (x(t), y(t)) over time. We can gain such an understanding qualitatively by plotting the nullclines
of the system in the x− y plane, given by

f(x, y) = 0

g(x, y) = 0

We can then construct the so-called phase plane by sketching trajectories in the x− y plane. For
simple systems, we can directly calculate trajectories by picking an initial condition and solving
the differential equation

dx
dy

=
f(x, y)

g(x, y)

However, this is usually impossible to do analytically, so we instead turn to the nullclines to guide
us via the following rules:

• Trajectories can only cross the x−nullcline f(x, y) = 0 vertically (i.e. with dx
dt = 0)

• Trajectories can only cross the y−nullcline g(x, y) = 0 horizontally (i.e. with dy
dt = 0)

• Regions enclosed by the nullclines have dx
dy with constant sign

• Crossings of the two nullclines are fixed points (stable/unstable) of the system

This last point is of great importance, as often what we are most interested in is the long-run
behavior of the system. Thus, we would like to be able to know the behavior of the system near
each of the fixed points. We can do so via standard stability analysis. Consider a fixed point
(x∗, y∗) of the above system given, found by solving the equation

f(x∗, y∗) = g(x∗, y∗) = 0

To understand the system’s behavior near this point, we analyze the dynamics at a nearby point

(x̃(t), ỹ(t)) = (x∗ + δx(t), y∗ + δy(t))

to examine where it ends up in the limit of t→∞. If (x̃(t), ỹ(t))→ (x∗, y∗), i.e. (δx(t), δy(t))→
(0, 0), as t→∞ then we know the fixed point (x∗, y∗) is stable.

Assuming (δx(t), δy(t)) to be very small, we can safely approximate the dynamics at (x̃, ỹ) to
1st order:

dx̃
dt

=
dδx
dt

= f(x∗ + δx, y∗ + δy) ≈ f(x∗, y∗) + fx(x∗, y∗)δx+ fy(x∗, y∗)δy

dỹ
dt

=
dδy
dt

= g(x∗ + δx, y∗ + δy) ≈ g(x∗, y∗) + gx(x∗, y∗)δx+ gy(x∗, y∗)δy

where I have used the notation fz(a, b) = ∂f
∂z

∣∣∣
x=a,y=b

. Since f(x∗, y∗) = g(x∗, y∗) = 0, we can

rewrite this approximation in matrix notation as follows:

dx
dt

= Jx

where
x =

[
δx
δy

]
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and
J =

[
fx(x∗, y∗) fy(x∗, y∗)
gx(x∗, y∗) gy(x∗, y∗)

]
is the Jacobian of the vector-valued function f(x, y) =

[
f(x, y) g(x, y)

]T, evaluated at (x∗, y∗).
We now have a linear dynamical system that we can actually solve. Note what we have done:

by picking a point very near to the fixed point and approximating its dynamics to first-order, we
have effectively linearized the dynamics around this fixed point, giving us a linear system that we
can analyze and solve. Specifically, the solution to this linear system is given by

x(t) = c1e
λ1tv1 + c2e

λ2tv2

where λ1, λ2 and v1,v2 are the eigenvalues and eigenvectors of the 2× 2 Jacobian matrix J. Thus,
if Re(λ1),Re(λ2) < 0, we know that eλ1t, eλ2t → 0 and therefore (δx, δy) → 0 as t → ∞, so
we canc conclude (x∗, y∗) is a stable fixed point. Otherwise, (x∗, y∗) could be either unstable, a
saddle node, or a limit cycle (see table 7.5). We therefore need only calculate the eigenvalues of
the Jacobian matrix J to determine qualitative behavior around the fixed point (x∗, y∗):

Jv = λv

⇔ (J− λI)v = 0

⇒ |J− λI| = 0 for non-zero v

⇔ λ2 − Tr[J]︸ ︷︷ ︸
T

+ |J|︸︷︷︸
D

= 0

⇒ λ± =
T ±
√
T 2 − 4D

2

where the third line follows from the fact that, for there to be a non-zero vector v that satisfies the
equation in the second line, the matrix J − λI must have a non-zero nullspace and therefore not
be full-rank, which implies that its determinant must be 0. We can thus easily derive the following
conditions for stability of the fixed point:

T < 0

D > 0

The full picture is given by table 7.5 and figure 7.5 below.

Fixed point Tr[J] Det[J] Real part Imaginary part
stable node T < 0 T 2 > 4D > 0 Re(λ±) < 0 Im(λ±) = 0
stable spiral T < 0 4D > T 2 > 0 Re(λ±) < 0 Im(λ±) 6= 0
unstable node T > 0 T 2 > 4D > 0 Re(λ±) > 0 Im(λ±) = 0
unstable spiral T > 0 4D > T 2 > 0 Re(λ±) > 0 Im(λ±) 6= 0

center (limit cycle??) T = 0 D > 0 Re(λ±) = 0 Im(λ±) 6= 0
saddle - D < 0 Re(λ+) > 0 > Re(λ−) Im(λ±) = 0

star/degenerate node T 2 = 4D D ≥ 0 Re(λ+) = Re(λ−) Im(λ±) = 0
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7.6 Fourier Transform
Given a function f(x) in space or time (i.e. x in cm or seconds), one can equialently express it in
the frequency domain via its Fourier transform F (ω):

