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Abstract

The spectro-temporal receptive field (STRF) is a functional descriptor of the linear
processing of time-varying acoustic spectra by the auditory system. By cross-correlating
sustained neuronal activity with the ‘dynamic spectrum’ of a spectro-temporally rich
stimulus ensemble, one obtains an estimate of the STRF. In this paper, the relation-
ship between the spectro-temporal structure of any given stimulus and the quality of the
STRF estimate is explored, and exploited. Invoking the Fourier theorem, arbitrary dy-
namic spectra are described as sums of basic sinusoidal components, i.e., ‘moving ripples.’
Accurate estimation is found to be especially reliant on the prominence of components
whose spectral and temporal characteristics are of relevance to the auditory locus under
study, and is sensitive to the phase relationships between components with identical tem-
poral signatures. These and other observations have guided the development and use of
stimuli with deterministic dynamic spectra composed of the superposition of many ‘tem-
porally orthogonal’ moving ripples having a restricted, relevant range of spectral scales
and temporal rates. The method, termed sum-of-ripples, is similar in spirit to the ‘white-
noise approach,’ but enjoys the same practical advantages — which equate to faster and
more accurate estimation — attributable to the time-domain sum-of-sinusoids method
previously employed in vision research. Application of the method is exemplified with
both modeled data and experimental data from ferret primary auditory cortex (AI).

Key Words: reverse correlation, moving ripples, sum-of-sinusoids, spectro-temporal, re-
ceptive field, auditory cortex
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1 Introduction

Two primary identifying features of a sound are its spectral content, and its temporal behavior.
In the physiological investigation of the auditory system, it has often been assumed, by the
sole use of descriptors such as spectral tuning and modulation rate tuning, that each of these
qualities are processed independently. However, it is becoming more widely recognized that
this is not, in general, a well-advised assumption. As evidenced by most any time-frequency
representation (Cohen, 1995) (e.g., the spectrogram), the particular time-dependency of the
spectrum, i.e., the dynamic spectrum,1 seems to set a sound’s character. Thus, it seems likely
that the particular conjunction of a sound’s spectral and temporal features, and not simply
their separate existence, is ultimately of interest to a hearing system.

Such information is readily available to the mammalian auditory system, from the very
transduction process. There, the cochlea transduces the impinging sound wave into a frequency-
ordered (tonotopic) pattern of activity on the auditory nerve (AN) (Shamma, 1985; Ruggero,
1992). Following the example of the cochlea, and moving to a domain where the spectral and
temporal aspects of sounds are represented jointly — the spectro-temporal domain — one ex-
pects to be able to more effectively characterize those acoustic patterns that afferent neurons are
most responsive to. The resulting description of the auditory system’s input-to-output transfor-
mation — the spectro-temporal receptive field (STRF) — is one of both dimensions intertwined,
and is potentially more complete than that provided by the two marginal descriptions (Aertsen
and Johannesma, 1980; Aertsen and Johannesma, 1981b; Eggermont et al., 1981; Hermes et al.,
1981; Cohen, 1995).

STRF-like descriptions of auditory processing have been used in a number of studies. All
are endowed with a common, linear functionality, of the general form

r(t) =
∫ ∫

STRF (τ, f) · S(t− τ, f) dτ df, (1)

which describes a convolution in time and a correlation in frequency between the STRF and the
dynamic spectrum of the stimulus. Intuitively, at any particular instant t, a neuron’s response
r is given by the correlation of the STRF with stimulus’ (time-reversed) dynamic spectrum S
around that instant. This operation is repeated for all t, as the spectrum continues to evolve.
Thus, the STRF as acts as a filter, producing the strongest responses to spectro-temporal
features that most resemble its own structure. In doing so, the STRF can be thought of both
as a time-dependent spectral weighting function (a.k.a. receptive field) and as a frequency-
dependent dynamical filter. Figure 1 should assist in the visualization of these concepts.

The STRF has been measured with a variety of methods. These differ in the type of stimuli
used (e.g., white noise (Hermes et al., 1981; Eggermont et al., 1983b; Epping and Eggermont,
1985; Eggermont and Smith, 1990; Backoff and Clopton, 1991; Clopton and Backoff, 1991;
Kim and Young, 1994; Nelken et al., 1997; Carney and Friedman, 1998), natural vocalizations
(Aertsen and Johannesma, 1981a; Yeshurun et al., 1985; Schafer et al., 1992; Theunissen et al.,
1998), moving ripples (Kowalski et al., 1996a; Kowalski et al., 1996b; Depireux et al., 1998b;
Escab́ı et al., 1998), tone pulses (Aertsen and Johannesma, 1981a; Epping and Eggermont,
1985; deCharms et al., 1998; Kvale et al., 1998; Theunissen et al., 1998)), the representation of

1The term ‘dynamic spectrum’ is to be used throughout in a general sense. It is meant to subsume all specific
time-frequency representations.
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Figure 1: The STRF (a) reflects many aspects of auditory system function — such as spectral
tuning, latency, memory, refractoriness, frequency-modulation direction selectivity, and modulation
rate tuning — in one compact form. A cross-section of the STRF at a particular latency and
frequency yields a characterization of the spectral and dynamical processing of the system which, in
general, depends on the latency and frequency chosen. The specific interdependence of these features
conspires to produce enhanced responsiveness to certain spectro-temporal patterns, as exemplified
in (b) and (c). The stimulus in (b) is the dynamic spectrum of a speech segment (“Why am I
here?”) produced with a cochlea-like filter bank and plotted on a log-frequency scale. The flipped,
overlaid STRF depicts the correlation operation performed at each time t to produce the response
in (c), as given by Eq. (1). Characterizing this neuron with a single peak excitatory frequency would
not be sufficient; pronounced activation (arrows) requires the presence of specific spectro-temporal
patterns resembling the (flipped) STRF.

the dynamic spectrum (e.g., Wigner distribution (Eggermont and Smith, 1990; Kim and Young,
1994; Nelken et al., 1997), Rihaczek distribution (Hermes et al., 1981; Epping and Eggermont,
1985; Eggermont and Smith, 1990; Backoff and Clopton, 1991; Clopton and Backoff, 1991),
short-time Fourier transform, (Yeshurun et al., 1985; Schafer et al., 1992), filter bank out-
put (Aertsen and Johannesma, 1981a; Eggermont et al., 1983b; Carney and Friedman, 1998),
spectro-temporal envelope (Kowalski et al., 1996a; Kowalski et al., 1996b; deCharms et al.,
1998; Depireux et al., 1998b; Escab́ı et al., 1998; Kvale et al., 1998)), and the analysis method
(e.g., reverse correlation (Aertsen and Johannesma, 1981a; Hermes et al., 1981; Eggermont
et al., 1983b; Epping and Eggermont, 1985; Eggermont and Smith, 1990; Backoff and Clopton,
1991; Clopton and Backoff, 1991; Schafer et al., 1992; Kim and Young, 1994; Nelken et al.,
1997; Carney and Friedman, 1998; deCharms et al., 1998; Escab́ı et al., 1998; Kvale et al., 1998;
Theunissen et al., 1998), Laguerre polynomial correlation (Yeshurun et al., 1985), sinusoidal
steady-state analysis (Kowalski et al., 1996a; Kowalski et al., 1996b; Depireux et al., 1998b)).

A majority of STRF measurements have been made by stimulating with Gaussian white
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noise (GWN) and performing a kind of input-output correlation called spectro-temporal reverse
correlation. The method is similar to ‘classical’ reverse correlation (de Boer, 1967; de Boer and
de Jongh, 1978), with which the portions of a stimulus waveform preceding the occurrence of
a neuron’s action potentials are averaged. With spectro-temporal reverse correlation, rather, a
representation of the stimulus’ dynamic spectrum is averaged instead, as illustrated in Figure
2. The motivation in both cases is typically of a stochastic nature — to preserve only those
stimulus patterns consistently causing a neuron to spike while eventually averaging out other,
randomly occurring patterns.

τ

+ + +

Spike Triggers

S(t,f)

f

Cumulative Average

t

Figure 2: For spiking systems, spectro-temporal reverse correlation can be viewed as a spike-triggered
average. Using white-noise stimulation, the average stimulus preceding a spike resembles the STRF
after a sufficient number of spikes are recorded.

This general methodology, through which the functionality of a neuron is explored by corre-
lating its responses with various functionals of a GWN stimulus, is referred to as the white-noise
approach. The white-noise approach has intuitive appeal, but it is far from ad hoc; in fact, it
is closely related to the cross-correlation method (Lee and Schetzen, 1965) for developing a
Wiener-series model of a system. The Wiener series, and the closely related Volterra series,
have been used extensively to model auditory (and other sensory) system function, particularly
in its peripheral aspects (Marmarelis and Marmarelis, 1978; Eggermont, 1993). These studies,
and the scrutiny they’ve received, provide valuable background for studies of the STRF.

Despite the promise of the representation, it is fair to say that the ability of STRF estimates
gleaned under white-noise stimulation to quantitatively describe the auditory system has been
limited. The estimates are often excessively noisy, computationally burdensome, and above all
unable to predict responses to novel stimuli. Unfortunately, these difficulties are more severe for
the more central auditory areas, where the STRF description is presumed to be most valuable.
In fact, to our knowledge there are no accounts of a successful application of the white-noise
method in any auditory locus higher than the mid-brain, and in mammals no higher than the
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lateral-superior olive (LSO). In the face of this, J. Eggermont speculated in his 1993 review of
the subject (Eggermont, 1993), “...it is expected that Wiener or Volterra-like characterization
methods could largely fail for central auditory areas such as auditory cortex.”

