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Neural Coding

The brain appears to be modular. Different structures and cortical areas compute, represent
and transmit separate pieces of information.

The coding questions:

I What information is represented by a particular neural population?
I easy (?) if we know the code
I more generally, can search for selectivity / invariance
I encoded quantities might not be obvious: inferred latent variables, uncertainty . . .

I How is that information encoded?
I firing rate, spiking timing (relative to other spikes, population oscillations, onset of

time-invariant stimulus)?
I functional mapping of encoded variable to spikes?
I easy (?) if we know what is encoded

A complete answer will require convergence of theory and empirical results.

Computation plays a vital part in systematising empirical data.



Stimulus coding

s(t) r(t)

Decoding: ŝ(t) = G[r(t)] (reconstruction)

Encoding: r̂(t) = F [s(t)] (systems identification)



Why?

The stimulus coding problem has sometimes been identified with the “neural coding” problem.

However, on the face of it, mapping either the decoding or encoding function does not by itself
answer either of our basic questions about coding.

So why do we do it?

I encapsulate and systematise the response so that we can ask the questions that we
want answered.

I design hypothesis-driven stimulus-coding models: evaluate coding reliability for different
function(al)s of s(t) and for different definitions of r(t).

I but correlation 6⇒ causation: in this case the presence of information about an aspect of
the stimulus in a particular aspect of the response does not mean that the brain uses
that information.



General approach

Goal: Estimate p(spike|s,H) [or λ(t|s[0, t),H(t))] from data.

I Naive approach: measure p(spike,H|s) directly for every setting of s.
I too hard: too little data and too many potential inputs.

I Estimate some functional F [p] instead (e.g. mutual information)

I Select stimuli efficiently

I Fit models with smaller numbers of parameters



Spikes, or rate?

Most neurons communicate using action potentials — statistically described by a point
process:

P
(
spike ∈ [t, t + dt)

)
= λ(t|H(t), stimulus, network activity)dt

To fully model the response we need to identify λ. In general this depends on spike history
H(t) and network activity. Three options:

I Ignore the history dependence, take network activity as source of “noise” (i.e. assume
firing is inhomogeneous Poisson or Cox process, conditioned on the stimulus).

I Average multiple trials to estimate the mean intensity (or PSTH)

λ(t, stimulus) = lim
N→∞

1
N

∑
n

λ(t|Hn(t), stimulus, networkn) ,

and try to fit this.
I Attempt to capture history and network effects in simple models.



Spike-triggered average

Decoding: mean of P (s | r = 1)

Encoding: predictive filter



Linear regression

r(t) =

∫ T

0
s(t − τ)w(τ)dτ

W (ω) =
S(ω)∗R(ω)

|S(ω)|2

s1 s2 s3 . . . sT sT+1 . . .
s1 s2 s3 . . . sT︸ ︷︷ ︸
s1 s2 s3 . . . sT sT︸ ︷︷ ︸

s1 s2 s3 . . . sT+1

s2 s3 s4 . . . sT+1

...

×

wt

...
w3

w2

w1

=

rT

rT+1

...

SW = R

W = (STS)︸ ︷︷ ︸
ΣSS

−1 (STR)︸ ︷︷ ︸
STA



Linear models

So the (whitened) spike-triggered average gives the minimum-squared-error linear model.

Issues:

I overfitting and regularisation
I standard methods for regression

I negative predicted rates
I can model deviations from background

I real neurons aren’t linear
I models are still used extensively
I interpretable suggestions of underlying sensitivity (but see later)
I may provide unbiased estimates of cascade filters (see later)



How good are linear predictions?

We would like an absolute measure of model performance. Two things make this difficult:

Measured responses can never be predicted perfectly, even in principle:

I The measurements themselves are noisy.

Even if we can discount this, a model may predict poorly because either:

I It is the wrong model.
I The parameters are mis-estimated due to noise.

Approaches:

I Compare I(resp; pred) to I(resp; stim).
I mutual information estimators are biased

I Compare E(resp− pred) to E(resp− psth) where psth is gathered over a very large
number of trials.

I may require impractical amounts of data to estimate the psth
I Compare the predictive power to the predicatable power (similar to ANOVA).



