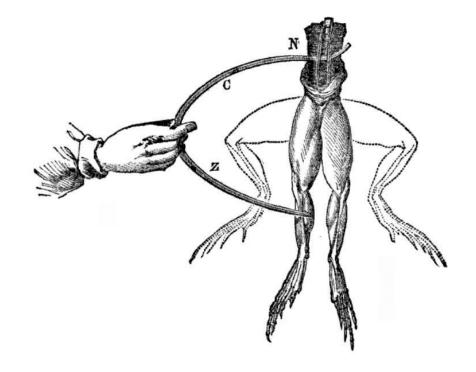
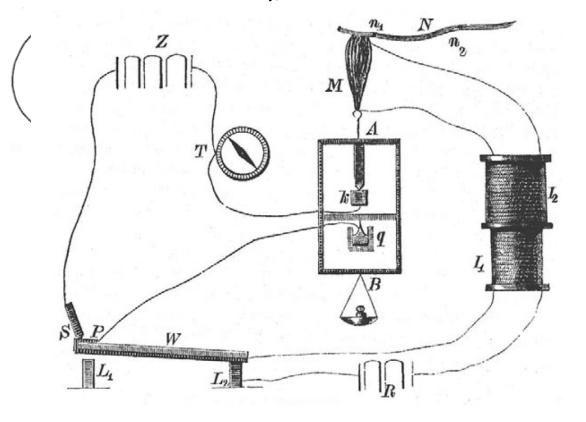

5 October 2020


Sainsbury Wellcome Centre

Methods for recording neuronal activity

Prof. Tom Otis t.otis@ucl.ac.uk

From 'animal electricity'... to how nerves work

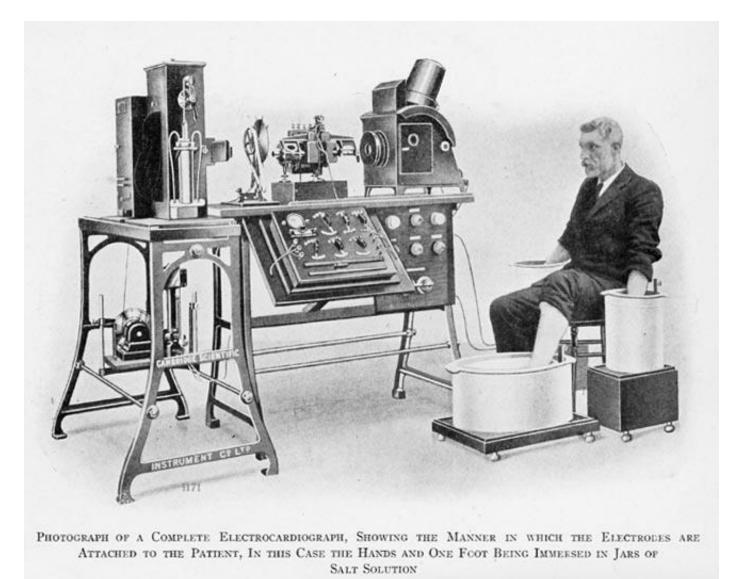

Galvani, 1780

Galvani, 1791

Helmholtz's measurements of nerve conduction velocity

Devices to measure time intervals:

Eleludhoitzúilletsignuflert melesütyingeniere,e1844 conduction velocity, c 1848



Hermann von Helmholtz

from Schnmidgen, Endeavour, 26:142 (2002)

Willem Einthoven's string galvanometer

Willem Einthoven

First electrical recordings of a nerve impulse

frog sciatic nerve

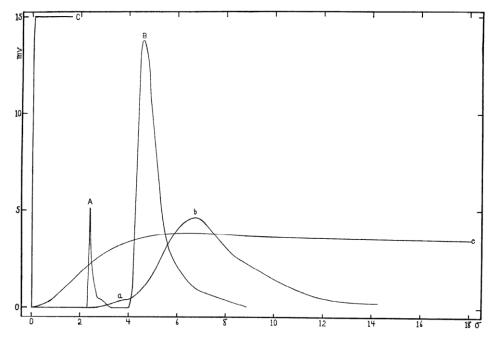
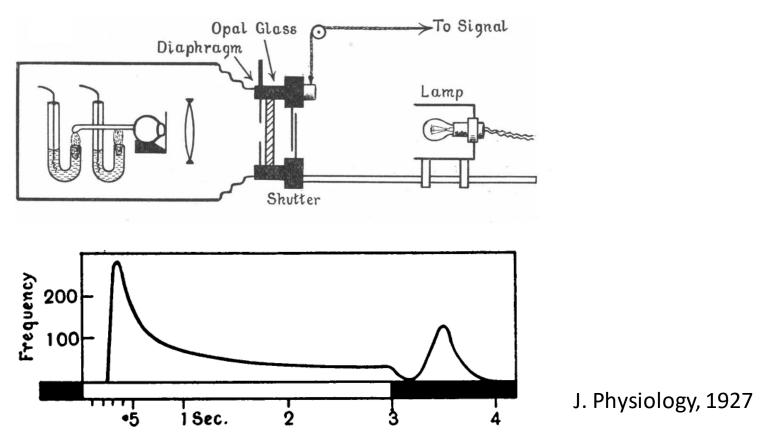
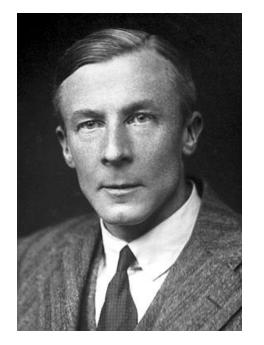


Fig. 3. The action currents of the bull frog sciatic, as recorded by the Braun tube and string galvanometer, plotted in rectangular linear coördinates. A, B, C, Braun tube records; a, b, c, string galvanometer records. A, a, shock; B, b, action current; C, calibration with a constant current of 15 mv.; c, with one of 3.75 mv.

American J. Physiol., 1922

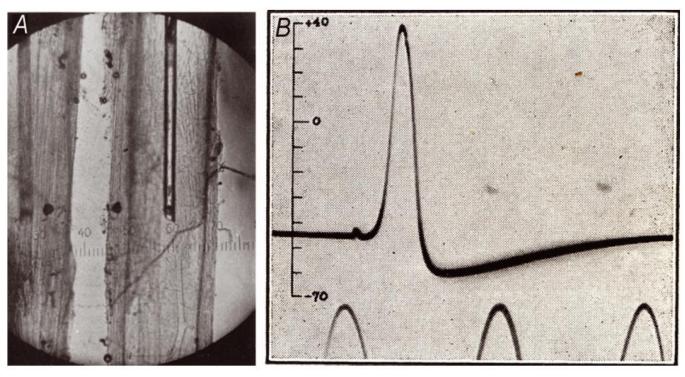



Herbert Gasser

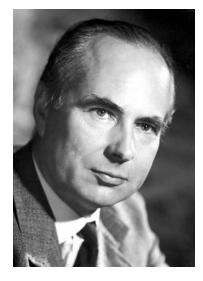
Joseph Erlanger

First recordings of light-evoked activity in optic nerve

Conger eel optic nerve

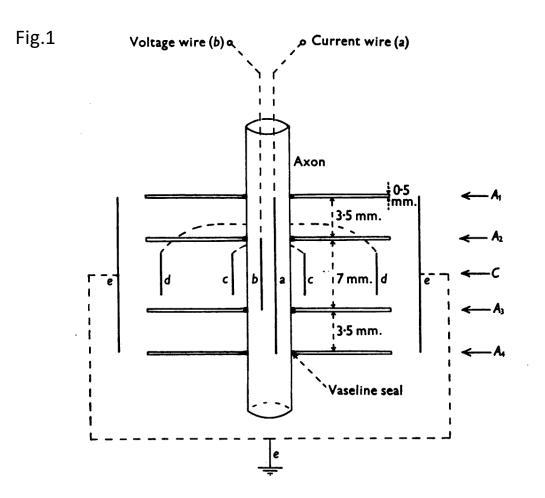


Lord Edgar Douglas Adrian


"I had arranged electrodes on the optic nerve of a toad in connection with some experiments on the retina. The room was nearly dark and I was puzzled to hear repeated noises in the loudspeaker attached to the amplifier, noises indicating that a great deal of impulse activity was going on. It was not until I compared the noises with my own movements around the room that I realised I was in the field of vision of the toad's eye and that it was signalling what I was doing."