There is growing evidence, however, that this forecast may have been premature. Actually,
Wiener and Volterra-like methods have in time proved to be successful; but like is the operative
suffix, for the extreme generality of GWN has had to be compromised in favor of alternative
stimuli. These ‘improved’ stimuli differ from GWN in that they are defined by their dynamic
spectra, which is often designed with the guidance of the known functionality of the auditory
area under study. While still spectro-temporally rich, the stimuli have a more specific structure
than that of GWN, they are more effective in eliciting responses, and they have yielded striking
results from mammalian primary auditory cortex (AI) and inferior colliculus (IC) (Kowalski
et al., 1996a; Kowalski et al., 1996b; Depireux et al., 1998b; Escab́ı et al., 1998; Kvale et al.,
1998; deCharms et al., 1998; Shamma et al., 1998). Although thorough quantitative analyses
of much of the data has not yet surfaced, some of these studies have yielded STRF estimates
which are well capable of predicting neurons’ responses to novel stimuli (Kowalski et al., 1996b;
Depireux et al., 1998b; Shamma et al., 1998).

The approach specifically advocated and developed here, termed sum-of-ripples, might be
thought of as an extension of the time-domain sum-of-sinusoids method (Victor and Knight,
1979; Victor and Shapley, 1980) into the spectro-temporal domain. This approach uses moving
ripples (Kowalski et al., 1996a; Depireux et al., 1998b), broad-band sounds that are modulated
sinusoidally both in spectrum and in time, as basic stimulus building blocks. Thus invoking
the formalism of two-dimensional Fourier analysis, and exploiting the linearity of the STRF
functional (1), the use of single moving ripples (Kowalski et al., 1996a; Kowalski et al., 1996b;
Depireux et al., 1998b) and white noise are seen as opposite ends of a continuum all possible
stimuli. Furthermore, the Fourier-series description of dynamic spectra, and of the STRF,
allows for a general reevaluation of the spectro-temporal reverse correlation method itself,
through which basic structural conditions that arbitrary stimuli must meet, in order to allow
for an accurate STRF estimate, are easily obtained.

These conditions are ultimately used to guide the synthesis of special stimuli, by summing
together specific ‘temporally orthogonal’ combinations of ripples, that are both general in their
exploratory power and tailored to a particular auditory locus. It is shown that cross-correlating
the neural response with these ‘ripple combinations’ can quickly build an accurate estimate of
the STRF. This has been found to be true both in principle, and in practice; the method has
been applied in ferret AI and IC (Shamma et al., 1998; Depireux et al., 1998a). Some of the
AI results will be considered here for illustrative purposes. However, an exhaustive analysis of
the physiology will be treated elsewhere.

The organization of this paper is as follows. First, the STRF is further examined both
empirically and theoretically, as it has evolved, with the aid of the Volterra and Wiener func-
tional expansions. In this context, some challenges posed by the measurement of the STRF
are discussed. In section 3, the Fourier transforms of arbitrary dynamic spectra and STRFs
are defined and elaborated. This allows the problem of spectro-temporal reverse correlation
to be considered within a general framework, which subsequently motivates the sum-of-ripples
construction in section 4. Finally, the results are summarized, and some additional views
concerning the link between the sum-of-ripples method and other methods is offered.
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2 Background

2.1 The functional expansions of Volterra and Wiener

The use of functional expansions for non-linear systems modeling is essentially due to the
pioneering work of Volterra (Volterra, 1930). As summarized by M. Korenberg (Korenberg and
Hunter, 1996), “A functional, F , transforms values of the input defined over the input domain
(e.g., time) into a value of the output defined at a single point of the output domain (e.g., at a
fixed instant).” Typically, then, the distinction between functions and functionals echoes that,
for example, between systems without and with memory.

For a large class of systems, it is possible to expand the functional relationship, F , between
an input, s, and an output, r, into a sum of n elementary functionals:

r = F [s] = K0 [s] +K1 [s] + · · ·+Kn [s] (2)

where n, the order of the system, is conceivably infinite. Deciding on the form of the Ki’s
involves a fundamental compromise between notions of separate functionality, favored in theo-
retical studies, and, on the other hand, separately measurable properties, necessitated by the
experimental approach. This compromise is typified by the relationship between the Volterra
and Wiener functional expansions.

The Volterra series expansion (Volterra, 1930; Korenberg and Hunter, 1996) prescribes for
the Ki’s homogeneous polynomial functionals of order i. In this aspect it is analogous to the
Taylor series expansion of functions. If, for example, the input is merely a function of time,
the Volterra functionals take the form of progressively higher-order temporal convolutions with
progressively higher-order auto-products of the input process,

Ki [s(t)] =
∫
· · ·

∫
vi(τ1, · · · , τi) · s(t− τ1) · · · s(t− τi) dτ1 · · · dτi. (3)

so that each term in the Volterra series describes, through the Volterra kernels vi(τ1 · · · τi)
(which are weighting functions analogous to the Taylor series coefficients), how the output of
the system at any particular instant depends on a particular order of the input.

The first-order Volterra functional is the most familiar,

K1 [s(t)] =
∫
v1(τ) · s(t− τ) dτ (4)

as it is the standard time-domain description of a linear time-invariant system with impulse
response v1(τ). The higher-order functionals follow from a straight-forward generalization of
this equation.

There are, however, practical difficulties in the direct measurement of the Volterra kernels,
especially for a system of unknown order (as is the auditory system). Fortunately, these dif-
ficulties can be largely circumvented if the Ki’s are designed to be mutually orthogonal with
respect to a particular input function, in which case they, unlike the Volterra functionals, can
each be measured separately.

N. Wiener (Wiener, 1958) detailed a particularly useful series of functionals that are closely
related to Volterra’s but which are orthogonal with respect to a GWN input. As a by-product,
the ‘Wiener functionals’ are inhomogeneous, i.e., they no longer fully describe the response to
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a single order i of the input process but also include contributions from all higher orders of the
same parity (i + 2, i + 4, · · ·), and furthermore, they can depend on power level of the input
(Eggermont, 1993; Korenberg and Hunter, 1996). Thus, the Wiener and Volterra kernels are
generally different. Holistically, though, the two descriptions are equivalent, and the Wiener
series can be converted to the stimulus-invariant Volterra series, provided that all of the Wiener
kernels have been identified. This is often done, because the Volterra series is in general more
amenable to interpretation (Aertsen and Johannesma, 1981b; Boyd et al., 1983).

It is important to note the conditions by which this type of characterization is valid. Accord-
ing to Wiener (Wiener, 1958), “...we are considering non-linear networks of a certain deadbeat
character.” The characterization of the brain as “deadbeat” may be alarming, but in formaliz-
ing Wiener’s slang one finds that the auditory system actually fulfills many, though not strictly
all, of the requirements. For example, the response must only depend on a finite extent of the
input domain, or at least exhibit fading dependence (Korenberg and Hunter, 1996). This seems
to be met by the current knowledge of the auditory system. However, the characteristics of the
system must not change with time, a condition not so obviously met, since it excludes adaptive
processing. Also, due to practical concerns, the system is required to have a sufficiently low
order expansion, i.e., it must satisfy a ‘continuity requirement,’ so that small changes at its
input result in small changes at its output. While this requirement is not strictly met by a
‘spiking’ system, it can be satisfied by substituting the smoother spike probability, or the spike
rate, as the response (Johnson, 1980).

2.2 Kernel estimation by reverse correlation

Two decades after the Wiener series was developed, Y. Lee and M. Schetzen (Lee and Schetzen,
1965) published a simple and influential algorithm, now known as the cross-correlation method,
for estimating the first- and higher-order Wiener kernels of a system by applying GWN to the
input and computing a series of first- and higher-order input-output cross-correlations. One
of the many merits of their work was that it allowed for a solid relation to be drawn between
the Wiener series and the experimental practice of reverse correlation (de Boer, 1967) being
pioneered contemporaneously in physiological studies of cat auditory nerve fibers.

It was subsequently recognized that the ‘reverse-correlation function’ is basically identical to
the first-order cross-correlation function and, hence, the first-order Wiener kernel of the system
(Eggermont et al., 1983c). Therefore, the reverse-correlation function does not in general
solely reflect linear processing, but instead should be considered the best (in a mean-square
error sense) linear fit to the observed input-output transformation (Palm and Popel, 1985;
Eggermont, 1993). In any case, the reverse-correlation function has been useful in describing
cochlear transduction at middle to low acoustic frequencies (de Boer and de Jongh, 1978;
Carney and Yin, 1988).

However, if the response of a neuron is not precisely synchronized, i.e., phase locked, to
fine details of the stimulus waveform, a first-order stimulus-response cross-correlation is not
productive, i.e., the first-order Wiener kernel is negligible (Eggermont, 1993). In the mammalian
AN, phase locking is limited to neurons tuned to frequencies below about 4-6 kHz (Ruggero,
1992; Kim and Young, 1994). This limit is progressively lower for higher auditory loci, and by
AI phase locking to broad-band noise is rarely observable. Thus, for a large fraction of neurons,
particularly in more central areas, the classical reverse correlation function has proved to be
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useless (Hermes et al., 1981; Clopton and Backoff, 1991; Kim and Young, 1994), and models of
their behavior have had to be shifted to higher-order functionals of the stimulus. Fortunately,
the reverse correlation methodology can be extended for this purpose; now, various higher-order
functionals of the stimulus are to be correlated with the response.

2.3 The role of the STRF in a functional expansion

In particular, the second-order Volterra-Wiener functional,

K2 [s(t)] =
∫ ∫

v2(τ1, τ2) · s(t− τ1)s(t− τ2) dτ1 dτ2

=
∫ ∫

v̂2(τ, σ) · s(t− τ − σ

2
)s(t− τ +

σ

2
) dτ dσ (5)

here rewritten with τ = 1
2
(τ1 + τ2) and σ = τ2− τ1 for convenience, has proven to be a primary

descriptor of auditory neurons that do not phase lock (Eggermont, 1993; Temchin et al., 1995;
Yamada et al., 1997; van Dijk et al., 1997; Yamada and Lewis, 1999). Fortunately, it has an
interpretation by which its superseding importance in higher auditory loci is intuitive.

Like K1, K2 essentially describes a linear system; but instead of the raw stimulus waveform,
its input receives the time-dependent (deterministic) auto-correlation of the stimulus, s(t −
σ
2
)s(t + σ

2
). Although the auto-correlation may be difficult to interpret, it is closely related,

through a single Fourier transform, to a large class of time-frequency representations via the
Wigner distribution (Eggermont, 1993; Cohen, 1995),

W (t, f) =
∫
s∗(t− σ

2
)s(t+

σ

2
) · exp(−j2πσf) dσ, (6)

where ∗ denotes complex conjugation (though all stimuli considered here are real) and j =
√
−1.