Estimating predictable power

Psignal

Pnoise

response︸ ︷︷ ︸
r(n)

= signal + noise

P(r(n)) = Psignal + Pnoise

P(r(n)) = Psignal +
1
N

Pnoise

⇒


P̂signal =
1

N − 1

(
NP(r(n))− P(r(n))

)
P̂noise = P(r(n))− P̂signal



Testing a model

For a perfect prediction 〈
P(trial)− P(residual)

〉
= P(signal)

Thus, we can judge the performance of a model by the normalized predictive power

P(trial)− P(residual)

P̂(signal)

Similar to coefficient of determination (r 2), but the denominator is the predictable variance.



Predictive performance
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Extrapolating the model performance
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Jacknife bias correction

Estimate bias by extrapolation in data size:

Tjn = NT − (N − 1)Tloo

where T is the training error on all data and Tloo is the average training error on all sets of
N − 1 data.

For a linear model we can find this in closed form:

Tjn =
1
N

∑
i

(
(ri − si wML)2

1− si (STS)−1sT
i

)



Jackknifed estimates
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Extrapolated linearity
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[extrapolated range: (0.19,0.39); mean Jackknife estimate: 0.29]



Simulated (almost) linear data

0 50 100 150
0

0.5

1

1.5

2

2.5

3

−5 0 5 10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Normalized noise power

N
or

m
al

iz
ed

 li
ne

ar
ly

 p
re

di
ct

iv
e 

po
w

er

[extrapolated range: (0.95,0.97); mean Jackknife estimate: 0.97]



Beyond linearity



Beyond linearity

Linear models often fail to predict well. Alternatives?

I Wiener/Volterra functional expansions
I M-series
I Linearised estimation
I Kernel formulations

I LN (Wiener) cascades
I Spike-trigger covariance (STC) methods
I “Maximimally informative” dimensions (MID)⇔ ML nonparametric LNP models
I ML Parametric GLM models

I NL (Hammerstein) cascades
I Multilinear formulations



The Volterra functional expansion
A polynomial-like expansion for functionals (or operators).

Let y(t) = F [x(t)]. Then:

y(t) ≈ k (0) +

∫
dτ k (1)(τ)x(t − τ) +

∫∫
dτ1 dτ2 k (2)(τ1, τ2)x(t − τ1)x(t − τ2)

+

∫∫∫
dτ1 dτ2 dτ3 k (3)(τ1, τ2, τ3)x(t − τ1)x(t − τ2)x(t − τ3) + . . .

or (in discretised time)

yt = K (0) +
∑

i

K (1)
i xt−i +

∑
ij

K (2)
ij xt−i xt−j +

∑
ijk

K (3)
ijk xt−i xt−j xt−k + . . .

For finite expansion, the kernels k (0), k (1)(·), k (2)(·, ·), k (3)(·, ·, ·), . . . are not straightforwardly
related to the functional F . Indeed, values of lower-order kernels change as the maximum
order of the expansion is increased.

Estimation: model is linear in kernels, so can be estimated just like a linear (first-order) model
with expanded “input”.

I Kernel trick: polynomial kernel K (x1, x2) = (1 + x1x2)n.
I M-series.



Wiener Expansion

The Wiener expansion gives functionals of different orders that are orthogonal for white noise
input x(t).

G0[x(t); h(0)] = h(0)

G1[x(t); h(1)] =

∫
dx dτh(1)(τ)x(t − τ)

G2[x(t); h(2)] =

∫∫
dτ1 dτ2 h(2)(τ1, τ2)x(t − τ1)x(t − τ2)− P

∫
dx dτ1h(2)(τ1, τ1)

G3[x(t); h(3)] =

∫∫∫
dτ1 dτ2 dτ3 h(3)(τ1, τ2, τ3)x(t − τ1)x(t − τ2)x(t − τ3)

− 3P
∫∫

dτ1 dτ2 h(3)(τ1, τ2, τ2)x(t − τ1)

Easy to verify that E[Gi [x(t)]Gj [x(t)]] = 0 for i 6= j .

Thus, these kernels can be estimated independently. But, they depend on the stimulus.



