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1. The expected autocorrelation function of a renewal process.

In class, we analysed the autocorrelation function of a point process in terms of its intensity function
λ(t, . . .). For a self-exciting point process, λ depends on the past history of spiking, and so computing
the expected value of the correlation in this way can be quite difficult. Fortunately, for the special case
of a renewal process (i.e. a point process with iid inter-event intervals), there is an alternative way to
compute the autocorrelation function.

Consider a neuron whose firing can be described by a renewal process with inter-spike interval proba-
bility density function p(τ).

(a) Given an event at time t, the probability that the next spike arrives in the interval Iτ = [t+ τ, t+
τ + dτ) is p(τ)dτ . What is the probability that the second spike after the one at t arrives in Iτ
instead? The third spike?

(b) What is the probability that, given a spike at t, there is a spike in Iτ , regardless of the number
of intervening spikes?

(c) Your answer to the previous question has given you the positive half of the autocorrelation func-
tion. What does the negative half look like? What happens at τ = 0?

(d) Show that for a Gamma process with ISI density

p(τ) = β2τe−βτ ,

the Laplace transform of (the right half of) the expected autocorrelation function is

L[Q(τ)](s) =
β2

(β + s)2 − β2
.

[Hint: Recall that L[f ](s) =
∫∞
0
dx f(x)e−sx. Apply the Laplace convolution theorem, after

setting p(τ) = 0 for τ < 0. Finally, use the fact that for |x| < 1, (1− x)−1 = 1 + x+ x2 + x3 + ...]

(e) Find the expected power spectrum (i.e. the Fourier transform of the expected autocorrelation
function) for this process.

2. Estimation Theory

(a) We derived the Fisher information J(θ) as the expected value of the second derivate (curvature)
of the log-likeihood in the lecture.

i. Repeat the derivation for a vector parameter (or stimulus in our setting) θ, showing that the
Fisher information in this case is given by a matrix.
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As mentioned in the lecture, there is an alternate definition in terms of the first derivative. For
vector parameters this is:

J(θ0) = Covθ0

(
∇ log p(n|θ)

∣∣∣∣
θ0

)
.

where Covθ0 means the covariance evaluated under p(n|θ0).
(b) Demonstrate that these two definitions are the same (or more precisely, give conditions under

which these two definitions are the same).
(c) Consider an LNP model:

p(n|x) = Poiss(g(w · x))

i. What is J(x) (the Fisher Information about the stimulus value available to the rest of the
brain)? How does it depend on w? Working in two dimensions (recall the picture from
lecture) show how J(x) varies around the vector linear projection vector w.

ii. What is J(w) (the Fisher Information about the weight vector available to an experimenter
— consider the case of multiple measurements ni, each in response to a different stimulus
xi)? How does it depend on the distribution of x? What would be a good distribution with
which to probe the cell if we knew (say) the orthant of stimulus space in which w lay?

3. Population Coding

Shadlen and collaborators have claimed that if the activities of neurons in population codes are cor-
rupted by correlated noise, then there is a sharp limit to the useful number of neurons in the population.
Prima facie this is wrong – the stronger the correlations, the lower the entropy of the noise, and there-
fore the stronger the signal.

Resolve this issue for the case of additive and multiplicative noise by considering the following three
models for the noisy activities r1 and r2 of two neurons which form a population code for a real-valued
quantity x:

a)
{
ra1 = x+ ε1
ra2 = x+ ε2

(1)

b)
{
rb1 = x(1− δ) + ε1
rb2 = x(1 + δ) + ε2

(2)

c)
{
rc1 = x(1− δ)(1 + η1)
rc2 = x(1 + δ)(1 + η2) (3)

where δ 6= 0 is known, and, ε and η are Gaussian, with mean 0 and covariance matrices:

Σ =
(

1 c
c 1

)
(a) What is the maximum likelihood estimator (MLE) for x on the basis of r1 and r2 in each case?
(b) How does the expected accuracy in each case depend on the degree of correlation c? [Hint: begin

by showing that the Fisher Information for a Gaussian distribution with mean µ(θ) and variance
Σ(θ) both dependent on a scalar parameter θ is:

J(θ) = ∇µTΣ−1∇µ+
1
2
Tr
[
Σ−1(∇Σ)Σ−1(∇Σ)

]
where the matrix “gradient” is the matrix of elementwise derivatives.]

(c) What conclusions would you draw about the clash between Shadlen and common sense?
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