The Wigner distribution may be thought of as a generalized spectrogram. Such representations
of dynamic spectra are strongly reminiscent of the activity at the output of the peripheral
auditory system (Shamma, 1985). Thus, K2 is expected to have a special applicability for
describing the processing being performed in the afferent auditory pathway (Aertsen and Jo-
hannesma, 1981b; Hermes et al., 1981).

Indeed, using (6), and defining

STRFK2(τ, f)
∆
=
∫
v̂2(τ, σ) · exp(−j2πσf) dσ, (7)

K2 can be rewritten:

K2 [s(t)] =
∫ ∫

STRFK2(τ, f) ·W (t− τ, f) dτ df, (8)

where it is noted that, for a real valued stimulus, both STRFK2 and W are real and symmetric
around f = 0.

Therefore, the second-order Volterra functional corresponds to a linear system that processes
the Wigner time-frequency representation of the stimulus, with an STRFK2 that is the Fourier
transform (across τ2 − τ1) of the second-order Volterra kernel. This provides the link between
K2 and the generalized STRF functional (1); since many other time-frequency representations
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S can be considered linearly filtered versions of the Wigner distribution (Cohen, 1995), it can
be shown that if (1) describes the second-order processing of the system, STRFK2 in (8) is, in
general, a filtered version of the STRF. However, the converse relationship is not neccessarily
true, but depends on the particular representation S. See Appendix A for additional details
about this topic.

Given the relative importance of K2 over K1 in central loci, it is tempting to disregard the
stimulus waveform completely and instead treat the dynamic spectrum as the effective stimulus
(Eggermont et al., 1983b; Yeshurun et al., 1985; Nelken et al., 1997)), though this is only strictly
valid if all odd-order functionals, with respect to the waveform, can also be neglected (Aertsen
and Johannesma, 1981b). Characteristically, the dynamic spectrum is sectioned into multiple,
tonotopically arrayed inputs, representing energy fluctuations within discrete frequency bands
(Eggermont et al., 1983b; Yeshurun et al., 1985; Schafer et al., 1992). The STRF, instead of
being associated with the second-order functional, is then readily associated with the first-order
Volterra functional of a multiple-input system, composed of the collection of the system’s linear
impulse responses to these inputs (which are themselves non-linearly related to the waveform).

It is important to remember that spectro-temporal reverse correlation (with an appropriate
time-frequency representation) yields the single Fourier transform of the second-order Wiener
kernel (Eggermont et al., 1983c; Eggermont, 1993), which is generally different from the Volterra
kernel. Nevertheless, because the highest two Volterra and Wiener functionals are always iden-
tical, this distinction is not relevant as long as the employed system description doesn’t extend,
in parity, more than one order beyond the STRF. As such, the STRF is more conveniently
treated in the Volterra sense (Aertsen and Johannesma, 1981b); there exists for every neu-
ron a stimulus-invariant STRF, and any attempt to measure it results in an STRF estimate
which may contain various errors due the particular stimuli used (e.g., white noise) and the
measurement technique (e.g., cross-correlation).

2.4 Some problems with white-noise stimulation

The white-noise approach to STRF estimation initially delivered promising results; after suf-
ficient spike-triggered averaging, there were consistent indications of specific regions in the
spectro-temporal domain of elevated or diminished intensity preceding the occurrence of spikes
(Hermes et al., 1981; Eggermont et al., 1983b). Unfortunately, after some additional use of
the method, a number of consistent problems were also apparent. In addition to troubles with
noisiness (Hermes et al., 1981; Eggermont and Smith, 1990; Backoff and Clopton, 1991; Kim
and Young, 1994) and weighty computational requirements (Eggermont et al., 1983c; Egger-
mont and Smith, 1990; Clopton and Backoff, 1991; Kim and Young, 1994), it was reported
that STRF estimates were only in weak agreement with measurements made with other, more
established methods (e.g., tones) (Backoff and Clopton, 1991; Clopton and Backoff, 1991; Kim
and Young, 1994). Most importantly, the few attempts to use the measured STRFs to predict
neurons’ responses to stimuli substantially different from GWN failed (Eggermont et al., 1983a;
Nelken et al., 1997). Consequently, it has been concluded that the STRF holds only limited,
qualitative value (Eggermont et al., 1983a; Eggermont, 1993; Nelken et al., 1997).

However, it seems likely that some of the trouble was not with the STRF per se, but
instead stemmed from the choice of stimulus, or, more specifically, the finite-length pseudo-
random noise substituted for the physically unrealizable GWN. The primary problems with
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this stimulus are three-fold, concerning its statistical inadequacies, its weak response-driving
capability, and its difference from natural sounds.

The cross-correlation method strictly requires GWN due to its statistical properties, but
finite-length noise sequences can deviate considerably from this white ideal, resulting in consid-
erable estimation error, especially for higher-order kernels (Swerup, 1978; Eggermont, 1993).
Efforts are often made to improve some of the statistical properties of the waveform (e.g., using
‘inverse-repeat’ stimuli (Swerup, 1978), or the ‘transformation method’ (Eggermont, 1993)).
However, the statistical adequacy of the dynamic spectrum, paramount for accurate estimation
of the STRF, is not assured by these efforts (Eggermont et al., 1983b).

Furthermore, in more central loci, copious estimation error is brought about by the weak
responses evoked by stationary broad-band noise. Fulfilling the ‘continuity requirement,’ de-
scribed above, necessitates using some ‘average response’ measure, such as the peri-stimulus
time histogram (PSTH) (Johnson, 1980). However, weak responses (e.g., low spike proba-
bilities) are overshadowed by the considerable variance associated with the PSTH estimate
(Johnson, 1980), not to mention the extraneous variability associated with biological neural
systems themselves (Arieli et al., 1996; Azouz and Gray, 1999). In overcoming this, either a
prolonged stimulus must be used, which greatly increases both the measurement and analy-
sis duration, or many repetitions of a shorter noise sequence must be used, in which case its
statistical properties are eroded further (Eggermont et al., 1983b; Clopton and Backoff, 1991).

Finally, the reverse-correlation estimate is only strictly valid with respect to the particular
stimulus used for its derivation; even in the mild presence of measurement noise and system non-
linearities, as the ‘distance’ between a test stimulus and the stimulus used to identify the system
increases, the error in a truncated functional series characterization can be expected to become
substantial (Johnson, 1980; Palm and Popel, 1985). Again, this is particularly problematic
for the most central areas, because the increasingly specific spectro-temporal patterns that
neurons are responsive to are increasingly improbably generated by stationary random noise.
Thus, the inability of STRF estimates gleaned under GWN stimulation to generalize to the
‘distant’ natural stimuli is understandable, and suggests that the use of stimuli with natural
properties may be more productive for central loci (Aertsen and Johannesma, 1981a; Palm and
Popel, 1985; Yeshurun et al., 1985; Nelken et al., 1997).

2.5 Alternatives to white noise

Due to the problems commonly associated with the white-noise approach, a great deal of work
has been devoted towards developing improved stimuli and analyses for Volterra and Wiener
kernel estimation. For example, if there is little control over the stimuli, alternatives to cross-
correlation, such as Korenberg’s fast exact orthogonalization method (Korenberg and Hunter,
1996) and Marmarelis’ improved Laguerre polynomial expansion method (Marmarelis, 1993),
have been developed to allow for the ‘best’ possible kernel estimates for arbitrary stimula-
tion. Such improvements generally come, however, at the expense of computational complexity
(Korenberg and Hunter, 1996).

If control over the stimuli is afforded, it seems to be more beneficial to focus on improving
its structure. Consequently, much of the complexity involved in characterizing the system
is delegated to the stimulus design, allowing for accurate results to be obtained during an
experiment, using simple and fast correlation-based algorithms (Victor, 1979; Sutter, 1992).



12

Furthermore, using elementary knowledge about the system, the extreme generality of GWN
can be greatly reduced, resulting in stimulation of greater over-all relevance (Sutter, 1992).
A simple example, taken from classical reverse correlation, is the reduction of the stimulus
bandwidth to match the expected input bandwidth of the system. Such improvements are
accomplished most efficiently with deterministic, rather than stochastic, stimuli, like binary
sequences (Sutter, 1992) and sums of sinusoids (Victor and Knight, 1979; Victor and Shapley,
1980) (for whom functional expansions well approximating the Wiener and Volterra series have
been formulated (Victor, 1991; Sutter, 1992)).

In order to improve the quality of STRF estimation beyond that which is possible with the
white-noise approach, such considerations should be applied not to the waveform but to the
dynamic spectra of stimuli. However, without a general enough description of dynamic spectra
and its relationship to the reverse-correlation estimate, it is not clear how the modifications
are best made. In the next section, a quite general formulation of the problem is elaborated by
taking advantage of the linearity of the STRF functional and invoking Fourier theory.

3 Fourier analysis in the spectro-temporal domain

In the previous sections, the spectro-temporal domain was established as a plausible input
domain for central auditory neurons, both from an intuitive and from a rigorous standpoint.
Some problems associated with the use of white-noise stimulation for the measurement of the
input-output relationships of such neurons were discussed. Finally, it was recognized that
the implementation of improvements wants for a universal descriptive framework for dynamic
spectra. That is the aim of this section.

Regardless of the specific nature of the stimulus, the common goal in the measurement of
the STRF is to characterize the linear processing of dynamic spectra. Evaluation of the STRF
functional may exploit the principle of superposition obeyed by all linear systems; namely, the
response to any stimulus is the sum of the responses to its constituent parts. One may thus
use the STRF to form an alternative ‘transfer function’ description, in which the responses
to a basic set of stimuli are made explicit. If this basic set can, in combination, be used to
describe all stimuli of practical interest, then determining the system’s response simply involves
determining the stimulus’ composition in terms of these basic parts.