Cascade models

The LNP (Wiener) cascade

k n

I Rectification addresses negative firing rates.
I Loose biophysical correspondance.



LNP estimation – the Spike-triggered ensemble



Single linear filter

k n

I STA is unbiased estimate of filter for spherical input distribution. (Bussgang’s theorem)
I Elliptically-distributed data can be whitened⇒ linear regression weights are unbiased.
I Linear weights are not necessarily maximum-likelihood (or otherwise optimal), even for

spherical/elliptical stimulus distributions.
I Linear weights may be biased for general stimuli (binary/uniform or natural).



Multiple filters

Distribution changes along relevant directions (and, usually, along all linear combinations of
relevant directions).

Proxies to measure change in distribution:

I mean: STA (can only reveal a single direction)
I variance: STC
I binned (or kernel) KL divergence: MID “maximally informative directions” (equivalent to

ML in LNP model with binned nonlinearity)



STC

Project out STA:

X̃ = X − (Xksta)kT
sta; Cprior =

X̃ TX̃
N

; Cspike =
X̃ Tdiag(Y )X̃

Nspike

Choose directions with greatest change in variance:

k- argmax
‖v‖=1

vT(Cprior − Cspike)v

⇒ find eigenvectors of (Cprior − Cspike) with large (absolute) eigvals.



STC

Reconstruct nonlinearity (may assume separability)



Biases

STC (obviously) requires that the nonlinearity alter variance.
If so, subspace is unbiased provided distribution is

I radially (elliptically) symmetric
I AND independent

⇒ Gaussian.

May be possible to correct for non-Gaussian stimulus by transformation, subsampling or
weighting (latter two at cost of variance).



More LNP methods

I Non-parametric non-linearities:

“Maximally informative dimensions” (MID)⇔ “non-parametric” maximum likelihood.

I Intuitively, extends the variance difference idea to arbitrary differences between
marginal and spike-conditioned stimulus distributions.

kMID = argmax
k

KL[P(k · x)‖P(k · x|spike)]

I Measuring KL requires binning or smoothing—turns out to be equivalent to fitting a
non-parametric nonlinearity by binning or smoothing.

I Difficult to use for high-dimensional LNP models (but ML viewpoint suggests
separable or “cylindrical” basis functions).

I Parametric non-linearities: the “generalised linear model” (GLM).



Generalised linear models

LN models with specified nonlinearities and exponential-family noise.

In general (for monotonic g):

y ∼ ExpFamily[µ(x)]; g(µ) = βx

For our purposes easier to write

y ∼ ExpFamily[f (βx)]

(Continuous time) point process likelihood with GLM-like dependence of λ on covariates is
approached in limit of bins→ 0 by either Poisson or Bernoulli GLM.

Mark Berman and T. Rolf Turner (1992) Approximating Point Process Likelihoods with GLIM
Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1):31-38.



Generalised linear models

Poisson distribution⇒ f = exp() is canonical (natural params = βx).

Canonical link functions give concave likelihoods⇒ unique maxima.

Generalises (for Poisson) to any f which is convex and log-concave:

log-likelihood = c − f (βx) + y log f (βx)

Includes:

I threshold-linear
I threshold-polynomial
I “soft-threshold” f (z) = α−1 log(1 + eαz).

z

f (z)
f (z) = [z3]+

f (z) = log(1 + ez)

f (z) = 1
3 log(1 + e3z)

f (z) = [z]+



Generalised linear models

ML parameters found by

I gradient ascent
I IRLS

Regularisation by L2 (quadratic) or L1 (absolute value – sparse) penalties (MAP with
Gaussian/Laplacian priors) preserves concavity.



Linear-Nonlinear-Poisson (GLM)
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stimulus
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 (t)



GLM with history-dependence

• rate is a product of stim- and spike-history dependent terms 
• output no longer a Poisson process
• also known as “soft-threshold” Integrate-and-Fire model
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GLM dynamic behaviors
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GLM dynamic behaviors
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multi-neuron GLM 
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Non-LN models?

The idea of responses depending on one or a few linear stimulus projections has been
dominant, but cannot capture all non-linearities.

