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Cauchy-Schwarz Inequality

[, 0)[* < (). (v, 0)

[(w, 0}] < [ull[]v]|
where
l[ull = v/ {u,u)
Covariance stuff
Covariance in different spaces

The usual sample covariance is written:

The (finite) feature space equivalent is:

C = 5 D (@) = d(@)) (i) — $(x)"

i

To extend this to an infinite dimensional feature space, we use the Kronecker product
which is a generalization of the outer product from vectors to matrices.

From outer to inner products

With finite vectors, it is easy to see that
(abT)e = (b'c)a
The infinite-dimensional analog is:
(a®b)c= (b,c)ya

This identity will come in handy in lots of derivations!



Centering using matrix multiplication

To compute covariance we have to centre our data. To make the algebra simpler, this

is often done using a matrix operation, using the centering matrix H = I,,;,, — 11, 0m.

This allows us to compute: "
e Row centred matrix X, = HX
e Column centred matrix X, = XH
e Row and column centred matrix X,. = HXH

It’s also important to note that HH = H and H” = H.
This allows us to write covariance (for example in the data space case) as:
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Miscellanea

Project a point onto a component f, assuming || f|| = 1:
Pro(x*) = (p(z"), g f

Bounded operators and Riesz representation theorem
A linear operator A : F — R is bounded when (for some A4):

[Afl < Aallfllz  VfeF (1)
In a Hilbert space F, all bounded linear operators can be written (-, g4) for some g4 € F:

Af =(f(),9a()) 2)

Mean embeddings
The mean embedding is defined as up € F such that:

Ep (f(X)) = (f,npr)# 3)

These things are all true:
Epq (K(X,Y)) = (up, 1q) (4)
Epp (k(X,X')) = (up, up) £ (5)



pp = Loy VAEP[es(X)], .. ] (6)

up(z) = (pp, ¢(z)) £ (7)
= (up, k(- 2)) 5 (8)

Maximum mean discrepancy

MMD(P,Q; F) = sup [Epf(X) -Eqf(Y)] (10)
= sup [(f, up) — (f, Q)] (11)
fer
= sup(f, up — Q) r (12)
fer
= lup — poll (13)

MMD?(P,Q; F) = (up — tq» e — HQ) (14)
= (pp, pp) + (pQ, HQ) — 2(up, HQ) (15)

= EpEpk(z,2') + EqEq k(y,y') — 2EpEqk(z, y) (16)

(17)

=Kpp+Kqq—2Kpq

HSIC

HSIC is nothing more than the M M D? between Pxy and PxPy. Simples. The only
tricky thing is keeping up with inconsistent notation over stacked expectations.
Let’s start with a reminder of MMD:

MMD? = EpEp k(z,2") + EqEq k(y,y') — 2EpEqk(z, y) (18)
This means we can write out HSIC as:

HSIC(Pxy, PxPy) = MMD?*(Pxy, PxPy) 19

(19)

= |lursy — tipyry | (20)
=ExvExvy k(z,2")l(y,y') + ExEyEx/Ey k(z, 2")l(y,y)— (21)
2ExyEx Ey k(z,2")l(y,y") (22)

Now we can separate expectations as much as possible:

HSIC(Pxy, PxPy) =ExyExy k(z,2)l(y,y') + ExEx/k(z, 2" )EyEy-l(y,y')— (23)
2ExyEx k(z,z")Ey/1(y,y') (24)

Characteristic kernels
Characteristic kernels

A kernel is characteristic if there is a one-to-one (‘injective’) mapping from probability
distribution P to up € H. A characteristic kernel is a good choice for computing MMD,
since it ensures that the result is a metric - that is, MMD =0 iff P = Q.



Universal kernels

An kernel in an RKHS is universal if:
“k(x, x’) is continuous, X is compact, and F dense in C(X) with respect to Ls,”
Some translation:

e A compact set is closed (containing all its limit points), and bounded (having all its points

lie within some fixed distance of each other).
e C(X) is the set of continuous functions on X.

e F dense in C(X) implies that we can find different fs which are arbitrarily close
to each other.