Mechanism of the nerve impulse

Squid giant axon


Alan Hodgkin

Andrew Huxley

Nature, 1939

Hodgkin Huxley model of the action potential

http://nerve.bsd.uchicago.edu/

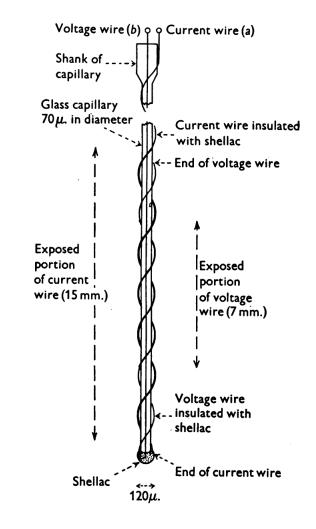
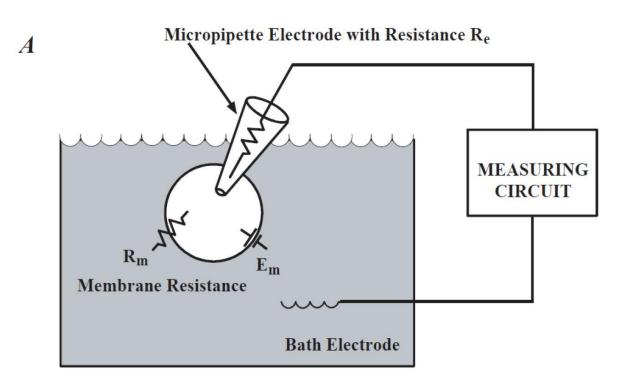
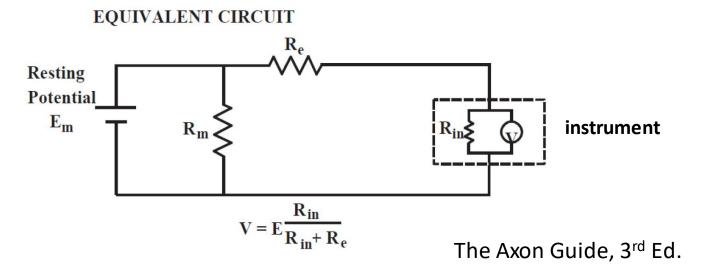



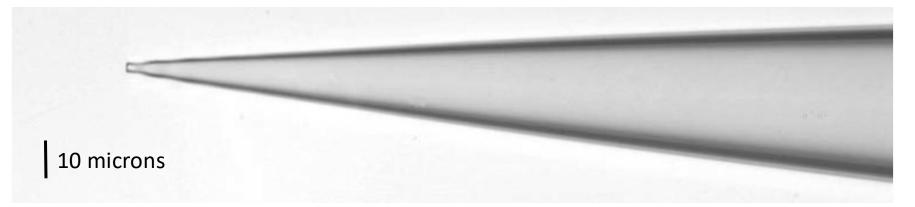
Fig.4


Hodgkin, Huxley, and Katz, J. Physiol., 1952

Intracellular measurements with a microelectrode

Ag/AgCl wires are standard in physiological contexts due to their excellent bidirectional ionic mobility, stability

B

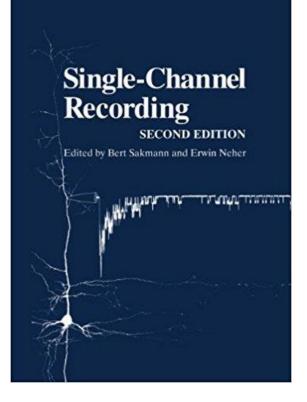

Microelectrode methods for intracellular recording

'sharp' microelectrode

10 microns

3 M KCl, 3 M K Acetate 80-100 M Ω

whole-cell patch pipette



physiological internal e.g. 130 K MeSO₄ 2-5 M Ω

Patch clamping

https://youtu.be/M3xN4Ihmt7U from

from Purves et al, Neuroscience 5th Ed. 2012

Microelectrode methods for intracellular recording

Rat dentate gyrus granule cells

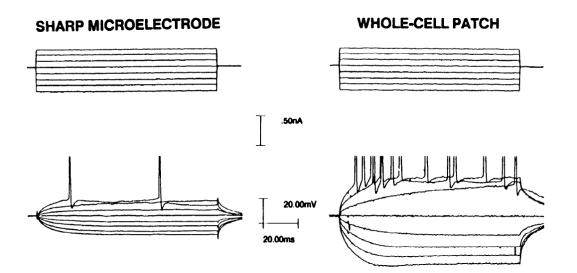


FIG. 4. Comparison of membrane voltage responses to current steps in GCs recorded with sharp electrode vs. whole-cell patch electrode. Sharp electrode filled with 3 M potassium acetate. The differences in R_N and τ_m can be appreciated by visual inspection of the records. Spike threshold is similar for the 2 recording methods.

