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Depireux, Didier A., Jonathan Z. Simon, David J. Klein, and
Shihab A. Shamma.Spectro-temporal response field characterization
with dynamic ripples in ferret primary auditory cortex.J Neurophysiol
85: 1220–1234, 2001. To understand the neural representation of
broadband, dynamic sounds in primary auditory cortex (AI), we
characterize responses using the spectro-temporal response field
(STRF). The STRF describes, predicts, and fully characterizes the
linear dynamics of neurons in response to sounds with rich spectro-
temporal envelopes. It is computed from the responses to elementary
“ripples,” a family of sounds with drifting sinusoidal spectral enve-
lopes. The collection of responses to all elementary ripples is the
spectro-temporal transfer function. The complex spectro-temporal
envelope of any broadband, dynamic sound can expressed as the
linear sum of individual ripples. Previous experiments using ripples
with downward drifting spectra suggested that the transfer function is
separable, i.e., it is reducible into a product of purely temporal and
purely spectral functions. Here we measure the responses to upward
and downward drifting ripples, assuming reparability within each
direction, to determine if the total bidirectional transfer function is
fully separable. In general, the combined transfer function for two
directions is not symmetric, and hence units in AI are not, in general,
fully separable. Consequently, many AI units have complex response
properties such as sensitivity to direction of motion, though most
inseparable units are not strongly directionally selective. We show
that for most neurons, the lack of full separability stems from differ-
ences between the upward and downward spectral cross-sections but
not from the temporal cross-sections; this places strong constraints on
the neural inputs of these AI units.

I N T R O D U C T I O N

Only a few general organizational features are known in
primary auditory cortex (AI). They include a spatially ordered
tonotopic axis (Evans et al. 1965), bands of alternating binaural
response properties (Imig and Adrian 1977; Middlebrooks et
al. 1980), and a variety of other response features that change
systematically along the isofrequency planes such as thresholds
(Heil et al. 1994; Schreiner et al. 1992), bandwidths (Schreiner
and Sutter 1992), FM selectivity (Heil et al. 1992; Mendelson
et al. 1993; Shamma et al. 1993), and asymmetry of response
areas (RAs; the span of frequencies that influence, both
through excitation and inhibition, the response of a cell)
(Shamma et al. 1993). To derive a functionally coherent picture
of these maps, it is necessary to integrate these features within
a comprehensive descriptor of the unit responses; one that can

be quantitatively derived and employed to predict responses to
novel stimuli.

Traditionally measuredresponse areasare inadequate be-
cause they rarely include response dynamics and cannot be
used to predict responses quantitatively. An alternative is the
response field (RF) (Schreiner and Calhoun 1994; Shamma et
al. 1995), a static, purely spectral function analogous to the RA
except for the use of broadband sounds (but see Nelken et al.
1994; Sutter et al. 1996). A dynamic generalization of the RF
is the spectro-temporal response field (STRF), a characteristic
function of a neuron obtained using broadband sounds (Aertsen
and Johannesma 1981; deCharms et al. 1998; Eggermont 1993
and references therein; Escabi and Schreiner 1999; Kowalski et
al. 1996a; Kvale and Schreiner 1995; Theunissen et al. 2000).
A schematic of an idealized STRF is illustrated in Fig. 1.
Qualitatively, its spectral axis reflects the range of frequencies
that influence the response or firing rate of the neuron being
characterized, and its temporal axis reflects how this influence
changes as a function of time. Positive-valued regions of the
STRF describe excitatory influence, and negative regions de-
scribe inhibitory influence. The interplay between the spectral
and temporal axes can give multiple interpretations to the
STRF, e.g., as a time-evolving spectral response field or a
family of impulse responses labeled by frequency band.