Universality implies that, for any given e > 0 and f € C(X), there exists g € F:
If =gl <€ (25)

Showing characteristicness via FFT

Using a fourier decomposition, the mean embedding becomes a product of fourier series:

pp(x) =Exk(X —x) = /_Oo k(x —t)dP(t) (26)

ppy = kiop, (27)

where ¢p is the fourier series for P.
The MMD becomes:

oo

> Uopi — dqu)ki)e™

l=—00

MMD(P,Q; F) = (28)

F

It isn’t too hard to see that if any fl are zero, we might be able to get an MMD of
zero without P = (). In fact, we can state that a kernel is characteristic if the FFT is
either

e non-zero everywhere; or
e zero only at countably many points

This means that if the FFT of the kernel has limited support, it will not be charac-
teristic, and MM D(P,Q; F) may be zero for non-equal P, @ (for example if P and Q
differ only in the regions of frequency space where the kernel has no support).

The allowance for countably many zero-points only holds because P and @ are pdfs,
therefore they must integrate to one. This means you can’t get delta functions in their
FFTs, since cosines do not decay.

Primal, dual, KKT
The primal function
Given a general optimisation problem:

Hel]g% fo(x); subject to  fi(x) <0i=1,....m (29)

hi(x)=0:i=1,....m (30)



If we want to put the constraints directly into the optimisation, it would look like this:

min fo(e) + 3 L (fi(a)) + Y lo(hi(a)) (31)

TER™

where [_ (u) is zero for u < 0 and oo otherwise, and [ is zero for v = 0 and oo otherwise.
This isn’t an easy thing to solve, since it’s non-differentiable and not even continous.
Instead let’s solve something simple - the Lagrangian, which gives us an lower bound
for the original problem.

p

L(x’)‘7l/) :f0($)+2)\1f1<$)+2%h1($) (32)

i

where all A; > 0 (but v; are allowed to be negative).

The dual function
The Lagrange dual function is given by:
g\ v) = wnelfDL(x,)\,u)
A dual feasible pair (\,v) is a pair for which all A; > 0 and (), v) € dom(g).

For any A > 0 and v, the dual is a lower bound wherever the original constraints are
met:

g\, v) < fo(z); wherever (33)
filx) <0 (34)
hi(z) = 0 (35)

Since the optimum p* obeys the above constraints, we have:

9\ v) < folzx) [= p¥] (36)

So, the Lagrangian function gives us a lower bound on the thing we’re trying to
minimise. So, we maximise the dual, and try to set things up so that the bound is
strict.

maximise: g\ v) (37)
subject to: all A, >0 (38)

Strong duality

It’s only worth doing this if strong duality holds - that is, g(Ax,v*) = f(xx). The best
known sufficient condition for duality is:

e Primal problem is convex, i.e. all f; are convex and h; are affine.

e Slater’s condition holds: there exists some strictly feasible point & € relint(D)
for which all inequality constraints are strictly satisfied:

fi(@) <0 i=1,...,m Az=0



Complementary slackness

A consequence of strong duality is complementary slackness:
> A fila®) =0 (39)

If we remember that all A; > 0 and all f;(z*) < 0, then:

Af >0 = fi(z")=0 (40)
filz®) <0 = A =0 (41)

Every inequality constraint becomes either strict (equality) or it doesn’t contribute at
all (corresponding A = 0).

KKT conditions

For an unconstrained convex optimization problem, we know we are at the global mini-
mum if the gradient is zero. The KKT conditions are the equivalent conditions for the
global minimum of a constrained convex optimization problem.

Lagrangian stationarity

m p
V fo(x*) + Z V fi(z*) + Z Vhi(z*x) =0 (42)
Primal feasibility
filax) <0, hij(xx) =0 for all i (43)
Dual feasibility
Ai >0 for all i (44)

Complementary slackness

Aifi(xx) =0 for all i (45)