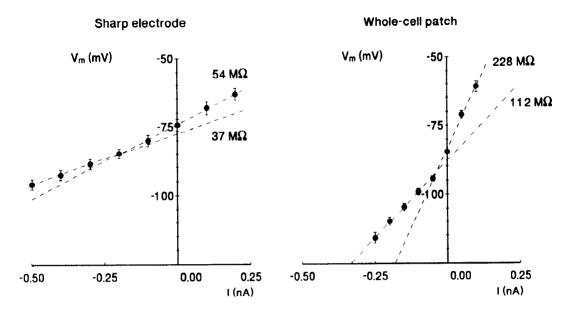
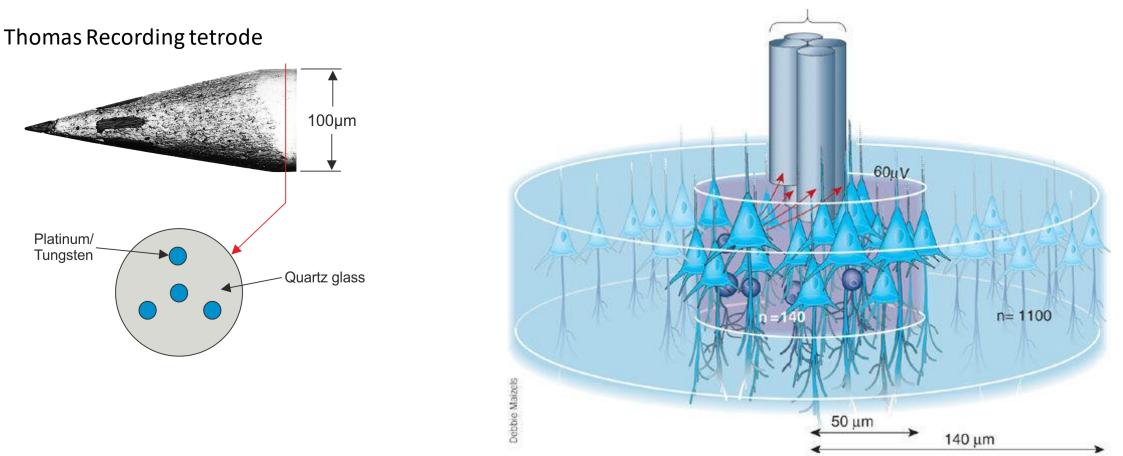
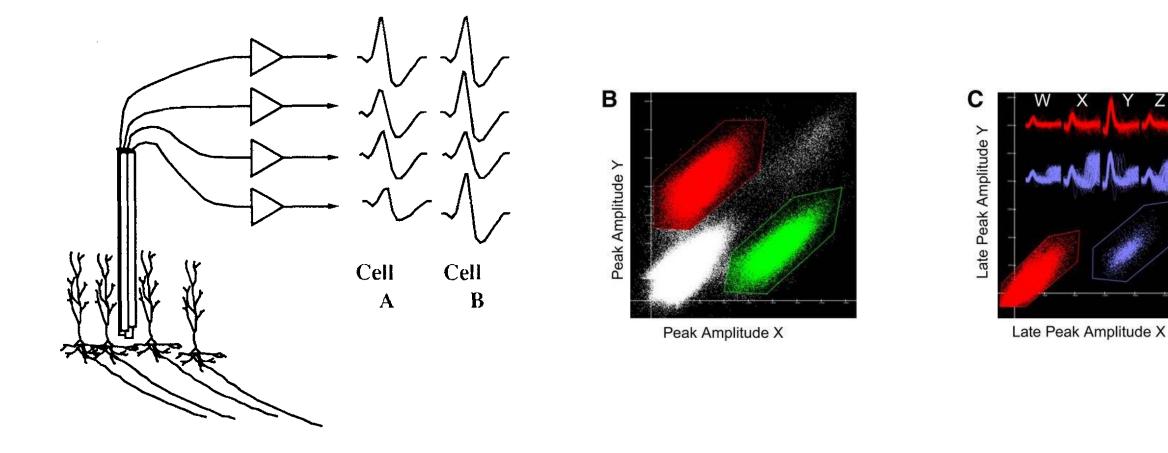
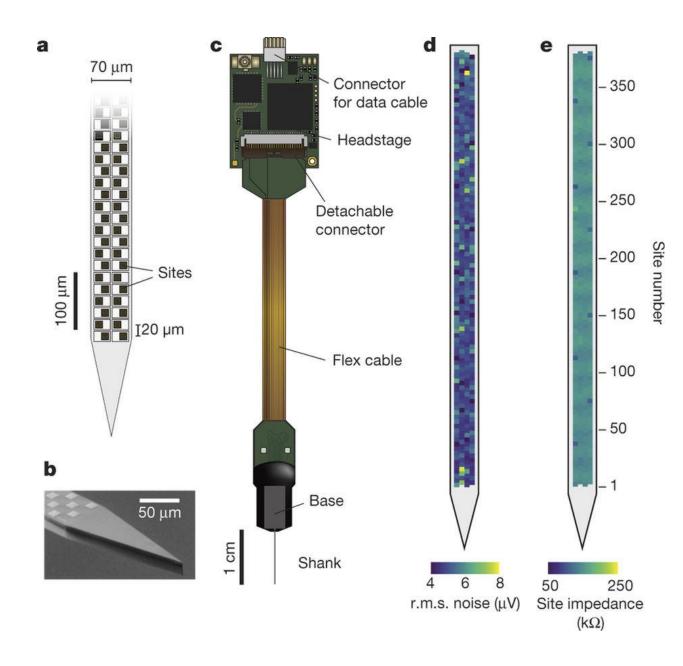



FIG. 5. Membrane voltage vs. injected current for 31 GCs recorded in whole-cell method and 10 GCs recorded with sharp electrodes; points are means \pm SE. Voltage was determined 180 ms after start of current pulse. Error bars indicate SE. Lines are fitted by least-squares method. Regions of linearity determined by eye.