Over the last few years, we have developed new methods to
derive the STRFs and characterize the responses of both single
and multiple units in the ferret AI (Kowalski et al. 1996a,b).
These methods use “moving ripples”: time-varying broadband
sounds with sinusoidal spectral envelopes that drift a constant
velocity along the logarithmic frequency axis. Figure 2 illus-
trates the spectrogram of such a stimulus. Neuronal responses
are vigorous and well phase-locked to these spectral and tem-
poral envelope modulations over a range of ripple velocities
and densities. Measuring the amplitude and phase of the locked
component of the response enables one to constructtransfer
functions. A transfer function can be inverse-Fourier trans-
formed to obtain the STRF that characterizes a unit’s dynamics
and selectivity along the tonotopic axis.

In developing these measurement and analysis methods, we
use two fundamental assumptions. The first is that the re-
sponses are substantially linear with respect to the time-varying
spectral envelope of stimuli. In particular, this implies that the
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response to the spectro-temporally rich stimulus—whose en-
velope can always be described as the sum of multiple moving
ripples—will be the sum of its responses to the individual
ripple components. This assumption was confirmed by suc-
cessfully predicting responses to the superposition of multiple
ripples (Kowalski et al. 1996b).

The second important assumption deals with the separability
of the temporal and spectral aspects of the responses. Specif-
ically we have demonstrated in other reports that temporal and
spectral transfer functions can be measured independently of
each other and then combined with a simple product to com-
pute the total transfer function (Kowalski et al. 1996a). The
importance of this finding stems from its experimental impli-
cations for measuring the STRFs and theoretical consequences
for the biophysical and functional models of the STRFs. On the
experimental side, separability makes it possible to infer re-
sponses to all ripple velocities and peak densities based on only
a pair of temporal and spectral transfer functions. Without this
assumption, measuring the two-dimensional transfer function
is difficult because of the extended times needed to collect
adequate spike counts. On the theoretical side, separability
suggests that certain features of the STRF (as we shall discuss
in detail in the following text) are formed by independent (and
likely sequential) spectral and temporal processing stages.

In our earlier study (Kowalski et al. 1996a), separability was
validated for ripples moving only in one direction (spectral
envelope moving downward in frequency), a notion also
known as “quadrant separability.” In this report, we compare
the separable functions (spectral and temporal) across upward
and downward quadrants. If the functions are the same across
quadrants, the responses are “fully separable” (i.e., they are
separable); otherwise they are quadrant separable, which is a
(specialized) form of inseparability.

Like quadrant separability, full separability has experimental
and theoretical implications. On the experimental side, fully
separable STRFs can be measured with either upward or down-
ward moving ripples. Theoretically, fully separable responses
imply an STRF that is fully decomposable into the product of
a purely temporal impulse response and a purely spectral

response field. It also implies a unit that responds equally well
to upward and downward moving ripples and hence has nec-
essarily a symmetric transfer function magnitude with respect
to direction (Watson and Ahumada 1985). By contrast, cells
that are only quadrant separable necessarily respond in asym-
metric fashion with respect to direction, i.e., are direction
sensitive.

We restrict our presentation in this paper to measurements
with singly presented moving ripples in contrast to simulta-
neously presented ripples discussed in Klein et al. (2000).

There are several goals of this paper. We present a method
of measuring the complete descriptor of the linear spectro-
temporal properties of an auditory cell, the STRF. We describe
examples of STRFs measured in AI and summarize the distri-
bution of the STRF and transfer function parameters encoun-
tered. We show that there is a directional sensitivity in the
response to the upward versus downward moving components
of a sound’s spectral envelope. This breaks the symmetry of
full spectro-temporal separability and produces quadrant sep-
arability. We propose measures to quantify quadrant and full
separability. Finally, we discuss the significance of the results
and their relationship to results from similar auditory and
analogous visual experimental paradigms.