I Contrast sensitivity might require normalisation by ‖s‖.
I Linear weighting may depend on units of stimulus measurement: amplitude? energy?

logarithms? thresholds? (NL models – Hammerstein cascades)
I Neurons, particularly in the auditory system are known to be sensitive to combinations

of inputs: forward suppression; spectral patterns (Young); time-frequency interactions
(Sadogopan and Wang).

I Experiments with realistic stimuli reveal nonlinear sensivity to parts/whole (Bar-Yosef
and Nelken).

Many of these questions can be tackled using a multilinear (cartesian tensor) framework.



Input nonlinearities

The basic linear model (for sounds):

r̂(i)︸︷︷︸
predicted rate

=
∑

jk

w tf
jk︸︷︷︸

STRF weights

s(i − j, k)︸ ︷︷ ︸
stimulus power

,

How to measure s? (pressure, intensity, dB, thresholded, . . . )

We can learn an optimal representation g(.):

r̂(i) =
∑

jk

w tf
jk g(s(i − j, k)).

Define: basis functions {gl} such that g(s) =
∑

l w l
l gl (s)

and stimulus array Mijkl = gl (s(i − j, k)). Now the model is

r̂(i) =
∑

j

w tf
jk w l

l Mijkl or r̂ = (wtf ⊗ wl) •M.



Multilinear models

Multilinear forms are straightforward to optimise by alternating least squares.

Cost function:

E =
∥∥∥r− (wtf ⊗ wl) •M

∥∥∥2

Minimise iteratively, defining matrices

B = wl •M and A = wtf •M

and updating

wtf = (BTB)−1BTr and wl = (ATA)−1ATr.

Each linear regression step can be regularised by evidence optimisation (suboptimal), with
uncertainty propagated approximately using variational methods.



Some input non-linearities
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Parameter grouping

Separable models: (time) ⊗ (frequency). The input nonlinearity model is separable in another
sense: (time, frequency) ⊗ (sound level).

intensitytime
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Other separations:

I (time, sound level) ⊗ (frequency): r̂ = (wtl ⊗ wf) • M,
I (frequency, sound level) ⊗ (time): r̂ = (wfl ⊗ wt) • M,
I (time) ⊗ (frequency) ⊗ (sound level): r̂ = (wl ⊗ wf ⊗ wl) • M.



Some examples

(time, frequency) ⊗ (sound level):
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Variable (combination-dependent) input gain

I Sensitivities to different points in sensory space are not independent.

I Rather, the sensitivity at one point depends on other elements of the stimulus that create
a local sensory context.

I This context adjusts the input gain of the cell from moment to moment, dynamically
refining the shape of the weighted receptive field.



A context-sensitive model

r̂(i) = c +
J∑

j=0

K∑
k=1

w tf
j+1,k s(i − j, k)

(
1 +

M∑
m=0

N∑
n=−N

wτφ
m+1,n+N+1s(i − j −m, k + n)

)

s(i, k)

r(i)



Some examples



Predictive performance
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Predictive performance
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CGF consistency across the PRF

I As the CGF can be associated with the PRF weights rather than the stimulus, we can
apply different CGFs to different PRF domains.



CGF consistency across the PRF
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CGF consistency across the PRF
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Linear fits to non-linear functions

(Stimulus dependence does not always signal response adaptation)



Approximations are stimulus dependent

(Stimulus dependence does not always signal response adaptation)



Consequences

Local fitting can have counterintuitive consequences on the interpretation of a “receptive
field”.



“Independently distributed” stimuli

Knowing stimulus power at any set of points in analysis space provides noinformation about
stimulus power at any other point.

DRC:

Space

Spectrotemporal

Ripple:

Independence is a property of stimulus and analysis space.



Nonlinearity & non-independence distort RF estimates

Stimulus may have higher-order correlations in other analysis spaces
— interaction with nonlinearities can produce misleading “receptive fields.”



What about natural sounds?
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Usually not independent in any space — so STRFs may not be conservative estimates of
receptive fields.



Issues: complex selectivity



Issues: adaptation, task-dependence



The “agnostic” coding approach can only take us so far. Eventually, we need solid
scientifically (and probably theoretically) motivated hypotheses.
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