A common means of uniquely breaking a stimulus into parts is provided by the Fourier series
(Papoulis, 1962), with which any stimulus can be approximated to any level of precision with
a sum of sinusoidal components of various amplitudes, frequencies, and phases. Performing
the Fourier decomposition of dynamic spectra thus engenders a particularly valuable ‘ripple
transfer function’ and, subsequently, allows the form of the stimulus-response cross-correlation
function to be derived for arbitrary stimulation.

3.1 The spectro-temporal domain

The spectro-temporal domain is the input domain of the STRF functional (1). It is also the
space on which dynamic spectra, and the STRF, are to be defined. In accordance with typical
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notions of auditory system function, we will consider a logarithmic frequency axis,

x = log2
f

f0

,

where x denotes the number of octaves above f0 > 0, the lowest frequency considered to be
relevant to the system.2 The x axis is thought of as a spatial axis, corresponding to the auditory
sensory epithelium, i.e., the tonotopic axis (Pickles, 1988).

The system is expected to have finite memory and finite frequency-tuning bandwidth, within
0 ≤ x ≤ X, 0 ≤ τ ≤ T where X is the stimulus bandwidth (in units of octaves) and T is
the stimulus duration. In other words, it is expected that the STRF is zero outside of these
bounds, which is a prerequiste for the use of a Volterra model. Since all stimuli are, for all
practical purposes, of finite duration and finite bandwidth, we are always considering a finite
region of the spectro-temporal domain.

3.2 Ripples and ripple decomposion

Perhaps the most radical (and pertinent) departure from the white-noise approach for STRF
estimation is that of dynamic ripple analysis (Kowalski et al., 1996a; Kowalski et al., 1996b;
Depireux et al., 1998b), with which STRFs of neurons in ferret AI were measured via stimulation
with broad-band sounds having dynamic spectra of the general form

S(t, x) = a0 + a cos {2π(wt+ Ωx) + ψ} . (9)

These functions describe for each frequency location x, a sinusoidal modulation of the
level around some mean a0, at a rate of |w| cycles per second. The relative phases of the
modulations at different x’s produce a sinusoidal spectral profile with a periodicity of Ω cycles
per octave (c/o) which, over time, drifts across the spectral axis with a velocity determined
by the magnitude of w and a direction determined by the polarity of the product of w and
Ω. These sounds are nick-named moving ripples. The parameter w is sometimes called the
ripple velocity or rate and Ω is the ripple frequency, ripple peak density, or spectral scale. The
dynamic spectra of a several moving ripples, produced with different combinations of w and Ω,
are illustrated in Figure 3.

Moving ripples are useful because they form the basis for the Fourier decomposition of the
spectro-temporal domain, i.e., over the finite extent t ∈ [0, T ] and x ∈ [0, X], the real function
S is completely and uniquely specified by the Fourier series (Papoulis, 1962):

S(t, x) =
∞∑

k=−∞

∞∑
l=−∞

ak,l exp {j[2π(wkt+ Ωlx) + ψk,l]} . (10)

where

wk =
k

T
, Ωl =

l

X
. (11)

The terms in this sum come in ‘complex-conjugate’ pairs, such that ak,l = a−k,−l, wk =
−w−k, Ωl = −Ω−l, and ψk,l = −ψ−k,−l. Given that cos(α) = 1

2
[exp(jα) + exp(−jα)], each such

pair corresponds to a single moving ripple (9).

2Negative frequencies are ignored here, since they provide no additional information.
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Figure 3: The dynamic spectra of various moving ripples are illustrated (left), along with their
locations in the ripple domain (right). The points in the upper two quadrants (in black) of the
ripple domain are sufficient for characterizing a ripple; points in the lower two quadrants (in gray)
are given by the complex conjugates of those in the upper two. Quadrant one, where the product of
w and Ω is positive, corresponds to ‘downward-moving’ ripples. Quadrant two, where it is negative,
corresponds to ‘upward-moving’ ripples.

Since the discrete set of velocities and densities (wk,Ωl) of the stimulus components used
in (10) are fixed by T and X, dynamic spectra are fully described by the amplitudes ak,l and
phases ψk,l of these components. As such, they form a representation equivalent to S, and can,
in fact, be computed from S via the double Fourier transform,

S̃(w,Ω) =
1

TX

T∫
0

X∫
0

S(t, x) · exp {−j2π(wt+ Ωx)} dx dt

=
∑
k

∑
l

ak,l exp {j · ψk,l} · δ(w − wk,Ω− Ωl), (12)

which produces the complex function S̃ referred to as the ripple spectrum of the stimulus.
Here, δ = 1 when its arguments are zero, and otherwise equals zero. Thus, S̃ is only nonzero at
the points S̃(wk,Ωl) = ak,l exp {j · ψk,l}. Thus, ak,l and ψk,l correspond to the magnitude and
phase of the ripple spectrum, respectively, at these points. The (w,Ω) axes on which they are
displayed are called the ripple domain. These two complementary views of dynamic spectra, in
the spectro-temporal and ripple domains, are exemplified in Figure 4(a).

A useful descriptor of S is its total power P :

P
∆
=

1

TX

T∫
0

X∫
0

S2(t, x) dx dt

=
∑
k

∑
l

(ak,l)
2. (13)
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Figure 4: (a) The dynamic spectrum S (left) of a speech segment (“Come home right away.”)
produced by a cochlea-like filter bank, and the magnitude squared of its ripple spectrum (right),
obtained from the double Fourier transform of S, are shown. Note (arrows) the prominent 4 Hz peaks
in the ripple spectrum, corresponding to the speech tempo over this one-second interval. A majority
of the power of the ripple spectrum (about 65% ) is restricted to low ripple densities (< 1 c/o) and
low modulation rates (< 8 Hz) indicated by the dashed box. (b) An STRF estimate obtained (using
the sum-of-ripples method) from ferret AI, and the amplitude squared of the corresponding ripple
transfer function are shown. See the text for a description.

Intuitively, dynamic spectra with higher total power (or just ‘power,’ for brevity) spend more
time further away from the mean level. As can be verified using (10) in the definition, P
corresponds to the sum of the squares of the ripple-component amplitudes.

3.3 The ripple transfer function

It is well known that a linear time-invariant single-input single-output system is fully charac-
terized in the time-domain by its impulse response (the first-order Volterra kernel; see (4)),
and equivalently in the frequency domain by its transfer function, i.e., its frequency response.
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Similarly, the STRF, which in (1) basically acts as an impulse response (Depireux et al., 1998b),
can also be described, in the ripple domain, by a ripple transfer function, H:

H(w,Ω)
∆
=

1

TX

T∫
0

X∫
0

STRF (τ, x) · exp {−j2π(wτ − Ωx)} dx dτ

=
∑
k

∑
l

Hk,l · δ(w − wk,Ω− Ωl), (14)

where H has been defined (for reasons to follow) as the ripple spectrum of the STRF with the
spectral axis flipped. Following (12), the magnitude and phase of H(wk,Ωl) = Hk,l then yields
the unique set of ripple component amplitudes bk,−l and phases θk,−l, that describe the flipped
STRF, i.e.,

Hk,l
∆
= bk,−l exp {j · θk,−l} , (15)

where, akin to (10),

STRF (τ, x) =
∑
k

∑
l

bk,l exp {j[2π(wkτ + Ωlx) + θk,l]}

=
∑
k

∑
l

Hk,−l exp {j2π(wkτ + Ωlx)} . (16)

An example of an STRF measured from ferret AI and the squared magnitude of the corre-
sponding ripple transfer function are illustrated in Figure 4(b).

As defined, H can also be called the ‘ripple response’ because it details the system’s responses
to individual moving ripples. This is shown by inserting (10) and (16) into the STRF functional
(1), to obtain a general form for the response:

r(t) =
∑
k

∑
l

Hk,lak,l exp {j(2πwkt+ ψk,l)} (17)

Thus, the response to any given stimulus consists of the sum of the responses to each of the
individual stimulus ripple components (wk,Ωl). The response to each component is sinusoidal,
with a frequency wk, and an amplitude scaled and phase shifted, relative to the stimulus, by
the magnitude and phase of H(wk,Ωl).

Besides describing the structure of the STRF, H provides a useful complementary view,
mediated by the properties of the Fourier transform, of the functionality of the STRF; common
neuronal descriptors such as excitatory and inhibitory tuning, spectral and modulation tuning
bandwidth, latency, and memory can all be derived from the ripple transfer function (Kowalski
et al., 1996a; Depireux et al., 1998b). Moreover, seemingly complex features of the STRF
can translate to simple functionality as described by H. For example, the transfer function
of Figure 4(b) is band-pass in w, because this neuron was only responsive to a certain range
of temporal modulation frequencies. This is also reflected (and perhaps determined) by the
temporal pattern of excitatory and suppressive influences on the neuron, evidenced by the
STRF. Furthermore, the slanted orientation of the STRF indicates that this neuron responded
most strongly to rising frequencies. This is corroborated by the the magnitude of H, which is
strongest in the second and fourth quadrants, corresponding to ‘upward-moving’ ripples.
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3.4 Dynamic ripple analysis

Because the STRF can easily determined from H by (16), and H details a neuron’s responses to
moving ripples, the STRF can be estimated by presenting various moving ripple stimuli, one at a
time, and measuring the amplitude and phase of the responses (at the appropriate frequencies
wk). This procedure is very much akin to conventional sinusoidal linear-system analysis; if
the right combination of sinusoids are presented to the system, the important features of the
ripple transfer function, and hence the STRF, can be characterized. Subsequently, responses
to arbitrary dynamic spectra can be predicted via (17). This is the crux of the dynamic ripple
analysis method (Kowalski et al., 1996a; Kowalski et al., 1996b; Depireux et al., 1998b).

An important advantage of this method is that, for every stimulus-response pair, all of the
stimulus power is concentrated at a single ripple (wk,Ωl) and all of the (linear) response power
is concentrated at a single frequency wk; hence, each point on the ripple transfer function Hk,l

is measured with maximal signal power. However, the chief disadvantage of this method is the
time required to present all of the stimuli necessary to build a complete characterization of the
transfer function. Typically, only two perpendicular cross-sections are measured within each
quadrant of H — one in which Ω is varied while w is fixed and vice versa. The remainder
of the quadrant is then estimated by the cross-product of these two sections. In doing so, it
is presumed that the actual transfer function is quadrant separable (Kowalski et al., 1996a;
Depireux et al., 1998b).