M E T H O D S

Surgery and animal preparation

Data were collected from a total of 11 domestic ferrets (Mustela
putorius) supplied by Marshall Farms (Rochester, NY). The ferrets
were anesthetized with pentobarbital sodium (40 mg/kg) and main-
tained under deep anesthesia during the surgery. Once the recording
session started, a combination of ketamine (8 mgz kg21 z h21),
xylazine (1.6 mgz kg21 z h21), atropine (10mg z kg21 z h21), and
dexamethasone (40mg z kg21 z h21) was given throughout the
experiment by continuous intravenous infusion, together with dex-
trose, 5% in Ringer solution, at a rate of 1 mlz kg21 z h21 to maintain
metabolic stability. The ectosylvian gyrus, which includes the primary
auditory cortex, was exposed by craniotomy and the dura was re-
flected. The contralateral ear canal was exposed and partly resected,
and a cone-shaped speculum containing a miniature speaker (Sony
MDR-E464) was sutured to the meatal stump. For more details on the
surgery, see Shamma et al. (1993).

FIG. 2. Envelope of a moving ripple,w 5 2 Hz,V 5 0.4 cycle/octave,F 5
290°, with a 10 dB AM around a 60 dB base with spectral and temporal
1-dimensional sections. Ripple phase changes linearly with time and spectral
position (in octaves).

FIG. 1. An idealized spectro-temporal response field (STRF) with spectral
and temporal 1-dimensional sections. The time axis is convolved with the time
axis of the spectral envelope of a stimulus (as in Fig. 2) to predict the cell’s
response. For instance, a burst of energy between 1 and 2 kHz will produce a
maximum firing rate after about 20 ms followed by inhibition.
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Recordings

Action potentials from single units were recorded using glass-
insulated tungsten microelectrodes with 5–7 MV tip impedance at 1
kHz. Neural signals were fed through a window discriminator, and the
time of spike occurrence relative to stimulus delivery was stored using
a computer. In each animal, electrode penetrations were made orthog-
onal to the cortical surface. In each penetration, cells were typically
isolated at depths of 350–600mm corresponding to cortical layers III
and IV (Shamma et al. 1993). In many instances, it was difficult to
isolate reliably a single unit for extended recordings, and hence
several units were recorded instead. Such data were labeled “multiunit
recordings” and are explicitly designated as such and separated from
the single-unit records in all data presentations in the paper.

Acoustic stimuli

All stimuli are computer synthesized. For each unit isolated, initial
tests are carried out using tonal stimuli to measure the basic frequency
response at several intensities to determine the best frequency (BF)
and response threshold. All other stimuli used in these experiments
have broadband spectra with a sinusoidally modulated (or rippled)
envelope. We used the knowledge of the cell’s BF to adjust the
frequency range of the broadband sound so that the cell’s excitatory
and inhibitory regions lay well within the frequency range of the
sounds.

In practice, it is hard to generate noise and then shape it with filters
to a desired dynamic spectral envelope, so we generate ripples over a
range of five octaves by taking logarithmically spaced pure tones with
random (temporal) phases. The amplitudeS(t, x) of each tone is then

S~t, x! 5 L@1 1 DA z sin ~2p z w z t 1 2p z V z x 1 F!# (1)

where x 5 log2 (f/f0) is the number of octaves above the base
frequencyf0. The ripple envelope resembles a drifting one-dimen-
sional grating as illustrated in Fig. 2. Five independent parameters
characterize the ripple envelope: background level or loudness of the
stimulus (L); AM of the ripple (DA) in percentage or decibels; ripple
velocity (w) in units of cycles/s (or Hz); ripple density (V) in units of
cycles/octave; and the initial phase of the rippleF. The spectra consist
either of 20 or 100 tones per octave equally spaced along the loga-
rithmic frequency axis or with a spacing of 1 tone/Hz with an
amplitude decay producing equal power per octave. The spectra
typically span five octaves (e.g., 0.25–8 kHz) with the range chosen
such that the response area of the cell tested lay within the stimulus
spectrum. The choice of a density of 20 or 100 tones per octave does
not alter the cortical responses; hence we do not specify which density
was used.