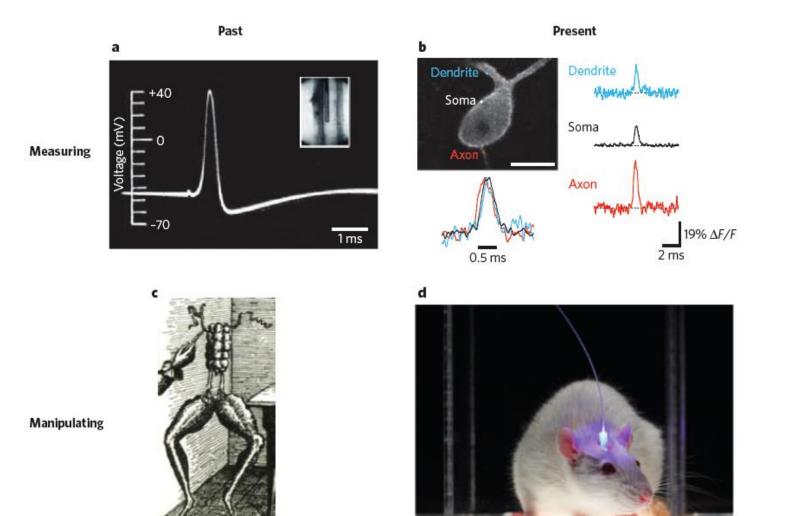
Staley et al., J. Neurophysiol. 1992


Recording from populations of single neurons: tetrodes

microwire tetrode

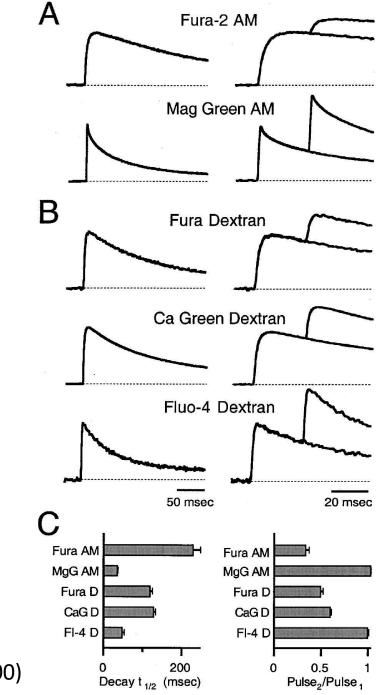

Buzsáki, Nat. Neurosci. 2004

Recording from populations of single neurons: tetrodes


Halverson et al., J. Neurosci. 35:7182-32, 2015

Neuropixel probes

Electrophysiology in the age of light


Massimo Scanziani¹ & Michael Häusser²

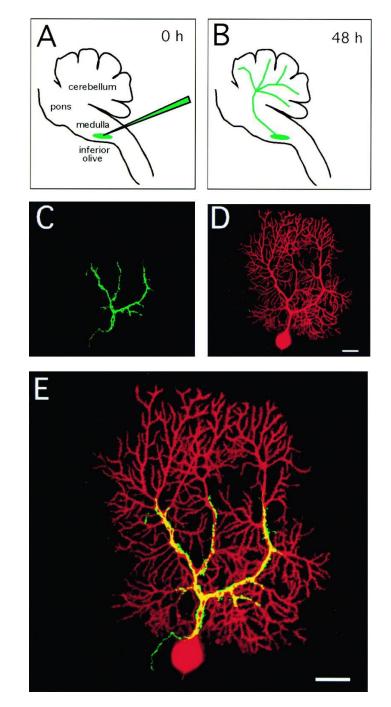
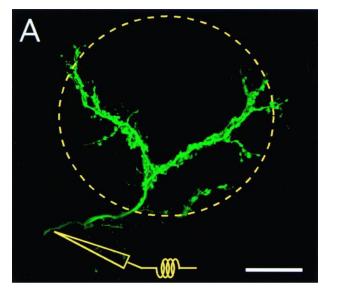
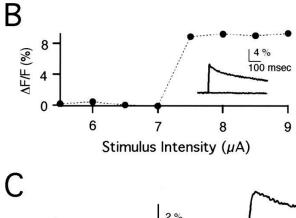
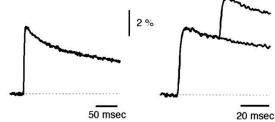

A range of affinities and kinetics

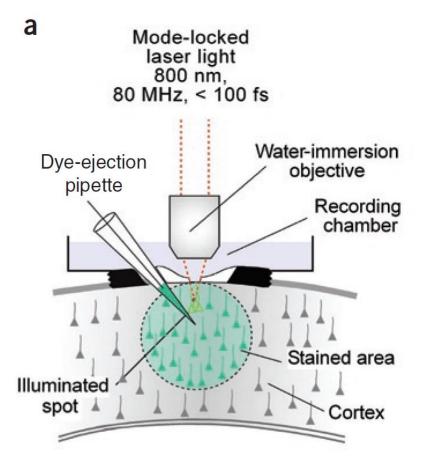
Table 1. Indicator Dissociation Constants for Calcium

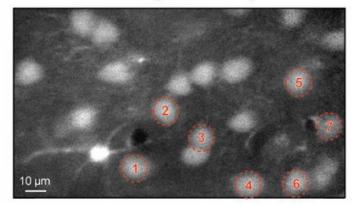

İndicator	K _D (μM)	Reference
Fura-2	0.16	(Kao and Tsien 1988)
Magnesium green	7	(<u>Zhao et al. 1996</u>)
Fura dextran (10,000 MW)	0.52	(<u>Konishi and Watanabe</u> <u>1995)</u>
Calcium green dextran (3,000 MW)	0.54	(<u>Haugland 1996</u>)
Fluo-4 dextran (10,000 MW)	3.1	

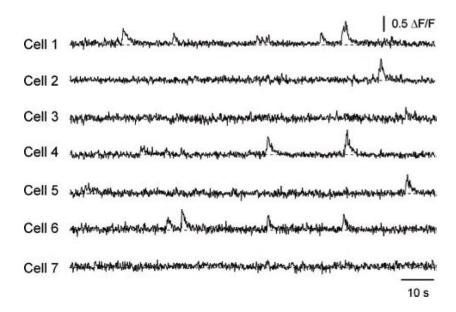



Kreitzer et al., Neuron 27:25 (2000)

Dye imaging from a presynaptic terminal




Kreitzer et al., Neuron 27:25 (2000)


Ca⁺⁺ dyes in vivo

'Bulk loading'

Adult (6-month-old)

Garaschuk & Konnerth, Nature Protocols 1:380-6, 2006

Optogenetic *sensors* and *actuators*

Controller Optical Optical signals signals driving emitted actuators by sensors Actuators Sensors Depolarizing Membrane potential chARGe FlaSh, SPARC, P2X₂, TRPV1, TRPM8 **VSFP**, Mermaid channelrhodopsin-2

LiGluR

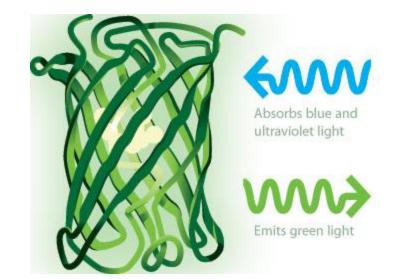
SPARK

Hyperpolarizing

halorhodopsin

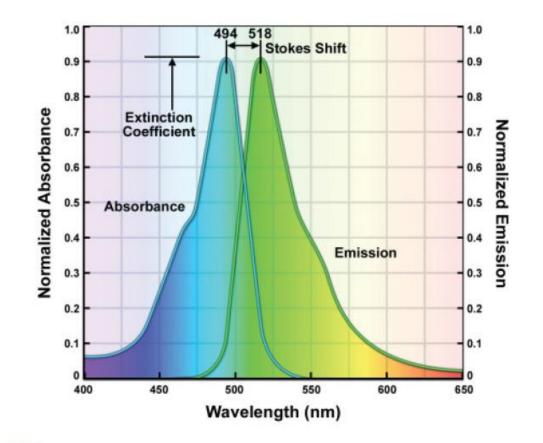
Calcium cameleon, camgaroo,

pericam, G-CaMP


Synaptic transmission synapto-pHluorin, sypHy

Miesenböck, Science, 2009

A revolution in biotechnology caused by a protein from a jellyfish


Green fluorescent protein

2008 Nobel prize in Chemistry: Shimomura, Chalfie, & Tsien

Fundamentals of fluorescence

Figure 11.3

Normalized absorption and fluorescence emission spectra of fluorescein conjugated to IgG. Both spectra span a wide range of wavelengths. Fluorescein has an absorption/excitation peak at 494 nm and looks yellow-green to the eye, but actually fluoresces at wavelengths ranging from blue to red with a peak at 518 nm. The difference in nanometers between the excitation and emission maxima is called the Stokes shift. The molar extinction coefficient is measured at the peak of the absorbance spectrum as indicated in the figure.

Multicolored fluorescent proteins

TABLE 11.2	TABLE 11.2 Physical Properties of Useful Fluorescent Proteins											
Protein ^a	Color ^b	Excitation (nm)	Emission (nm)	Brightness ^c	Photostability ^d	Filter Set ^e						
EBFP2	Blue	383	448	18	++	DAPI						
mCerulean	Cyan	433	475	17	++	CFP						
mTurquoise	Cyan	433	474	25	+++	CFP						
mTFP1	Teal	462	492	54	+++	CFP						
mEGFP	Green	488	507	34	++++	FITC/GFP						
mEmerald	Green	487	509	39	++++	FITC/GFP						
mVenus	Yellow	515	528	53	++	FITC/YFP						
mCitrine	Yellow	516	529	59	++	FITC/YFP						
mKO2	Orange	551	565	40	+++	TRITC						
tdTomato	Orange	554	581	95	+++	TRITC						
TagRFP	Orange	555	584	48	++	TRITC						
mApple	Orange	568	592	37	+++	TRITC						
mCherry	Red	587	610	17	+++	TxRed						
mKate2	Far-Red	588	633	25	++	TxRed						
mPlum	Far-Red	590	649	3.2	+++	TxRed						
mNeptune	Far-Red	600	650	13	++++	Cy5						

^a Common literature abbreviation.

^b Spectral class.

^c Product of the molar extinction coefficient and the quantum yield $(mM \times cm)^{-3}$.

^d Relative to mEGFP (++++).

^e Recommended filter set.