3.5 Spectro-temporal reverse correlation

Preliminary studies have suggested that the quadrant separability assumption is reasonable for
neurons in ferret AI (Kowalski et al., 1996a; Depireux et al., 1998a; Depireux et al., 1998b).
However, it is possible that spectro-temporal processing in other auditory centers is not well
described by quadrant separable STRFs. A more general approach to STRF estimation, which
can be used to avoid such a priori assumptions about the structure of the STRF, is offered
by the spectro-temporal reverse correlation method. The method was previously cast within a
stochastic framework. Now, we have the tools to reevaluate it in the ripple domain.

First, it is noted that the measured response, R, may contain, in addition to the ‘linear
portion’ r produced by the STRF functional, another portion e due to non-linear and random
aspects of the system transformation which are not described by the STRF:

R(t) = r(t) + e(t). (18)

In the following, we will refer to the ‘ideal linear case’ as the case in which the response is
completely specified by the STRF, i.e., e(t) = 0.

The spectro-temporal reverse-correlation function C, is obtained by cross-correlating the
dynamic spectrum of the stimulus with the measured response:

C(τ, x)
∆
=

1

T

T∫
0

S(t− τ, x) ·R(t) dt. (19)

Since C has often been used, without modification, as the STRF estimate, it is of interest to
explore the conditions by which it resembles the STRF.
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Substituting (18) into (19), another useful expression for C is obtained:

C(τ, x) = c(τ, x) + ε(τ, x), (20)

where the following definitions have been made:

c(τ, x)
∆
=

1

T

T∫
0

S(t− τ, x) · r(t) dt, (21)

ε(τ, x)
∆
=

1

T

T∫
0

S(t− τ, x) · e(t) dt. (22)

Ideally, then, ε(τ, x) = 0. The remaining, linear part of the cross-correlation function c, is
derived using (10), (17), and (21):

c(τ, x) =
1

T

∑
k

∑
l

∑
k′

∑
l′
ak,lak′,l′Hk′,l′exp {j2π(−wkτ + Ωlx)}

· exp {j(ψk,l + ψk′,l′)}
∫ T

0
exp {j2π(wk + wk′)t} dt

=
∑
k

∑
l

∑
l′
ak,la−k,l′H−k,l′exp {j[2π(w−kτ + Ωlx) + ψk,l + ψ−k,l′ ]}. (23)

This function contains the sum of the cross-correlations between each stimulus ripple com-
ponent (wk,Ωl) and each response component (wk′). Those terms for which k′ 6= −k (i.e.,
wk′ 6= −wk) integrate to zero over the stimulus duration, i.e., they are temporally orthogonal.
The remaining terms (for which k′ = −k) are naturally divided into two groups: the ‘self terms’
cs, for which l′ = −l, and the ‘cross terms’ c×, for which l′ 6= −l:

c(τ, x) = cs(τ, x) + c×(τ, x). (24)

Each self term results from the cross-correlation between a particular stimulus ripple com-
ponent and the corresponding response component evoked by it via the STRF functional. In
comparing the self terms with the form of the STRF (16), it is immediately evident that they
consist of STRF components weighted by the squared amplitudes of the stimulus components,
i.e.,

cs(τ, x) =
∑
k

∑
l

(ak,l)
2H−k,−lexp {j2π(w−kτ + Ωlx)} , (25)

except that that the recovered STRF components actually correspond to the stimulus compo-
nents with the opposite modulation direction (thus the −k). This is essentially because, as
defined, the time axis of the stimulus indicates progression whereas the time axis of the STRF
indicates precedence. Nevertheless, it should be apparent that if the ak,l are relatively constant
wherever Hk,l is of significant magnitude, the self terms should resemble the STRF, aside from
an over-all scale factor.

However, the cross terms bear no special resemblance to the STRF; although they do depend
on the form of the STRF, the cross terms also depend on the phases of the stimulus components
and are ‘smeared’ over all Ω:

c×(τ, x) =
∑
k

∑
l

∑
l′ 6=−l

ak,−lak,l′Hk,l′exp {j[2π(wkτ + Ωlx)− ψk,−l + ψk,l′ ]} . (26)
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Cross terms arise when there are multiple stimulus components with the same modulation
frequency |w|. As illustrated in Figure 5, although they have different ripple densities, such
components evoke identical (i.e., overlapping) response frequencies, which sum to a single ob-
served response component. This will, in turn, be correlated with every stimulus component
having that same modulation frequency. The portion of the response not due to a particular
stimulus component, but which is temporally correlated with it, constitutes a cross term.

r2(t)
S2(t,x)

H

S1(t,x)

H

r1(t)

t

x

r3(t)

= r1(t) + r2(t)

S3(t,x)

 = S1(t,x) + S2(t,x)

H

Figure 5: The responses r1 and r2 of this STRF-system H, to the ripple stimuli S1 and S2 with
identical modulation rates |w|, are sinusoids with identical frequencies. Thus, the response r3 to
the sum of these stimuli S3 is also a sinusoid of the same frequency. Consequently, one cannot
unambiguously derive the form of the ripple transfer function H at the points corresponding to S1

and S2 from the response to S3.

Unfortunately, although the self terms and cross terms have been conceptually separated,
they are not separate per se because they have overlapping ripple spectra. Moreover, the cross
terms are in general of the same order of magnitude as the self terms. Thus, for arbitrary
stimulation, there is no guarantee that C will closely resemble the STRF, even if the system
is completely linear and S is spectro-temporally ‘rich’. This is especially problematic for brief
stimuli, when T is comparable to the memory of the system. In this case, the cross terms,
which are relatively unstructured and diffuse, will be entirely manifest over the same range of
latencies that the STRF components are expected to be manifest.

4 The sum-of-ripples approach

Above, it was shown how, by use of the Fourier series, the dynamic spectrum S of any given
stimulus can be described as a sum of ripples. It was found that, in general, non-idealities of
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the dynamic spectrum, manifest by significant cross terms c× and irregular ripple-component
amplitudes, will cause the spectro-temporal cross correlation function,

C(τ, x) = cs(τ, x) + c×(τ, x) + ε(τ, x), (27)

to be significantly different from the STRF, even in the ideal linear case, i.e., ε(τ, x) = 0. These
non-idealities might be corrected for a posteriori (Eggermont et al., 1983b; Theunissen et al.,
1998), but the correction procedure can be difficult and time consuming, in general requiring
the computation and delicate manipulation of large multi-dimensional correlation matrices.
The considerable error associated with these procedures may in turn propagate to the STRF
estimate (Eggermont et al., 1983b).

An alternative and considerably simpler approach is to create stimuli for which the correction
procedure is trivialized. Such is the credo of the ‘sum-of-ripples approach’, where deterministic
dynamic spectra are conscientiously designed using a finite sum of ripples. Considering the
results so far, the design process is primarily focused on three issues: equalization of ripple-
component amplitudes, minimization of the cross-term power, and maximization of the self-term
power. Given experimental constraints, this leads to the design of short-duration stimuli whose
structure is enriched with those spectral and temporal qualities germane to the auditory locus
under study, and which consist only of ripples that are mutually temporally orthogonal.

4.1 Stimulus synthesis

The general expression used for the stimulus synthesis,

S(t, x) =
N∑
i=1

2aki,li cos {2π(wkit+ Ωlix) + ψki,li} , (28)

details the design of the dynamic spectrum with the sum of N distinct moving ripples. As
before, the ripple densities and velocities available for selection depend on the duration, T , and
bandwidth, X, of the stimuli, through the relations given in (11). To preserve the notation of
(10), the particular ripples chosen are parameterized by the list of indices k = [k1, k2, · · · , kN ] ∈
(−∞,∞) and l = [l1, l2, · · · , lN ] ∈ [0,∞), corresponding to the points (wki ,Ωli) located in the
upper two quadrants of the ripple domain. In exception are the points along the left side of the
w axis (w < 0,Ω = 0) which, being already specified by the complex conjugates of the points
on the right, must be excluded from this list. Consequently, in the stimulus analysis expression
(10), there will be 2N terms for which ak,l is non-zero since, as defined,

ak,l =
N∑
i=1

aki,li [δ(k − ki, l − li) + δ(k + ki, l + li)] . (29)

These correspond directly to the N points above plus an additional N points at the complex-
conjugate locations (−ki,−li) in the lower two quadrants (which includes the left side of the w
axis). In practice, S also has a mean sound level a0,0 which is set to a reasonable, intermediate
value.

To facilitate the recovery of the STRF from the self terms, the stimuli are constructed with
ripples of equal amplitudes, i.e., aki,li = a for all 1 ≤ i ≤ N . Consequently, the deconvolution
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procedure generally required to recover the STRF from cs reduces to a division by a known
scalar; using (29), (25) reduces to

cs(τ, x) = a2 ·
N∑
i=1

[H−ki,−liexp {j2π(w−kiτ + Ωlix)}+Hki,liexp {j2π(wkiτ + Ω−lix)}]

∆
= a2 · STRF (τ, x;−k, l), (30)

where STRF (τ, x;−k, l) denotes a sum over the set of STRF components parameterized by
the indices −k and l, i.e., it is the STRF filtered through the 2N points in the ripple domain
at which the time-reversed stimulus has support.

It is desired for the magnitude of the self terms, and thus a, to be maximized, so that they
will have a robust presence in C. For a given N , this is equivalent to maximizing the stimulus
power P = 2Na2. However, there are constraints on P due to the limited dynamic range of S;
the stimulus’ sound level cannot be modulated beyond certain extreme values (e.g., below zero
and above damaging levels). Therefore, the phases of the stimulus components are typically
randomized, or otherwise chosen to reduce the ‘peakiness’ of the dynamic spectrum. Intuitively,
this allows one to pack more power over a limited dynamic range (Boyd et al., 1983).