A single-ripple stimulus at overall levelL dB SPL would typically
be composed ofN logarithmically spaced components, each atL
210 log10 (N) ' L 220 dB for N 5 101. The overall stimulus level
was chosen on the basis of threshold at BF; typicallyL was set 10–20
dB above threshold. High levels (L . 70 dB) were avoided to ensure
the linearity of our stimulus delivery system. The amplitude of a
single ripple was defined as the maximum percentage or logarithm
change in the component amplitudes. Ripple amplitudes were either
90% (linear) or 10 dB (logarithmic) modulations.

The ripple velocitiesw and ripple densitiesV used were determined
by the response properties of the neuron, but the typical range was
uwu , 25 Hz (with some units requiring up to 100 Hz) anduVu , 1.6
cycles/octaves (with some units requiring up to 4 cycles/octaves).
Single ripples were always presented withF 5 0.

By the convention established inEq. 1, a ripple whose spectral
envelope is moving downward in frequency, as in Fig. 2, has positive
w and positiveV; equivalently, it can be described by a ripple with
negativew and negativeV, and an added phase shift ofp, by Eq. 1
and the identity sin (a) 5 sin (2a 1 p). A ripple whose spectral
peaks are moving upward in frequency has negativew and positiveV,

or by Eq. 1 and the same identity, positivew, negativeV, and an
added phase shift ofp.

The stimulus bursts had an 8-ms rise/fall time and duration of 1.0
or 1.7 s, repeated every 3–4 s. All stimuli were gated and fed through
an equalizer into the earphone. Calibration of the sound delivery
system (to obtain a flat frequency response up to 20 kHz) was
performed in situ with the use of a1⁄8-in Brüel and Kjaer 4170 probe
microphone. The microphone was inserted into the ear canal through
the wall of the speculum to within 5 mm of the tympanic membrane.
The speculum and microphone setup resembles closely that suggested
by Evans (1979).

Theoretical considerations
DEFINING THE STRF. The fundamental tool to measure linearity and
separability of primary cortical cell is to measure their STRF. The
STRF is a spectro-temporal function STRF(t, x). The linear response
ratey(t) of a cell is related to its STRF(t, x) and the spectro-temporal
envelope of the stimulusS(t, x) by y(t) 5 * *dt9dxS(t9 2 t, x) z STRF(t,
x), i.e., convolution along the time dimensiont and integration along
the spectral dimensionx.

The STRF is measured through its two-dimensional Fourier trans-
form, or transfer functionT(w, V) 5 ^wV[STRF(t 2 x)], and then
inverse transformed to compute the STRF, where the coordinates dual
to t andx arew andV, respectively (see Fig. 3). By measuring the
sinusoidal component with temporal frequencyw of the response
ywV(t) of a cell to a ripple of specific ripple velocityw and ripple
densityV, we can obtain the transfer functionT(w, V) at one point in
w 2 V space (Depireux et al. 1998)

ywV~t! 5EE dt9dx9STRF~t9, x9! sin 2p@w~t 2 t9! 1 Vx9#

5 uT~w, V!u sin @2pwt 1 F~w, V!# (2)

This way, we derive the amplitudeuT(w, V)u and phaseF(w, V) of
the complex transfer functionT(w,V) by measuring the amplitude and
phase of the (real) response of the cell. Note that the use of complex
numbers is not theoretically necessary, but it does simplify the cal-
culations in the transfer function space considerably. By the definition
of the transfer function, it follows that the inverse Fourier transform
of T(w, V) is the STRF of the cell

STRF~t, x! 5 ^t,2x
21 @TwV# (3)

FIG. 3. To measure the complete ripple transfer function of an arbitrary
STRF, we would need to measure the response of the cell to all the ripples
represented by large circles. The small circles correspond to redundant ripples
by complex conjugation. The value of the transfer function along thew 5 0
axis is set to 0, because the modulation transfer function is not well defined
there. Quadrant separability permits one to measure only the responses to
ripples enclosed by the solid boxes. The transfer function in the dashed box is
equal to the transfer function in the bottom half of the vertical box but with the
opposite phase.
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Because STRF(t, x) is real butT(w, V) is complex, there is complex
conjugate symmetry

T~2w, 2V! 5 T* ~w, V! (4)

which also holds for the Fourier transform of any real function oft
andx.