From Murphy and Davidson, Ch 11

Circularly-permuted GFP and 'CAMgaroo'

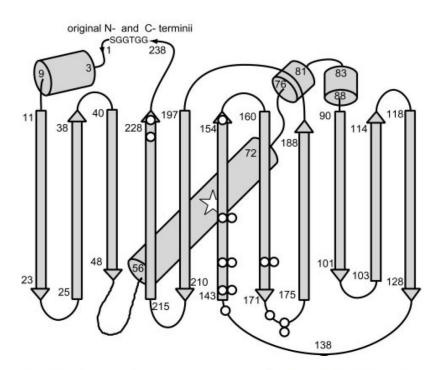
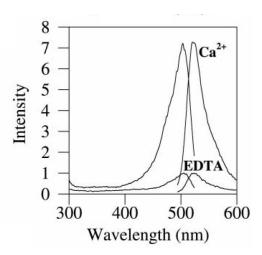



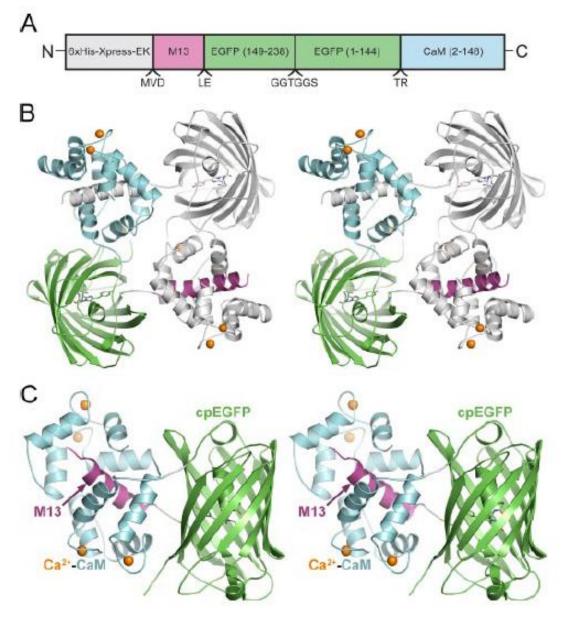
FIG. 2. Schematic drawing of the overall fold of GFP (12) modified to show starting points of fluorescent circular permutations (\bigcirc), the linker (GGTGGS) connecting the original N and C termini, and the approximate location of the chromophore (open star, residues 65–67). Locations with two circles indicate where circular permutations with two different ending amino acids were isolated (Table 1).

M	GGT	GGS			
a His ₆ E	E(G,Y,C)FP(145-238)	E(G,Y,C)	FP (1-144)	= cpEG	FP, cpEYFP, cpECFP
	22 23 P. 22	E104Q	GG EL	_	
b His ₆	cpECFP	Xenopus Ca	M M E	YFP (1-238	
	GGTG	<u>3</u> S	1.0000		(drawn at half scale)
c His ₆ E	EGFP(x-238)	EGFP	(1-y)	randor	n circular permutations
	สมสมัย	GGT			EL
d His ₆	EYFP (1-1	144)	Xenopus	CaM	EYFP(146-238)
		QGJ			ĘĻ
e kz	EYFP (1-	144)	Xenopus	CaM	EYFP(146-238) -
		<u>G</u> GT	EL.		insertions of CaM or
f His ₆	EYFP (1-	144) zif	EYFP(14	6-238)	-zinc finger into EYFF

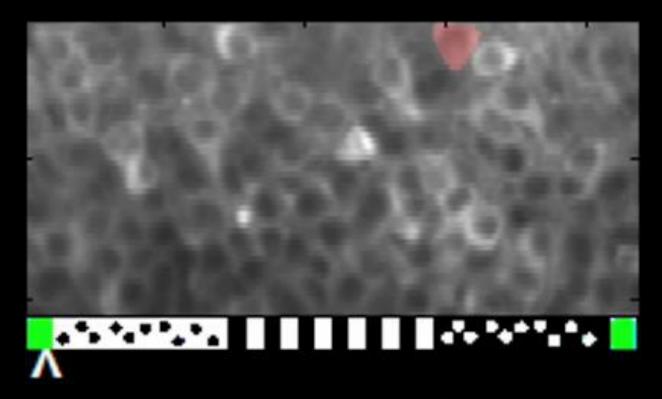
FIG. 1. Schematic structures of major new constructs. (*a*) Designed circular permutations of EGFP, EYFP, and ECFP starting at Y145M. His₆ indicates the polyhistidine tag MRGSHHHHHHHGMASMTG-GQQMGRDLYDDDDKDP. Linkers and substitutions are shown above the main sequence. (*b*) Yellow cameleon 3.2 (YC3.2) incorporating cpECFP instead of ECFP. This sequence is drawn at half the scale of all the other constructs. M13 is the CaM-binding peptide derived from skeletal muscle myosin light chain kinase (7). (*c*) Random circular permutations of EGFP. The successful values of *x* and *y* are shown in Table 1. (*d* and *e*) Insertions of CaM in place of Y145 of EYFP as expressed in bacteria (*d*) for *in vitro* purification or in HeLa cells (*e*) for *in situ* monitoring of cytosolic Ca²⁺. kz, Kozak sequence (10) for optimal translation initiation. (*f*) Insertion of a zinc finger (zif), residues 334–362 of zif268 (8), in place of Y145 of EYFP.

An apt nickname for this construct is "camgaroo1," because it is yellowish, carries a smaller companion (calmodulin) inserted in its "pouch," can bounce high in signal, and may spawn improved progeny.

Baird et al., PNAS **96**:11241-46, 1999


The GCaMP family of calcium sensors

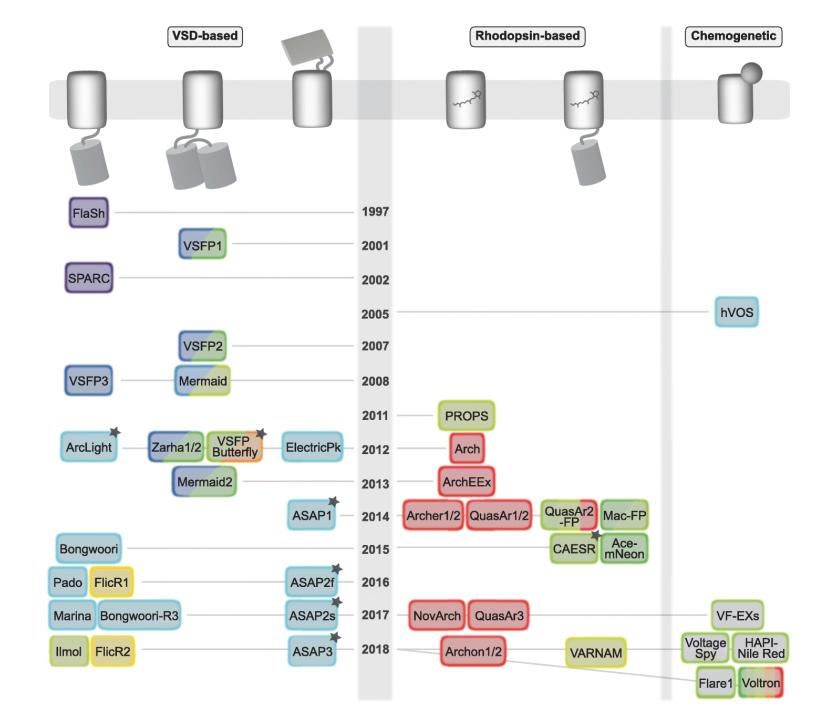
<u>GCaMP1</u> described in 2001: Nakai et al.,, *Nat. Biotech.* 19:137