F (ω) =

∫ ∞
−∞

f(x)e−2πiωxdx

f(x) =

∫ ∞
−∞

F (ω)e2πiωxdω

When the units of ω don’t matter to the given derivation, the 2π can be dropped. One must then
simply rescale ω → ω

2π to interpret it as a frequency in inverse units of x (e.g. Hz for x in seconds).
Some important Fourier transforms to know are given in the table below, where ω > 0 is in

inverse units of x:

f(x) F (ω)
sin(kx) δ(ω − 2πk)
δ(x) 1
dn

dxn g(x) (2πiω)nG(ω)

e−ax
2

, a > 0
√

π
a e
−π2ω2

a

Θ(x)e−ax, a > 0 1
2πiω+a

A useful property of the Fourier transform is the so-called Convolution Theorem, which states
that the Fourier transform of the convolution of two functions is equal to the product of their
Fourier transforms. Let

h(x) =

∫
f(x′)g(x− x′)dx′

be the convolution of f(·) and g(·). Then its Fourier transform is:

H(ω) =

∫
h(x)e−2πiωxdx

=

∫ ∫
f(x′)g(x− x′)dx′e−2πiωxdx

=

∫
f(x′)

∫
g(x− x′)e−2πiωxdxdx′

y=x−x′
=

∫
f(x′)

∫
g(y)e−2πiω(y+x′)dydx′

56



=

∫
f(x′)e−2πiωx′dx′

∫
g(y)e−2πiωydy

= F (ω)G(ω)

where in the third line we switched the order of integration15 and in the fourth line we made the
substitution y = x− x′.

7.7 Central Limit Theorem
The Central Limit Theorem states that for any set of independent 0-mean random variables
X1, X2, . . . , Xn with variances given by σ2

1 , σ
2
2 , . . . , σ

2
n, in the limit of n→∞

P

(∑n
i=1Xi√
nσ

< C

)
= P (Zn < C)→ P (Z < C), Z ∼ N (0, 1)

where

σ2 =
1

N

n∑
i=1

σ2
i

The arrow here means that the cumulative distribution of the random variable Zn converges in
distribution to that of a standard Gaussian. This means that different segments of the distribution
may converge to Gaussianity at different rates (e.g. the tails of its distribution will converge more
slowly).

We prove it here via the moment generating function of a random variable X:

MX(t) ≡ E[etX ]

Noting that this implies

MX(t) = E
[
1 + tX +

1

2!
t2X2 +

1

3!
t3X3 + ...

]
= 1 + tE[X] +

1

2!
t2E[X2] +

1

3!
t3E[X3] + ...

it is easy to see that the following holds:

d`MX

dt`
∣∣∣
t=0

= E[X`]

Thus its name.
We then require four facts:

1. The moment generating function of a sum of independent random variables Z = X + Y is
the product of their moment generating functions MX(t),MY (t):

MZ(t) = E[et(X+Y )] = E[etXetY ] = E[etX ]E[etY ] = MX(t)MY (t)

2. The moment generating function of a linear transformation of a random variable Z = aX+ b
is given by:

MZ(t) = E[eatX+bt)] = ebtE[eatX ] = ebtMX(at)

3. If the moment generating functions MX1
(t),MX2

(t), . . . of a sequence of random variables
X1, X2, . . . converge to some moment generating function MX(t), i.e.

lim
n→∞

MXn(t) = MX(t)

then their respective cumulative density functions F1(x), F2(x), . . . converge in distribution
to the cumulative density function F (x) of X:

lim
n→∞

Fn(x) = F (x)

15This is allowed under certain relatively soft constraints on f(x), g(x), namely that the integral of their absolute
value be finite, I believe (cf. Fubini’s Theorem).
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4. The moment generating function of a standard Gaussian random variable X ∼ N (0, 1) is
given by:

MX(t) = E[etX ]

=
1√
2π

∫ ∞
−∞

etx−
x2

2 dx

=
1√
2π

∫ ∞
−∞

e−
(x2−2tx)

2 dx

=
1√
2π

∫ ∞
−∞

e−
(x−t)2−t2

2 dx

=
e
t2

2

√
2π

∫ ∞
−∞

e−
(x−t)2

2 dx

= e
t2

2

By points 3 and 4, then, to prove the CLT it suffices to show that

lim
n→∞

MZn(t) = e
t2

2

Using points 1 and 2, we have:

MZn(t) =

n∏
i=1

MXi

(
t√
nσ

)
Expanding the individual moment generating functions, we have:

MXi

(
t√
nσ

)
= 1 +

t√
nσ

E[Xi] +
t2

2nσ2
E[X2

i ] +
t3

3!n3/2σ3
E[X3

i ] + . . .

As n→∞, the latter terms will go to 0 faster than the earlier terms, eventually giving us

MXi

(
t√
nσ

)
→ 1 +

t2σ2
i

2nσ2

where I have also substituted in E[Xi] = 0,E[X2
i ] = σ2

i (true for all i). Assuming the individual
variances σ2

i are not too different from each other, σ2
i /σ

2 ∼ O(1) and we can ignore it. Thus,

MZn(t)→
(

1 +
t2

2n

)n
→ e

t2

2

There is a more rigorous way of proving this without any handwaving, but one can see that this
definitely holds for the case where the Xi have equal variance (i.e. when they are i.i.d.).
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