DEFINING AND ASSESSING SEPARABILITY. Separability is an im-
portant property of the transfer functions. A fully separable transfer
function is one that factorizes into a function ofw and a function of
V over all quadrants:T(w, V) 5 F(w) z G(V). This implies that
STRF(t, x) is time-spectrum separable: STRF(t, x) 5 IR(t) z RF(x). In
this case, one needs only measure the transfer function for allV at a
convenientw and for allw at a convenientV. F(w) andG(V) are each
complex-conjugate symmetric [F(2w) 5 F*(w), G(2V) 5 G*(V)]
because IR(t) and RF(x) are real, so one needs only consider the
positive values of each. This dramatically decreases the number of
measurements needed to characterize the STRF.

A transfer function may also be only partially separable in that it is
separable only for ripples moving in a given direction (upward vs.
downward). In this case, the transfer function is called quadrant
separable and can be expressed as the product of two independent
functions

T~w, V! 5 H F1~w!G1~V! w . 0, V . 0
F2~w!G2~V! w , 0, V . 0

(5)

where the subscript 1 indicates thew . 0, V . 0 quadrant, and the
subscript 2 thew , 0,V . 0 quadrant (see Fig. 3). Note that by reality
of the STRF, the value of the transfer function in quadrants 3 (w , 0,
V , 0) and 4 (w . 0, V , 0) is complex conjugate to the value in
quadrants 1 and 2, respectively. In this case, the STRF is not separable
in spectrum and time but is the linear superposition of two functions,
one with support only in quadrant 1 (and 3) and one with support only
in quadrant 2 (and 4).

Separability need not be an all-or-none property but rather can be
assessed in a graded fashion. To do so, we apply singular value
decomposition (SVD) of the matrixT of measured transfer-function
values (Haykin 1996).T can be viewed as a matrix created by
sampling the ideal transfer function at regularly spaced discrete values
of w andV with random noise added to each sample. SVD decom-
posesT as

T 5 U z L z V†, L 5 diag~l1, l2, . . . ,ln!, l1 $ l2 $ . . . ,

5 O
i51

n

liui z vi
† (6)

Here † denotes the Hermitian transpose andU, V are matrices
containing “singular” row vectorsui andvi corresponding to spectral
and temporal cross-sections, respectively, of separable transfer func-
tions. Thus the SVD can be viewed as decomposingT into a linear
sum ofn separable matrices, each weighted by its ability to approx-
imateT as a weighted product of two vectors as inEq. 6,as given by
the “singular values”l’s. Because of the presence of noise in the
measurement, thel’s are all expected to be nonzero with their values
decreasing monotonically to a noise floor, which depends on the level
of the noise.

With respect to this floor, the number of significant singular values
depends on the nature of the measured transfer functionT. The closer
T is to being separable, the more dominant the first singular valuel1

will be over its counterparts, which share the residual error in a
manner that depends on the precise nature of the inseparability. We
have used this fact to define a single measure of the “distance” of the
system from separability or alternatively the “degree of inseparabil-
ity” aSVD

aSVD 5 S1 2 l1
2/S O

i

li
2DD (7)

which is the proportion ofT ’s total power (5 ¥il i
2), which is not

accounted for by its best separable approximation. Values near zero
indicate that only the first singular value has a large nonzero value
(hence the STRF is separable). Values approaching 1 indicate an
increasing dose of inseparability.

The handy measure ofaSVD brands inseparability by its strength
but otherwise reveals nothing of its nature. Therefore we examine the
origin of inseparability by other means. Specifically we shall analyze
three factors that give rise to inseparability.