The range of ripples used to build the stimulus (i.e., k and l) should be relevant to the
auditory locus being studied, i.e., they should lie within the expected non-zero extent of the
ripple transfer function. For example, in mammal AI it has been found that a great majority
of neurons respond only to temporal modulations from about 4 to 40 Hz and to spectral
modulations within 0 to 2 c/o (Langner, 1992; Schreiner and Calhoun, 1995; Shamma et al.,
1995; Kowalski et al., 1996a; Depireux et al., 1998b). A stimulus tailored for AI, which contains
two-hundred constant-amplitude random-phase ripples arranged within these bounds, is shown
in Figure 6(a). In contrast, a stimulus constructed for use in the inferior colliculus (IC) is shown
in Figure 6(b). The main difference between the two stimuli is the inclusion of much higher
modulation rates in the IC stimulus, because of the sensitivity to higher rates known to exist
in this locus (Langner, 1992).

While it is obviously paramount for the stimulus to contain relevant spectral and temporal
modulations, the main reason to restrict the ripple spectrum as such is that the inclusion of
additional ripples doesn’t improve the reconstruction of the STRF; it only serves to decrease a,
and thus the self-term power. This has been sketched in Figure 7. In the limit, as the number
of ripples N extends to infinity, the stimulus becomes spectro-temporally ‘white.’ However,
since P is limited, the ripple amplitudes must all decrease by

√
N in the process.

4.2 Cross-term removal by phase averaging

Dynamic spectra such as that shown in Figure 6 are efficacious in that they contain the full
range of ripple components needed to accurately reconstruct the STRF. However, in general
such stimuli present a problem in that they contain multiple components with common ripple
velocities, resulting in the generation of cross terms in the spectro-temporal cross-correlation
function C. One way to remove the cross terms, detailed in this section, is by ‘phase averaging’.
This method has been used for STRF estimation in ferret AI (Shamma et al., 1998). Although
it has since been supplanted by the preferred ‘TORC method,’ detailed in the next section, the
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Figure 6: Shown here are examples of sum-of-ripples stimuli used for STRF estimation (phase-
averaging method; see Section 4) in ferret AI (a) and IC (b). Each stimulus is composed of a range
of constant-amplitude, random-phase ripples presumed, from prior experiments, to be relevant to
the corresponding auditory locus. Above, the spectro-temporal envelopes (Depireux et al., 1998b)
are shown. Below, the ripple content of each is indicated.

phase-averaging method provides a valuable view of how accurate STRF estimation is, in prin-
ciple, possible with stochastic and ergodic stimulation, for whom time averaging is equivalent
to phase averaging (Wiener, 1958; Victor and Knight, 1979).

The phase-averaging method takes advantage of the fact that the phases of the cross terms
(26) depend on the phases of the stimulus components Ψ = [ψk1,l1 , ψk2,l2 , · · · , ψkN ,lN ], and so
their expected (average) value over all sets of stimulus phases is zero, i.e.,

Eψ {c×(τ, x; Ψ)} =
1

(2π)N

2π∫
0

c×(τ, x; Ψ) dΨ = 0, (31)

as long as the phases ψki,li each vary uniformly over an interval of 2π radians.
Using (27), (30), and (31), the expected value of C is then

Eψ {C(τ, x)} = cs(τ, x) + Eψ {ε(τ, x)}
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Figure 7: The ripple spectra of two hypothetical stimuli are shown. The vertical axis indicates the
amplitude squared of the ripple components at each point (w,Ω). The total power P = 2Na2

thus corresponds to the total volume of the box. The shaded volume indicates that portion ‘seen’
by a neuron that is only responsive to a central region of w’s and Ω’s. Although the two stimuli
have identical total power, stimulus (b), with power spread outside the relevant range of the ripple
domain (e.g., white noise or tones), will on average evoke much weaker responses.

= a2 · STRF (τ, x;−k, l) + Eψ {ε(τ, x)} (32)

since the self terms do not depend on Ψ. In the ideal linear case, then, the expected value of
C is identical to the self terms, which bear a scalar relationship to the STRF components. In
practice, however, this expected value cannot be met exactly, but must be approximated either
as an average over a sufficiently long time, or over a sufficiently large number of random-phase
stimuli. Below, a multiple-stimulus phase-averaging procedure is detailed.

A total of M stimuli are used for the phase average. The ith stimulus, Si(t, x; Ψi), is
constructed with the same set of constant-amplitude ripples but with a new, random set of
phases Ψi drawn from a uniform distribution. Eq. (32) is then approximated by averaging C
over M stimulus-response pairs, denoted by 〈C〉M :

〈C(τ, x)〉M =
1

M

M∑
i=1

Ci(τ, x; Ψi), (33)

where Ci is the cross-correlation of the ith stimulus-response pair. Finally, the phase-average
STRF estimate is obtained by dividing (33) by a2 = P/2N :

STRFest(τ, x) =
1

a2
〈C(τ, x)〉M

= STRF (τ, x;−k, l) +
2N

P
{〈c×(τ, x)〉M + 〈ε(τ, x)〉M} . (34)

The random-phase-averaged cross terms 〈c×(τ, x)〉M scale in magnitude by approximately
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1/
√
M . Thus, the error power, PE,

PE
∆
=

1

TX

T∫
0

X∫
0

{STRFest(τ, x)− STRF (τ, x;−k, l)}2 dx dt (35)

will be reduced roughly by 1/M . Simulation results of this method are shown in Figure 8(a),
and results obtained from ferret AI can be also seen in Figures 8(b) and 10(b).
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250 ms

5
 o
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STRF(τ,x)  M=5STRFest(τ,x)

(a)
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5
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 M=5 M=25STRFest(τ,x)
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Figure 8: (a) Simulation results of the phase-averaging method using ideal linear data. Shown are
the estimates after and 5 and 25 stimuli, as noted. (b) Experimental results from ferret AI. For all
stimuli, N = 96, X = 5 oct., T = 250 ms., |w| ≤ 24 Hz. and |Ω| ≤ 1.6 c/o. For the experimental
results, delivered acoustic waveforms were constructed from their predetermined spectro-temporal
envelopes, as detailed in (Depireux et al., 1998b). PSTH’s (with 1 ms. bins) from single neurons,
constructed from 100 periods T of each stimulus, were used as responses. For additional results,
see also Figure 10(b).

4.3 Temporally-orthogonal ripple combinations

Because the STRF functional dictates a two-dimensional to one-dimensional input-output do-
main transformation, separate (i.e., orthogonal) stimulus components can evoke overlapping
response components (as in Figure 5). This produces an initial ambiguity in the STRF esti-
mate, manifest by the cross terms in (23). Above, it was shown that these cross terms can
be removed by phase-averaging but, like the white-noise approach, an infinite amount of time
is required to achieve error-free STRF estimation. Thus, with the phase-average method, an
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acceptable error level may not always be practically achievable, even if the system were linear
and noiseless.

In order to reap the full benefits that can be attributed to the sum-of-ripples approach,
the stimulus components can be chosen more carefully so that they all evoke separate response
frequencies. This is a similar motivation to that used in the development of the time-domain
sum-of-sinusoids method of measuring non-linear system kernels (Victor and Knight, 1979; Vic-
tor and Shapley, 1980). In the current application, this is accomplished by only superimposing
moving ripples whose velocities all differ in absolute value, i.e.,

|wk| 6= |wk′| , (36)

for all k 6= k′. Through (11), this is equivalent to the restriction |ku| 6= |kv| for all u 6= v for the
elements of k used in the stimulus synthesis (28).

Such ripples are called ‘temporally orthogonal’ since their temporal correlation is zero, i.e.,

T∫
0

{[ak,l cos(2πwkt+ 2πΩlx+ ψk,l)] · [ak′,l′ cos(2πwk′t+ 2πΩl′x+ ψk′,l′)]} dt = 0 (37)

for any |wk| 6= |wk′|. A stimulus composed of two or more such ripples is referred to as a
temporally-orthogonal ripple combination (TORC).

Since there is not any component overlap in the STRF-based response to a TORC, each
linear response component is temporally orthogonal to every stimulus component except for the
one responsible for evoking it. Therefore, the cross terms are identically zero, and C reduces
directly to

C(τ, x) = a2 · STRF (τ, x;−k, l) + ε(τ, x), (38)

without the need for any averaging. As such, the STRF components at (−k, l) are recovered,
by simply dividing C by a2, with an accuracy which immediately surpasses the capabilities of
the phase-averaging method.

Along with the temporal orthogonality restriction comes some additional challenges for
dynamic-spectral design, because there is less flexibility for the positioning of stimulus com-
ponents within the significant extent of H. Below, two stimulus configurations, which have
proved to be useful in experiments and simulations, are detailed.

With TORC method I, a set of N ripples, deemed adequate to reconstruct the STRF, is
equally subdivided into a group of M TORCs. One such stimulus set is shown in Figure 9(a).
In this particular design, the individual stimuli span different rows in the ripple domain; each
TORC was built using a single ripple density and a range of ripple velocities. Consequently,
each stimulus-response pair is used to measure a single row of H. This design is interesting
because it can be used to directly investigate how the dynamical processing of the system
changes at different levels of spectral-peak density.

If some stimulus power can be sacrificed, one can alternatively use TORC method II: a single
TORC with a longer duration. This allows for finer resolution in the w direction (through (11)),
and thus greater flexibility for the positioning of ripple components. This approach is illustrated
by the stimulus shown in Figure 9(b), which covers a portion of the ripple domain relevant to
AI while fulfilling the temporal orthogonality condition. The stimulus is sixteen times as long
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Figure 9: (a) TORC method I. The indicated ripple content (black and gray points) refers to that of
the entire stimulus ensemble. The dynamic spectrum of several individual stimuli (i–vi), are shown.
The ripple content of each is indicated by the black rows of points similarly labeled. (b) TORC
method II. The stimulus shown has roughly the same ripple content and duration as that of the
entire ensemble in (a). Because of its longer duration, the 0.25 Hz spacing allows a more clever
positioning of ripple components. Note that none of the components have the same modulation
rate |w|.

as the stimuli in 9(a). However, it still spans only four seconds, corresponding to the 0.25 Hz
spacing between ripple components.

