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1. Noise in the amount of neurotransmitter per vesicle

A synapse has n release sites. When an action potential arrives at the synapse, neurotransmitter
is released (or not) from each site independently. The probability of release for all sites is p. If
neurotransmitter is released, the amount released, which we’ll call q, is drawn from a distribution,
denoted P (q). This distribution has mean q and variance σ2

q .

(a) What is the mean amount of neurotransmitter released in terms of n, p, q and σ2

q?

(b) What is the variance of the amount of neurotransmitter released in terms of n, p, q and σ2

q?

(c) Plot the probability distribution of neurotransmitter released. Assume P (q) is Gaussian with
standard deviation 0.5, q = 1, n = 10 and p = 0.25.

(d) Why is the Gaussian assumption unrealistic?

For part c, you’ll need to know that the probability that neurotransmitter is released at exactly k sites,
denoted p(k), is

p(k) = pk(1− p)n−k n!

k!(n− k)!
.

This is the famous binomial distribution.

2. Maximum Likelihood estimate of a time-varying release model

We spend a lot of time writing down differential equations describing various processes in the brain.
Those equations almost always involve parameters. How are those parameters inferred? Often direct
measurements are made, but sometimes this is impossible and other times it’s inefficient. The goal
here is to use all the data as efficiently as possible to estimate the parameters of a neuron undergoing
both short term depression and facilitation.

Assume the probability of release, Pr, obeys the equation

dPr(t)

dt
=

P0 − Pr(t)

τ
+
[

fF (1 − Pr(t
−))− zi(1 − fD)Pr(t

−)
]

∑

i

δ(t− ti) .

Here the ti are the presynaptic spike times, Pr(t
−) is the release probability evaluated immediately

before a spike, and zi is a random variable that can be 0 or 1; its value is determined by
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zi =

{

1 with probability Pr(t
−

i )
0 with probability 1− Pr(t

−

i ) .

Both the spike times, ti, and the values of zi are known to you. Assume you know τ and P0, so your
only job is to estimate fF and fD. Conceptually, this is straightforward: the data is more likely for
some settings of fF and fD than for others. For instance, if Pr(t) is mainly much higher than P0, then
it’s likely that facilitation is strong (and thus fF is near 1) and depression is weak (and thus fD is near
0).

But we can do better than make qualitative statements, we can make quantitative ones. The idea is
to write down an expression for the probability of the data given fF and fD, and then find values of
fF and fD that make this probability as large as possible. That’s the maximum likelihood approach.
We’re going to do it in stages.

(a) Assume you know Pr(t
−

i ), and write down an expression for P ({t}, {z}|{Pr(t
−)}) where:

• {t} and {z} refer to the whole data set (all the ti and zi)

• {Pr(t
−)} refers to all the probabilities right before the spike; that is all the Pr(t

−

i ).

(b) If this is going to help us find the maximum likelihood values of fF and fD, we have to express
{Pr(t

−)} in terms of fF and fD. How would you do that? As mentioned above, we know τ and
P0; assume also that you know that the experiment starts at t = 0, and Pr(t = 0) = P0. The
answer should be short – I’m looking for a high level, conceptual explanation.

(c) A data set, which can be found on the course website, contains a set of spike times and x’s. You
can load the data set into matlab using “load hwk2data”. Arrays called t and x will appear in
your workspace; these are a list of spike times (the ti) and whether or not there was a release (the
zi, where 1 means release and 0 no release). Find the maximum likelihood values of fF and fD.
Use τ = 100 ms and P0 = 0.6, which are the true values. How certain are you of your answer?

3. Spike-timing dependent plasticity

In an STDP model proposed by Graupner and Brunel (PNAS 109:39913996, 2012), and simplified by
me, the calcium concentration, C, in postsynaptic terminals obeys the differential equation

dC

dt
= −

C

τ
+
∑

i

δ(t− t
pre
i −D) + ρ

∑

j

δ(t− t
post
j )

where t
pre
i are the times of the presynaptic spikes, tpostj are the times of the postsynaptic spikes, and

δ(·) is the Dirac delta-function. The delay, D is positive, as is ρ. The strength of the synapse, denoted
w, evolves according to

τw
dw

dt
= Θ(C − C0)−Θ(C − C1)Θ(C0 − C)

where Θ(·) is the Heaviside step function. Under this rule, the weight increases when C > C0 and
decreases when C0 > C > C1; it can also be written

∆w =
(total time for which C > C0)− (total time for which C0 > C > C1)

τw

where ∆w is the change in weight.

For simplicity, in what follows, assume that there is only one presynaptic spike at time t = 0, and one
postsynaptic spike at time t = t0.
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(a) Assume that 1 + ρ > C0 > C1 > max(1, ρ). List several reasons why we make this assumption.

(b) Derive an expression for C(t).

(c) Derive an expression for the total change in weight (at a time long after the pair of spikes) versus
t0.

(d) Plot the expression for the total change in weight versus t0, using ρ = 1, C0 = 1.2 and C1 = 1.1.
How would you choose D to make this look as much as possible like classical STDP?
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