1) The relative power in the first and second quadrants

ad 5
P2 2 P1

P2 1 P1

(8)

whereP1 5 power in quadrant 1 andP2 5 power in quadrant 2. Note
that power is measured by summing the squared magnitudes of all
transfer function values within the appropriate quadrant. An absolute
value ofad near one implies strong selectivity of the responses to the
direction of ripple movement and hence strong inseparability.

2) The asymmetry of the spectral transfer function aroundV 5 0 is

as 5 1 2 U ¥V.0G1~V! z G*2~V!

Î¥V.0uG1~V!u2 z ¥V.0uG2~V!u2
U (9)

where the quantity inside the large absolute value bars is the (com-
plex) correlation betweenG1(V) andG2(V). Indexas values near one
imply strong asymmetry (i.e., lack of correlation) in the transfer
function to different directions and hence strong inseparability.

3) The asymmetry of the temporal transfer function aroundw 5 0
is

at 5 1 2 U ¥w.0F1~w! z F2~2w!

Î¥w.0uF1~w!u2 z ¥w.0uF2~2w!u2
U (10)

where the quantity inside the large absolute value bars is the (com-
plex) correlation betweenF1(w) andF*2(2w). Indexat values near 1
imply strong asymmetry (i.e., lack of correlation) in the transfer
function to different directions, and hence strong inseparability.

EFFECT OF FINITE SAMPLING. We measure the transfer function of
cells by varying two parameters, ripple velocity and ripple density.
For consistency’s sake, we used the same range of parameters for a
majority of cells. However, for some cells, the transfer function has
not decreased significantly at the “edges” (for instance, in Fig. 9C, the
temporal transfer function is clearly still strong at664 Hz and above).
This is equivalent to multiplying the true transfer function by a
rectangular function which is zero everywhere except between264
and 64 Hz, over which range it is 1. In the dual Fourier space of the
transfer function space, that is, in the STRF space with coordinatest
andx, this corresponds to convolving along each dimension the STRF
with the Fourier transform of a rectangular pulse, that is, with
sin (x)/x. This leads to spurious oscillations in thedisplayof the STRF
as can be seen in Fig. 9C and others. These oscillations would
disappear if we had measured the transfer functions all the way to
their vanishing values.

Since all the characteristic parameters in this paper (see Table 1) are
derived in transfer function space, it does not affect the analysis, but
it may lead to misleading features in the STRFs.

DEVIATIONS FROM LINEARITY. Because the STRF is a measure of
the linear part of the dynamics of a cell, we only consider effects that
might modify the measurement of the first component of the Fourier
transform of the period histograms. The most prominent nonlinearities
are (approximate) half-wave rectification and compression. The half-
wave rectification is primarily due to the positivity of spike rates
(ordinarily the steady-state response to a flat spectrum is significantly
less than half the peak firing rate of the unit); the distortion of a
sinusoid due to half-wave rectification does not affect the phase of the
response, and its effect on the amplitude of the first Fourier compo-
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nent is a constant factor, independent ofw andV. The distortion due
to compression or saturation, similarly, does not affect the phase of
the Fourier transform components of the response and similarly af-
fects the amplitude only by an overall constant factor for stimuli of
moderate level.

Nonlinearities of other types, such as static nonlinearities, if they
exist, are quite small and have not shown up in our studies. Ulti-
mately, the proof of linearity, and the relevance of the STRF, is found
when one compares the predictions of the response of a cell to a new
sound compared with the actual response. We have not found any
evidence of systematic deviation between predicted and actual re-
sponse that would indicate the presence of static nonlinearities.