These two TORC design strategies can be merged into a single expression for the STRF
estimate:

STRFest(τ, x) =
2(N/M)

P

M∑
i=1

Ci(τ, x)

= STRF (τ, x;−k, l) +
2N

P
〈ε(τ, x)〉M . (39)

Here, the Ci are added, not averaged, and then scaled by 1/a2. Note that the indices k and l
now refer to the ripple content of the entire set of M stimuli, and each stimulus (indexed by i)
contains an equal-sized portion N/M of a total of N ripples.

Finally, PE in this case is

PE =
(

2N

P

)2 T∫
0

X∫
0

{〈ε(τ, x)〉M}
2 dx dt. (40)

If e(t) = 0, PE = 0. Thus, perfect recovery of the STRF is now achievable in the ideal case.
In Figure 10, STRF estimates produced by the TORC methods are illustrated, and com-

pared to the phase-averaging method. Both for ideal, simulated data (a) and for actual data
from ferret AI (b), the TORC estimates are apparently superior in all cases (see also Figure 8).
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Figure 10: (a) Noiseless, linear simulation of TORC method I (M = 15) and TORC method II
(M = 1). (b) Comparison of experimental results from ferret AI, produced with TORC method I
(M = 15), and by phase-averaging with stimuli akin to that used for Figure 8 (M = 25). For all
stimuli, T = 250 ms., except T = 4 sec. for the TORC II stimulus.

4.4 Non-idealities

It has been shown that, if a neuron’s response is completely determined by the STRF functional,
the TORC method achieves perfect STRF estimation by avoiding the generation of cross terms
in C. However, as the experimental results suggest (Figure 10(b)), in reality the remaining
error power PE (40), is different from zero. The source of this estimation error is e (18), the
portion of the response not accounted for by the STRF. Thus, like e, it may include a random
element due to noise, and a deterministic element due to system non-linearities.

For spiking systems, the PSTH is likely to be a primary source of estimation error. As
evident in Figure 11, this error is manifest over a broad range of frequencies. With general
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stimulation, it will, in turn, be erroneously and randomly correlated with a broad range of
stimulus components, thus creating an unstructured variability in the STRF estimate. Fortu-
nately, the error, having resulted in (22) from a cross-correlation of e with S, is restricted to the
same portion of the ripple domain as the stimulus ensemble. Thus, sum-of-ripples estimates
can be considered filtered versions of estimates obtained with general stimulation, such that
only those ripple components expected to be strongly manifest in the STRF appear in the
estimate. Consequently, much of the noise, especially at high-frequencies, that has been typical
of published STRF estimates and has necessitated the use of smoothing filters and thresholds,
can be avoided.

250 mstime  t
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sp
/s

ec

100frequency w (Hz)

(a)

(b)

(c)

25

Figure 11: The response error due to the PSTH approximation improves with the number of spikes.
Spike histograms (right), created with a 5 ms bin width, and their corresponding power spectra
were created with 20 (a), 40 (b), and 100 (c) periods of a 250ms TORC (method I), and contain
65, 191, and 472 spikes, respectively. The superimposed dashed curve corresponds to the smooth
response predicted by this neuron’s STRF.

Furthermore, as seen in Figure 11, the quality of the PSTH approximation generally im-
proves as more spikes are used in the histogram. To benefit this cause, the sum-of-ripples
stimuli are trivially made periodic without compromising their structural idealities. Since the
temporal frequencies wk used to design the stimulus are commensurate with period T , period-
icity is achieved simply by extending the total stimulus duration include as many repetitions
of the stimulus as necessary.

Eq. (40) predicts that PE will decrease quadratically with increases in the stimulus per-
component power. While this may be true for the random portion of the error, the deterministic
(non-linear) portion of the error term, being systematically related to the stimulus, cannot in
general be reduced by increasing the stimulus strength. If anything, its its contribution will
become more apparent, the degree to which depends on the degree of the non-linearity.

As for the structure of this systematic error, one can consider the difference between the
first-order Volterra v1 and Wiener w1 kernels for a third-order, single-input system (Eggermont,
1993):

w1(τ) = v1(τ) + 3P
∫
v3(τ1, τ2, τ2) dτ2. (41)
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Similarly, there is expected to be a systematic difference between the estimated and actual
STRFs if the system contains higher-order non-linearities of the same parity as the STRF.

This phenomenon can also be understood from a sum-of-sinusoids standpoint. For example,
the response of a cubic non-linearity to a sum of sinusoids contains frequencies that result from
additive or subtractive combinations of any three input frequencies (wk ± wl ± wm), which
always includes frequencies that overlap with the linear response (Victor and Shapley, 1980;
Victor, 1991). Combination frequencies due to quadratic non-linearities (wk ± wl) may also
overlap with the linear response; however, unlike the cubic contribution, they can be removed
relatively easily, e.g., using the inverse-repeat method (Swerup, 1978) (with respect to the
dynamic spectrum). Alternatively, it is possible to choose the input frequencies so that there
is no overlap between the quadratic and linear portions of the response (Victor and Shapley,
1980). Of course, if non-linearities are evident, they should ultimately be incorporated into the
model. This, however, is beyond the scope of this paper.

5 Discussion and summary

Spectro-temporal reverse correlation was developed as a means to simultaneously measure the
interdependence of several important physiological properties of auditory neurons—including
frequency tuning, lateral inhibition, latency, and modulation rate tuning—related to both spec-
tral and temporal aspects of stimuli (Aertsen and Johannesma, 1980; Aertsen et al., 1980a;
Aertsen et al., 1980b). The spectro-temporal receptive field (STRF), thence born of empiri-
cism, promised descriptive capabilities transcending those of separate spectral and temporal
measures (Aertsen et al., 1980a; Hermes et al., 1981; Eggermont et al., 1981). Subsequently,
the theory of the STRF as a functional property of neurons, characterizing a comprehensive
‘spectro-temporal sensitivity,’ independent of the means used to measure it, was further de-
veloped, and relations were drawn between the STRF and the Volterra and Wiener functional
expansions (Aertsen and Johannesma, 1981b; Hermes et al., 1981; Eggermont et al., 1983c).

The Volterra and Wiener series, in all of their mathematical elegance, are not biologically
motivated constructs. Therefore, the close correspondence between the second-order Volterra
functional and the STRF functional represents a unique opportunity to join empiricism with
theoretical rigor in the study of the auditory system. In doing so, the Volterra parallel suggests
that the input to central auditory neurons may be represented by members of a specific class of
(quadratic) joint time-frequency representations of the stimulus. If the representation actually
employed is a more complicated functional of the stimulus waveform (such as a that produced
by a non-linear cochlear model (Carney and Friedman, 1998)), it may be difficult to strictly
compare the corresponding STRF to any one term in the Volterra or Wiener expansions (with
respect to the waveform). Of course, the resulting model may be more concise; intuition should
not be abandoned just to fulfill the requirements of the Volterra series. Intuition brought the
STRF into use; the Volterra and Wiener series have only been useful insofar as they have aided
in evaluating the completeness of the STRF, and the challenges inherent with its measurement.

The evaluation of the white-noise approach to STRF estimation has led to the conclusion
that stationary Gaussian noise stimulation is not well suited for most auditory areas, and
particularly those most central. It is apparent that improvements should be made in at least
three aspects. First, the stationarity of the stimulus is often cited as being an undesirable;
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it is thought that stimulation should be more ‘dynamic’ and ‘natural,’ (Smolders et al., 1979;
Eggermont et al., 1983c; Yeshurun et al., 1985; Nelken et al., 1997; Nelken et al., 1999).
A second (and related) improvement is that, for efficient laboratory use, stimulation should
be brief and restricted to that which elicits responses that are reliably measured. Finally,
while fulfilling these criteria, it is obviously desired for the structure of the stimulus ensemble
to be such that the simple act of spectro-temporal reverse correlation produces an accurate
reconstruction of the STRF.

The realization of these improvements depends strongly on the adopted theoretical frame-
work. For example, the stochastic and multiple-input framework in which STRF estimation
is typically cast suggests that power fluctuations across discrete frequency bands, i.e., ‘chan-
nels’ of the dynamic spectrum should be uncorrelated, to prevent cross-channel mixing in the
computation of the stimulus-response cross-correlation C (Eggermont et al., 1983b). While
enforcing this condition, improvements inevitably focus solely on the temporal structure within
the individual channels (Eggermont et al., 1983b; deCharms et al., 1998; Kvale et al., 1998).

We have adopted a new framework, under which further improvements are realized by
manipulating both spectral and temporal aspects of stimuli simultaneously. Our analysis,
inspired by the linearity of the STRF functional, was based upon a Fourier decomposition
of the spectro-temporal domain into two-dimensional sinusoidal components, ‘moving ripples,’
each of which embodies a unique intersection of spectral-peak density, modulation rate, and
modulation direction. This put the analysis of the system on equal footing with that of single-
input linear systems; the stimulus has a ‘ripple spectrum,’ and the system has a ‘ripple transfer
function’ which describes its linear response to moving ripples. This led directly to an analytical
expression, in terms of these quantities, for C which holds for any given stimulus. From within
this framework, we have addressed each of the proposed improvements.

The labels ‘dynamic’ and ‘natural’ are related not only to the total power of the dynamic
spectrum, but also the way that it is distributed among its ripple components. White noise,
for example, has power spread thin over all ripple components; presumably, it gives rise to a
stationary percept because the power relegated to the narrow range of spectral-peak densities
and modulation rates at which human observers can perceive changes (Chi et al., 1999) is
relatively weak. The same can be said for auditory neurons; at the level of AI, the range
of densities and rates to which neurons are responsive is quite narrow. Interestingly, it also
over this range that natural sounds seem to hold their energy (Attias and Schreiner, 1997; Chi
et al., 1999). Thus, in realizing dynamic stimulation whose structure approaches that of natural
sounds, the power of the dynamic spectrum should be focused over this relevant range of ripple
components. This is not possible while keeping the channels uncorrelated; the ripple spectrum
of such a stimulus is dispersed over all ripple densities.