<u>GCaMP6:</u> Chen et al., 2013 *Nature*, 499:295

See also B-GECO and R-GECO

crystal structure of GCaMP2: Akerboom et al., *JBC* 284:6455, 2009

Imaging place cells while the mouse navigates a virtual reality maze

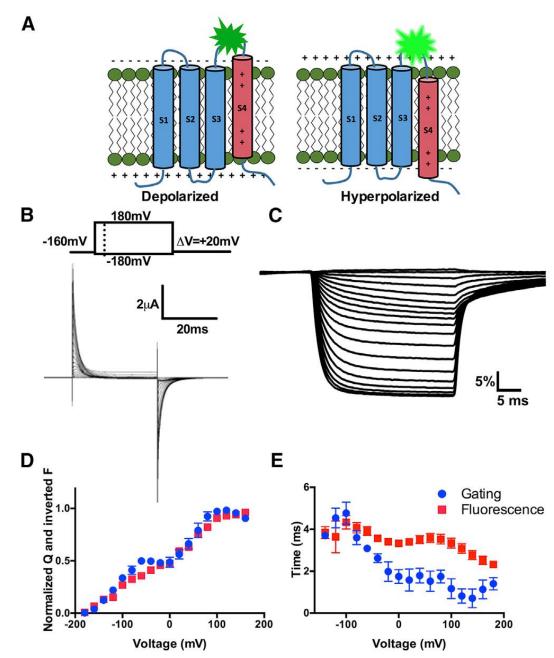

- GCaMP3
- CA1 region

0.000 sec

Dombeck et al., Nature Neuroscience 13:1433, 2010

Optical sensors of voltage

Genetically encoded voltage sensing strategies



Bando et al., BMC Biology, 17:71, 2019

All of the genetically-encoded voltage sensors compared...

	λ_{ex} [nm]	λ _{em} [nm]	Rise time (depol.) [ms]	Decay time (hyperpol.) [ms]	Intensity ~[W/cm ²]	SNR	Res. spike rate [Hz]	∆F/F for 100 mV	Bleaching	Reference		λ _{ex} [nm]	λ _{em} [nm]	Rise time (depol.) [ms]	Decay time (hyperpol.) [ms]		SNR	Res. spike rate [Hz]	∆F/F for 100 mV	Bleaching	Reference
)-based											QuasAr2	640	715	$\tau_1 = 1.2 (68\%)$	Similar to rising	10 ²	40–70 per AP	NR		$\tau = 1020 \text{ s}$	Hochbaum 2014 [93]
ArcLight Q239	480	520	$\tau_1 = 9 (50\%)$ $\tau_2 = 48 (RT)$	$\tau_1 = 17 (79\%)$ $\tau_2 = 63 (RT)$	Xenon arc lamp	3.7 per AP	10	-35%	$\tau = 244 \text{ s}$	Jin 2012 [34]; Bando 2019 [49]	QuasAr3	Like QuasAr2	Like QuasAr2			10 ²	27 per AP	NR	640 nm 54% at	NR	Adam 2018 [55]
ArcLight-MT	480	535	$\tau=84.8~\text{(RT)}$	$\tau = 91.9 \; (\text{RT})$	Mercury arc lamp	5.6 per AP	10	-20%	$\tau=360\;s$	Kwon 2017 [46]; Bando 2019 [49]	Archon1	637	NR	$\tau_2 = 10.0 (34 °C)$ $\tau_1 = 0.6 (88%)$	$\tau_2 = 9.0 (34 \text{ °C})$ $\tau_1 = 1.1 (88\%)$	10 ¹ -10 ²	21 per AP	NR	640 nm 43% at	0.01%/s	Piatkevich 2018 [57]
SAP1	472	525	$\tau_1 = 2.1 (60\%)$	$\tau_1 = 2.0 (43.7\%)$	10 ⁻¹	14.6 per AP	200	- 20%	τ = 35 m	St-Pierre 2014 [38]	, action i	00,			$\tau_2 = 13 (34 ^{\circ}\text{C})$	10 10	21 per / d		637 nm	0.017000	Figure Field 2010 [57]
			$\tau_2 = 71.5 \text{ (RT)}$	$\tau_2 = 50.8$ (RT)	100						Archon2	637	NR	τ ₁ = 0.6 (70%) τ ₂ = 6.7 (34 °C)	$\tau_1 = 0.17 (92\%)$ $\tau_2 = 7.0 (34 °C)$	$10^{1}-10^{2}$	16 per AP	200	19% at 637 nm	0.03%/s	Piatkevich 2018 [57]
ISAP2f	470	525	$\tau_1 = 2.8 (81\%)$ $\tau_2 = 135 (RT)$	$\tau_1 = 2.4 (71\%)$ $\tau_2 = 155 (RT)$	10 ⁰	5 per AP	100	-20%	τ = 404 s	Yang 2016 [39]; Chamberland 2017 [41]	QuasAr2-mOrange	549	565	$\tau_1 = 3.9 (60\%)$ $\tau_2 = 27 (23 °C)$		10 ¹	9 per AP	NR		NR	Zou 2014 [61]
SAP2s	480	525	$\tau_1 = 5.2 (56\%)$ $\tau_2 = 63 (RT)$	$\tau_1 = 24 (49\%)$ $\tau_2 = 106 (RT)$	10 ⁰	8 per AP	100	-38%	τ _{1 =} 121 s (69%) τ _{2 =} 1017 s	Chamberland 2017 [41]	MacQ-mCitrine	515	530	τ ₁ = 2.8 (74%)	$\tau_1 = 5.4$ (77%)	10 ¹	NR	NR	-20%	1.3%/s	Gong 2014 [60];
ASAP3	484	525	$\begin{array}{l} \tau_1 = 3.7 \ (81\%) \\ \tau_2 = 48 \ (RT) \end{array}$	$\begin{array}{l} \tau_1 = 16 \ (81\%) \\ \tau_2 = 102 \ (\text{RT}) \end{array}$	10 ⁻¹	2.6 per AP (2P)	100	-50%	19.6%/first 10 s 0.99%/m after that (2P)	Chavarha 2018 [40]	Ace2-4aa-mNeon	505	515	$\tau_2 = 71$ (RT) $\tau_1 = 0.37$ (58%) $\tau_2 = 5.5$ (RT)	$\tau_2 = 67 \text{ (RT)}$ $\tau_1 = 0.5 \text{ (60%)}$ $\tau_2 = 5.9 \text{ (RT)}$	10 ¹	NR	NR	-12%	0.6%/s	Gong 2015 [52] Gong 2015 [52]
longwoori	472	496	$\tau_1 = 8 (91\%)$ $\tau_2 = 30 (RT)$	$\tau = 7$ (RT)	Xenon arc lamp	19 per AP	60	-15%	> 450 s	Piao 2015 [37]; Lee 2017 [91]	VARNAM	558	605	$\tau_1 = 0.88$	$\tau_1 = 0.80$ $\tau_2 = 4.7$ (RT)	10 ¹	36 per AP	100	–14% for 120 mV	τ = 256 s	Kannan 2018 [44]
longwoori-R3	472	497	$\tau_1 = 7 (90\%)$ $\tau_2 = 45 (RT)$	$\tau_1 = 6 (91\%)$ $\tau_2 = 46 (RT)$	Xenon arc lamp	52 per AP	65	-20%	> 450 s	Lee 2017 [91]	Chemogenetics based										
licR1	561	595	$\tau_1 = 3 (90\%)$	$\tau_1 = 2.8 (70\%)$	10 ¹	6 per AP	100	6.40%	τ = 150 s	Abdelfattah 2016 [42];	hVOS	480	535	< 1	< 1	Mercury arc lamp		667	34%	NR	Chanda et al. 2005 [70]
			$\tau_2 = 42$ (RT)	$\tau_2 = 18$ (RT)	1.00					Kannan 2018 [44]	Flare1	488	570	$\tau_1 = 0.92 (96\%)$ $\tau_2 = 23.5$	$\tau_1 = 1.41 (91\%)$ $\tau_2 = 25.6$	10°	53	20	35.9%	NR	Xu et al. 2018 [74]
licR2	561	630	$\tau_1 = 2.9$ $\tau_2 = 29.5$ (RT)	$\tau_1 = 3.1$ $\tau_2 = 28.5$ (RT)	10 ⁰	NR	NR	12.90%	NR	Kannan 2018 [44]	Voltron 525	532	553	$\tau_1 = 0.64 (61\%)$ $\tau_2 = 4.1$	$\tau_1 = 0.78 (55\%)$ $\tau_2 = 3.9$	10 ⁰	4.4	10	30%	$\tau = 206 \text{ s}$	Abdelfattah 2016 [42]
Narina	488	520	$\tau = 29.2$ (RT)	$\tau_1 = 15.6 (61\%)$ $\tau_2 = 59.4 (RT)$	10 ⁰	4.5 per AP	NR	29.20%	$\tau = 206 \text{ s}$	Platisa 2017 [43]	VF-EX	525	540	< 1	< 1	NR	20	3	21%	NR	Liu et al. 2017 [77]
/lermaid	455	480 (donor) 575 (acceptor)	τ ₁ ~ 12 τ ₂ ~200 (RT)	τ~ 128 (RT)	10 ⁰	NR	100	~ 30% ∆ R/R	NR	Tsutsui 2008 [28]	VoltageSpy HAPI-Nile	525 540-552	540 581	< 1 $\tau_1 = 1.9 (85\%)$	< 1 T ₂ = 1.9 (85%)	10 ⁻¹ -10 ⁰ 10 ¹	7.7 12.4	NR 10	60% 5.50%	NR NR	Grenier et al. 2019 [82] Sundukova et al. 2019
SFP Butterfly1.2	483	542 (donor) 594 (acceptor)	τ ₁ ~1.5 (35%)	NR	Xenon arc lamp	NR	40	5% ∆ R/R	NR	Akemann 2012 [92]		510 552	501	(1 - 1.5 (6576)	(1 - 13 (63)6)	10	14.1		5.5676		54/144/10/10 21/01/20/19
dopsin-based		55 Hacceptory	(2 10 (11)		are lamp																
Arch	640	687	< 1	< 1	10 ³	NR	NR	40% at 640 nm	NR	Kralj 2012 [29]; Maclaurin 2013 [58]; Hochbaum 2014 [93]											
arch (D95N)	640	687	$\tau_1 = 0.5 (20\%)$ $\tau_2 = 41 (RT)$	NR	10 ³	NR	NR	50% at 640 nm	NR	Kralj 2012 [29]; Maclaurin 2013 [58]											
Archer1	655	NR	Like Arch	Like Arch	10 ²	NR	40	85% at 655 nm	NR	Flytzanis 2014 [53]											
QuasAr1	640	715	$\tau_1 = 0.05 (94\%)$ $\tau_2 = 3.2 (RT)$	Similar to rising	10 ²	20–30 per AP	NR	32% at 640 nm	$\tau = 440 \text{ s}$	Hochbaum 2014 [93]											