Data reduction

Many of the data analysis methods described here are similar or
straightforward extensions of those developed earlier in Kowalski et
al. (1996a), and those will be only briefly reviewed here. Figures 4 and
5 illustrate the nature of the responses to the ripple stimuli and the
analysis to extract the spectral (Fig. 4) and temporal (Fig. 5) transfer
functions. In Fig. 4A, the ripples are presented at 8 Hz for ripple
densities from21.6 to 1.6 cycle/octave in steps of 0.2 cycle/octave.
Each stimulus is presented 15 times.

For each ripple density, we compute at 16-bin period histogram
based on the responses starting at 120 ms (to exclude the onset
response; Fig. 4B). A 16-point Fourier transform (FFT) is then per-
formed on the period histogram, and the amplitude and phase of the
first component is taken to be the amplitude and phase of the transfer
function. If the modulation of the response was that of a purely linear
system, the higher FFT coefficients would be negligible, but because
of half-wave rectification and compression, they sometimes are sig-
nificant. In generalTw(V) can be written as

Tw~V! 5 uTw~V!uejFw(V) (11)

wherej 5 =21. Figure 4C illustrates the magnitudeuTw(V)u and the
unwrapped phaseFw(V) of the transfer functionTw(V). The ripple
density at whichuTw(V)u is a maximum is designated asVm (5 0.0
octave/cycle in Fig. 4C).

Analogous steps are followed in measuring the temporal transfer
function as shown in Fig. 5 where ripples are presented at 0.2
cycle/octave for ripple velocities from224 to 24 Hz in steps of 4 Hz.

Note that in the previous paper (Kowalski et al. 1996a), we
weighted the measurement of the first component of the Fourier
transforms of the period histograms by a weighted sum of the higher
frequency components of the transform. This, however, is not com-
patible with the idea of a linear system so that the resultant STRF or
equivalently the ripple transfer functionT would not be expected to be
the best possible predictor of the response to new sounds. Therefore

in this paper, the values ofT correspond directly to the first component
of the Fourier transform.

Once the ripple transfer function has been measured, it can be
inverse Fourier transformed to display the STRF. Since the transfer
function is typically measured over fewer than 8 points along each
dimension in each quadrant, the resulting STRF as computed would
look very jagged even if the underlying STRF was smooth. We
therefore interpolate to a smooth STRF for display purposes, padding
the transfer function with zeros to a size of 643 64. All statistics and
predictions use the measured unsmoothed STRF.

TABLE 1. Characteristic parameters of STRFs shown

STRF f m
1 , kHz f m

2 , kHz td
1, ms td

2, ms fm, deg u, deg d, % e, % Single/Multiple

Fig. 6 1.1 1.1 21 34 224 246 3 6 Mult
Fig. 8

A 1.5 1.9 25 23 4 269 3 14 Mult
B 1.4 1.6 32 23 243 258 8 29 Mult
C 1.1 2.0 20 35 221 2105 5 25 Mult

Fig. 9
A 3.8 4.5 29 29 236 2110 3 4 Mult
B 1.5 1.8 21 20 7 257 2 8 Mult
C 3.9 4.6 13 5 268 267 3 36 Sngl

Fig. 10
A 0.56 0.68 21 12 226 263 2 6 Sngl
B 0.49 0.57 25 14 40 235 9 24 Mult
C 1.2 1.14 47 43 4 140 4 11 Mult

STRF, spectro-temporal response field.

FIG. 4. Data analysis for ripples of fixed ripple velocity and varying ripple
densities.A: raster plot of responses. Each point represents an action potential,
and each ripple stimulus is presented 15 times. Note the position of the peaks
changes linearly with ripple density.B: period histogram for 3 example ripple
densities, with their sinusoidal fits.C: magnitude and phase of the period
histogram fits. With the phase convention used for these stimuli, ripples with
V , 0 (quadrant 4) are equivalent to ripples withw , 0 (quadrant 2), using
the conversion (w, V, F) 3 (2w, 2V, 2F 1 p).
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To construct the two-dimensional transfer function, we assume
quadrant separability, measure the transfer function along the cross-
sections shown in Fig. 3, to combine these spectral and temporal cross
sections as illustrated in Fig. 6. For each quadrant, the transfer
function is the outer product of the cross-section, divided by the
(complex) value of the transfer function at the crossover (3) point. In
Fig. 6, the point is (w31, V31) 5 (8 Hz, 0.2 cycle/octave) in quadrant
1 and (w32, V32) 5 (28 Hz, 0.2 cycles/octave) in quadrant 2.

