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1 Lots of juicy terms

1.1 Entropy H(S)

“How many bits do I need to record the value of s?”
H[S] = Z P(s)logy P(s)
i

1.1.1 Some examples
e Uniform distribution, 2 discrete values: 1 bit
e Uniform distribution, 16 discrete values: 4 bits
e 16 discrete values, but most of probability density on 8 values: just over 2 bits

e A sequence of M entries, each one of N equiprobable values: log, MY = N log, M bits

1.1.2 A derivation

We can derive the above definition for the entropy by considering how many bits would be required to
encode a sequence of M entries, each one of N possible values, but which are not equiprobable. The
likelihood of a given sequence is:

P(S,85,...,83) = [ [ oo (1)

where n,, is the number of times the m-th value occurred. Now we use the asymptotic equipartition
property, which says that the only set of sequences with non-zero probability in the limit of large M is
those for which all n,, = p,, N, i.e. the non-surprising, or typical sequences. We consider the probability
of all other (surprising) sequences to be infinitesimally small. All typical sequences have equal likelihood,
so we are back in the easy situation of a uniform distribution. The number of bits required to encode
these sequences is:
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1.2 Conditional entropy H(S | R)
“How many bits do I need to record the value of s, given that I already know r?”

Given a particular value of r, the conditional entropy H(S | r) is given by
H(S|r)= ZP5|7’1og2 (s|r)

The overall conditional entropy must be averaged over all possible values of r, i.e.

H(S|R) = ZHSM
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1.3 Mutual information /(S; R)
“How much information is gained about S if I am told R”
This can be interpreted as the reduction of entropy about S caused by finding out about R, i.e.
I(S;R)=H(S)— H(S|R)
We can also derive a direct definition:
I(S;R)=H(S)— H(S | R)
= Z P(s)logy P(s) + Y P(s,)log, P(s | )
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1.4 Cross entropy
“How many bits do I need to encode a value using the p.d.f. of Q instead of (true) p.d.f. P?”
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1.5 KL divergence

“How many excess bits does it cost me to encode using p.d.f. of Q instead of (true) p.d.f.
P?”

KL[P;Q] = H«(P,Q) — H[P]
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Mutual information can be described as the KL divergence between the joint distribution P(S, R)
and the marginals P(S)P(R), i.e. the cost of encoding using the marginals if you don’t know the joint.

P(s,r)

I[S;R] = ZP(S,T)logz W

S,7

= KL[P(S,R) || P(S)P(R)]

1.6 Relationships between these quantities

With two variables, we can draw a Venn diagram that summarises the relationship between each quantity.
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