ASAP1, a VSD-based indicator using a circularly permuted GFP

Lee & Bezanilla, Biophys. J. 113:2178-81, 2017

Archaerodopsin 3, a rhodopsin-based voltage indicator - fast but low QY and super dim

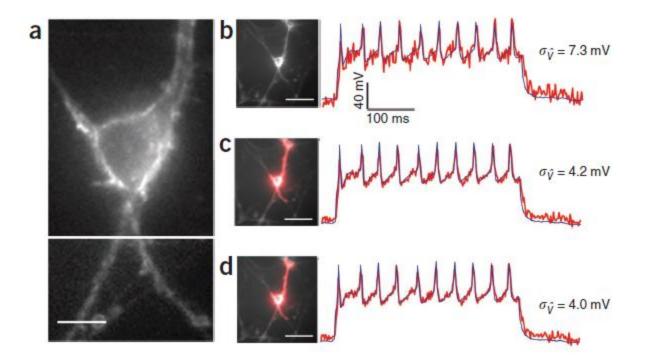
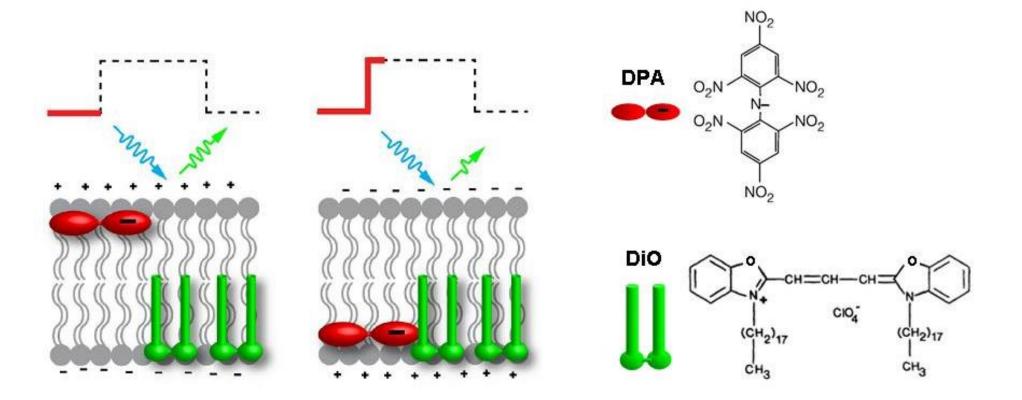
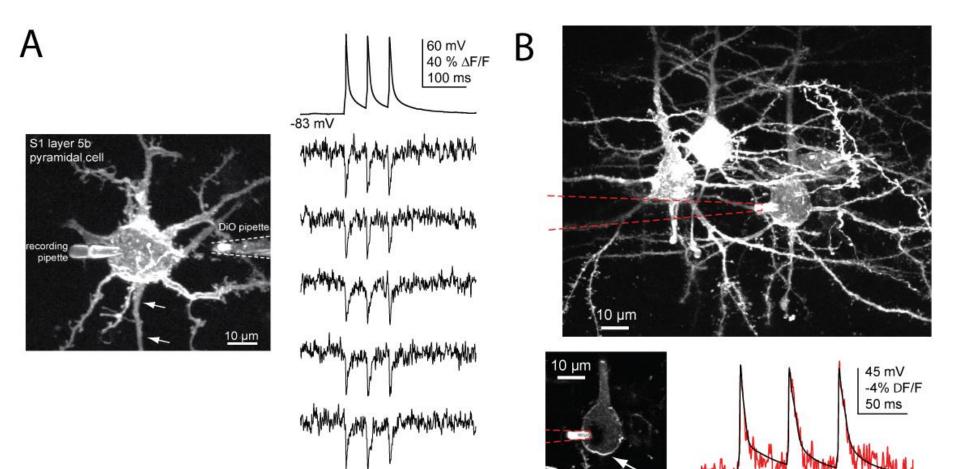