Besides the prospect of augmenting the applicability of the STRF estimates (e.g., for pre-
dicting responses), there are other practical reasons for restricting the ripple spectrum of stimuli
as such. By dedicating the stimulus power wholly to those components that are relevant to
a given locus, and thus maximizing the strength of the stimulus ‘seen’ by that system, the
strength of the STRF-mediated response in that locus is maximized. This is especially helpful
in biological systems identification, because there is a significant amount of measurement noise
that has to be overcome. Further gains in signal-to-noise ratio are made possible by the brief and
periodic nature of the sum-of-ripples stimuli, which brings a computational advantage as well;
the stimulus-response cross-correlation need only be performed between the period-averaged
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response and one period of the stimulus, whose structure is known ahead of time. In total,
all of these improvements bring to the laboratory the greater possibility of reliably measuring
meaningful STRFs in a short period of time, in loci where previous attempts have failed.

Paramount to such concerns, in order for C to be an undistorted representation of the STRF,
it was shown, after separating C into ‘self terms’ and ‘cross terms,’ that two basic criteria must
be satisfied by the delivered stimulus ensemble. First, it is necessary for the ripple spectrum
of the ensemble to be flat over the significant extent of the ripple transfer function, so that
the self terms reduce to STRF components, scaled by a known factor. Subsequently, the cross
terms were identified as a primary source of estimation error, especially with brief stimuli, thus
warranting their removal.

Two strategies were outlined for removal of the cross terms. First, the phase-averaging
method, for which the stimulus’ ripple spectrum has randomly varying phase, offers insight
into how STRF estimation can be accomplished with traditional, stochastic (and ergodic)
stimulation. However, since there is a limit to the amount of averaging that can be performed in
an actual experiment, there is a practical lower limit to the estimation error caused by the cross-
terms. Due to the relatively large initial magnitudes of the cross terms which, interestingly,
partially depend on the structure of the STRF, this limit may not be acceptable in all cases.

A preferable strategy, through which the cross terms were completely avoided, involves the
use of deterministic stimuli whose ripple components all differ in modulation rate—TORCs—
and thus all evoke different response frequencies. With the TORC method, no stimulus aver-
aging is needed and, therefore, it is possible to achieve error-free STRF estimates with stimuli
having a duration comparable to the memory of the system. Also, due to this brevity, and the
predetermined structure of the stimuli, it has been possible, once recording the response, to
compute the STRF estimate in a few seconds, ‘on the fly’. This is in stark contrast to other,
stochastic estimation schemes.

That perfect STRF estimation is possible with TORC stimulation might be surprising, since
different channels of a TORC can be strongly correlated. Fortunately, the TORC mechanism
can be illuminated in the same light as ideal-white noise, from within a multiple-input frame-
work. By inserting the STRF functional (1) directly into (19) and rearranging terms, one
obtains for the spectro-temporal cross-correlation function:

C(τ, x) =
∫ ∫

STRF (τ ′, x′) · Φ(τ − τ ′, x, x′) dτ ′ dx′ + ε(τ, x). (42)

Here,

Φ(τ − τ ′, x′, x)
∆
=
∫
S(t− τ ′, x′)S(t− τ, x) dt (43)

is a function which, in the discrete channel interpretation, describes the cross-correlation be-
tween two channels x′ and x of the stimulus’ dynamic spectrum. Thus, a single channel x
of C is produced by the sum of the convolutions of every channel x′ of the STRF with the
cross-correlations between the channels x′ and x of the stimulus. This rather complicated ex-
pression illustrates the difficulty in disentangling the STRF from C for an stimulus of arbitrary
structure.

It can be shown, however, that for both an ideal-white dynamic spectrum and for a TORC,
but certainly not in general, this expression reduces to a relatively simple two-dimensional
convolution between the STRF and a spectro-temporal filter Φ(τ, x); for these two special
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cases, Φ depends only on the channel difference, x− x′, and is given by the (two-dimensional)
auto-correlation of S (see Appendix B).

These ‘auto-correlation filters’, for an ideal-white stimulus and for the TORC of Figure
9(b) (method II), are compared in Figure 12. For white noise (a), Φ(τ, x) = δ(τ, x), since the
only non-zero channel cross-correlations are those between each channel and itself, and are all
identical, impulse functions. For the TORC (b), the impulse is relaxed to a sinc function in
both τ and x. This results from the restriction of the ripple spectrum to low scales and rates,
and is only allowed because of the expected smooth, band-limited nature of the STRF. Besides
the practical advantages that this restriction brings, another fundamental practical advantage
that TORCs have over white noise is that their idealities are realizable, as long as the dynamic
spectra of stimuli can be predetermined with reasonable accuracy.
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Figure 12: The two-dimensional auto-correlations of (a) ideal spectro-temporal white noise and (b)
the TORC of Figure 9(b). See the text for an explanation.

It should be noted that, although it led to the development of specific sum-of-ripples stimuli
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like TORCs, the employed Fourier analysis has nothing specifically to do with ripple stimulation.
Furthermore, its scope is not limited to any specific time-frequency representation. As long as
there is some linear relationship between the employed representation S and the response of
the system, as embodied by some STRF, the above conditions on S must be satisfied in order
for C to be justified as an accurate STRF estimate. In addition, of course, the accuracy
and completeness of the estimate depends on the satisfaction of the conditions imposed by
the reverse correlation methodology, which include time-invariance, and the lack of significant
higher-order non-linearities.

The use of moving ripples was originally inspired by the use of drifting sinusoidal lumi-
nance gratings in vision research (Valois and Valois, 1990). It is hoped that this development,
performed in a spatio-temporal-like input domain, will further facilitate the exchange of ideas
between the auditory, visual, and somatasensory sciences. For example, the principles that
make TORC stimulation successful may be applicable to the design of stimuli for use in other
sensory systems.
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Appendix

A K2 and the generalized STRF functional

A large class of time-frequency representations S of a time waveform s, including the commonly
used ‘spectrogram’, can be obtained by filtering the Wigner distribution W of s (defined in Eq.
(6)) (Cohen, 1995), i.e.,

S(t, f) =
∫ ∫

g(t′, f ′) ·W (t− t′, f − f ′) dt′ df ′. (44)

Thus, each member of this general class can be specified, via the Wigner distribution, by the
structure of its corresponding filter function g. For example, for a spectrogram computed with
a window function h(t), g is given by the Wigner distribution of h (Cohen, 1995).

Using (44) for S in (1), one obtains

r(t) =
∫ ∫

STRF (τ, f) ·
[∫ ∫

g(t′, f ′) ·W (t− t′ − τ, f − f ′) dt′df ′
]
dτ df

=
∫ ∫

STRF ′(t′, f ′) ·W (t− t′, f ′) dt′ df ′, (45)

where
STRF ′(t′, f ′) =

∫ ∫
STRF (τ, f) · g(t′ − τ, f − f ′) dτ df. (46)
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Therefore, an STRF operating on the representation S that corresponds to the filter g, is
equivalent to another STRF′ operating upon the Wigner distribution, where STRF′ is obtained
by linearly filtering the original STRF by g(t′,−f ′). If the response of the system is given
by (1) and, equivalently, (45), then we must have STRFK2(t′, f ′) = STRF ′(t′, f ′) (by the
homogeneity of the Volterra functionals) and so, via (7), the system is also described by K2

(5).
Working backwards is a bit trickier. If the system is described by (5) and, equivalently

by (8), then it can also be described by other STRFs operating on other representations S
within this general class. However, this is not true for any representation S. In this scenario,
other STRFs are obtained by inverse filtering STRFK2 with the corresponding g. Thus, g must
have support everywhere STRFK2 does in order for S to be useful. In terms of ripple spectra,
introduced in Section 3, the ripple spectrum of g cannot be zero anywhere that the ripple
spectrum of STRFK2 is non-zero, or else S will not be able to represent some of the acoustic
features that the system is responsive to.

B The TORC channel cross-correlation function

We start by restating (43), and substituting (10) for S:

Φ(τ − τ ′, x′, x)
∆
=

∫
S(t− τ, x) · S(t− τ ′, x′) dt

=
∑
k

∑
l

∑
k′

∑
l′
ak,lak′,l′ exp {j[−2π(wkτ + wk′τ

′) + 2π(Ωlx+ Ωl′x
′)]}

· exp {j(ψk,l + ψk′,l′)}
∫

exp {j2π(wk + wk′)t} dt

=
∑
k

∑
l

∑
l′
ak,−lak,l′ exp {j[2πwk(τ − τ ′) + 2π(Ωlx+ Ωl′x

′)− ψk,−l + ψk,l′ ]} .

(47)

This development parallels that pursued in (23); one can now define self terms and cross terms,
depending on whether or not they are the product of a stimulus component with itself, or the
product of two different stimulus components. In fact, the self and cross terms in (47), via the
convolution of each with the STRF in (42), are the progenitors of the self and cross terms in
(23).

By definition, no two components of a TORC are temporally correlated. Thus, only the
self terms will survive in (47). Stated more precisely, no two components of a TORC have the
same |wk|. Thus, for a given k, there is only one l such that ak,−l 6= 0. Furthermore, there is
only one l′ (= −l) such that ak,l′ 6= 0. Therefore, if S is a TORC (47) reduces to

Φ(τ − τ ′, x− x′) =
∑
k

∑
l

(ak,−l)
2 exp {j2π[wk(τ − τ ′) + Ωl(x− x′)]} . (48)

Thus, for a TORC, the cross-correlation between two channels x and x′ only depends on the
channel difference x− x′.

The the two-dimensional auto-correlation of S can be expressed, again using (10), as

α(t′, x′)
∆
=

∫ ∫
S(t− t′, x− x′) · S(t, x) dt dx
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=
∑
k

∑
l

(ak,l)
2 exp {j2π(wkt

′ + Ωlx
′)} . (49)

Regardless of the stimulus structure, α is solely a function of the time-difference t′ and the
channel difference x′. Thus, TORCs are among the special group of stimuli, which includes
ideal-white noise (none other examples are known), whose channel cross-correlation functions
Φ are given by their two-dimensional auto-correlation functions α.
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