Table 1 | Optical and electrical response of Arch and Arch(D95N)

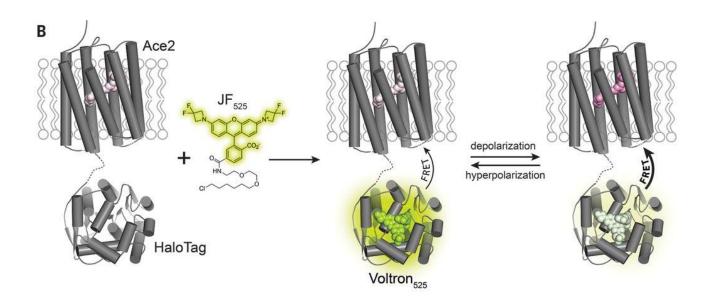
	λ _{max} absorbance (nm)	λ _{max} emission (nm) ^a	ε ₆₃₃ (M ⁻¹ cm ⁻¹) ^b	QY ^c	Photostability relative to eGFP ^d	pK _a of Schiff base ^e	$\tau_{\text{response}}~(\text{ms})^{\text{f}}$	Noise in <i>Ŷ_{FL}</i> (µV Hz ^{_0.5}) ^g	Photo-current
Arch	558	687	6,300	9 × 10 ⁻⁴	0.25	10.1	<0.5	625	Yes
Arch(D95N)	585	687	37,500	4×10^{-4}	0.1	8.9	41	260	No
				$ \ \ \ \ \ \ \ \ \ \ \ \ \ $					

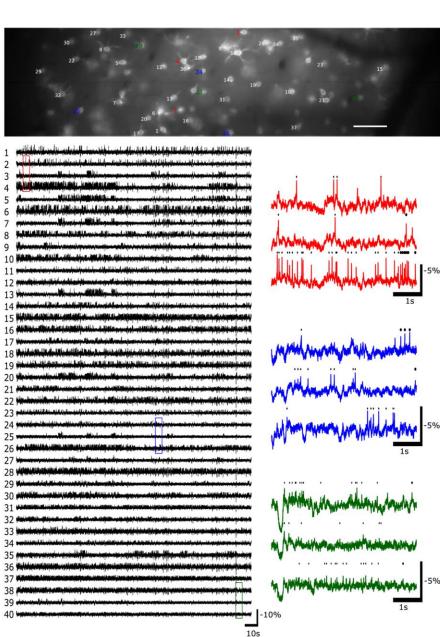

Kralj et al., Nat. Methods, 9:90, 2011

A non-genetic voltage sensor that relies on FRET-based quenching

Bradley et al., *J. Neurosci.*, 2009

Two photon compatibility, high SNR


λ = 940 nm3 μM DPA


Fink et al., PLOS One, 2012

Voltron, a 'modular' chemogenetic-based voltage sensor

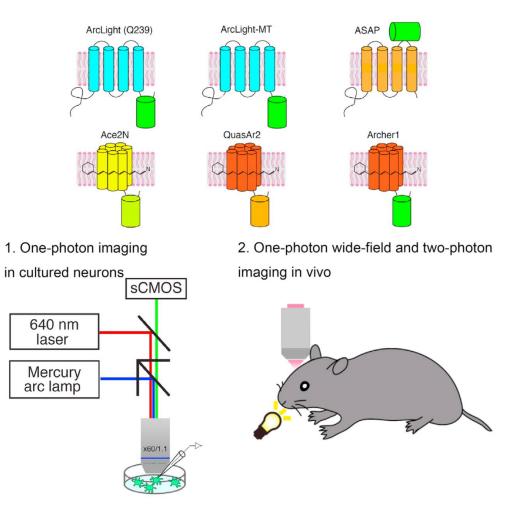
А

В

Essential things to consider in comparing GEVIs

photophysical properties

- QY, brightness
- 2P compatibility
- kinetics
- SNR
- bleaching
- linearity


ease of expression, protein trafficking

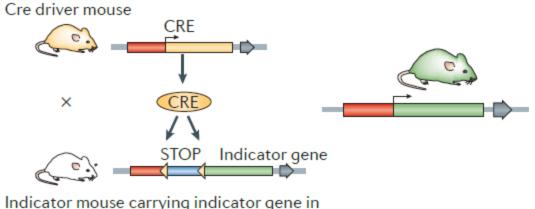
• if it's not in the PM its background

instrumentation

other challenges

- tolerance/side effects for chemo-based
- capacitive load for VSD-based

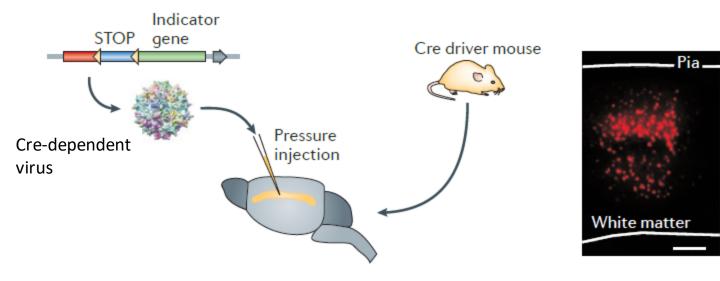
Bando et al., *Cell Reports*, 2019 See also Box 1 from Bando et al, *BMC Biology*, 2019

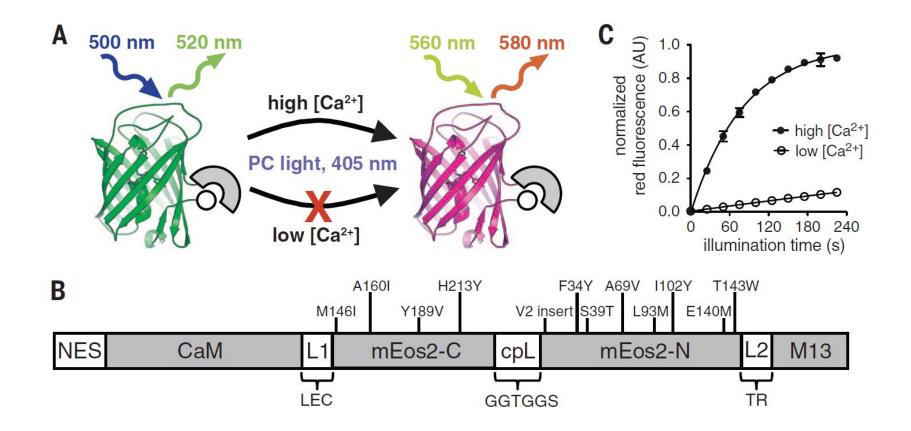

Unfinished Marx-Engels sculpture at Ludwig Engelhardt's studio in Gummlin, Usedom, Sybille Bergemann, 1984


More from Adam Cohen @ SWC Virtual Tea Hour, 29 May 2020

Backup/extra

Conditional genetics and lab mice


Breeding strategy


Indicator mouse carrying indicator gene in Cre-dependent configuration

Viral strategy

from Knopfel, *Nat. Rev. Neurosci.* 2012

CAMPARI, a conditional integrator of neural activity

Fusque et al. *Science*, **347**:755-60, 2015