T~w, V! 5 T~w3q, V! z T~w, V3q!/T~w3q, V3q! (12)

whereq 5 1 andq 5 2 are the independent quadrants 1 and 2. In
practice, the value of the transfer function along the two cross-sections
was measured at two different times, giving two measurements of the
transfer function at each crossover pointT(w3q, V3q). The results of
the two measurements may differ, and so we use the (complex)
geometric mean of the two measured values as the divisor inEq. 12,
Teff(w3q, V3q) 5 [T1st(w3q, V3q)T2nd(w3q, V3q)]

1/2.
The ratioT1st(w3q, V3q)/T2nd(w3q, V3q), which should be unity,

reflects noise in the system and is used to estimate reliability in the
following text.

The value of the transfer function along thew 5 0 axis is set to zero
because the modulation transfer function is not well defined there, i.e.,
there is no modulation of firing rate around the DC (average) rate with
a frequency of 0 Hz. The value of the transfer function along theV 5
0 axis is not measured directly, so the value used is the mean of the
value inferred from being the boundary of quadrant 1 and that inferred
from being the boundary of quadrant 2.

Once the values of transfer functions for quadrants 1 and 2 and their
boundaries are measured, the values for quadrants 3 and 4 are given

by Eq. 4(see also Fig. 3). The STRF is then computed by an inverse
Fourier transform (as inEq. 3) and is illustrated in Fig. 6B (left). This
interpolated version of the STRF (used for display) is obtained by
usingEq. 3on the transfer function padded with zeros at highuwu and
uVu (see Fig. 6A).

Deriving STRF parameters from the phase functions

Numerous parameters can be derived from the STRF (or equiva-
lently the transfer function) that are analogous to traditional response
measures such as BF, tuning curve bandwidth, and latency. Most of
these parameters are best derived from analysis of the phase of the
transfer functions (Fig. 7).

We model the phase of the transfer function within each quadrant
Fq(w, V), q 5 1, 2 (seeEq. 2) as a linear function ofw andV

Fq~V, w! 5 22pwtd
q 1 2pVxm

q 1 x q (13)

wheretd
q is the mean or group delay of the STRF (a portion of which

comes from the response latency),xm
q 5 log ( f m

q /f0) is the mean
frequency (in octaves above the base frequency of the ripple, seeEq.
1) around which the STRF is centered (putting it near the BF), andxq

is a constant phase angle, for each quadrantq. The complex-conjugate
symmetry of the transfer function means that these six independent
parameters describe the phase everywhere in thew 2 V plane. The
convention of the minus sign beforetd allows the time-dependent
responses to be functions of (t 2 td) as is appropriate for a delay.

The justification for assuming linear fits of the phase functions has
been discussed in detail earlier in (Depireux et al. 1998) and is
strongly motivated by the data (Kowalski et al. 1996a). Note, how-
ever, that the assumption ofphaselinearity is used only for parameter
estimation and is not assumed in computing the STRF. The first linear
term inEq. 13stems from the fact that auditory units differing in their
mean neural delays will exhibit linear phase dependence onw with
different slope depending on delay. Analogous arguments apply for
units that are located at different places along the tonotopic axis: the
response phase of different units (with otherwise identical STRFs)
changes linearly withV at different rates, depending on the relative
center frequency locations. In both cases, the slopes of the linear
phase function indicate the absolute shift of the STRF relative to the
origin, i.e., the mean time delaytd

q relative to the start of the stimulus,
and the center frequencyxm

q relative to the low frequency edge of the
ripple spectrum. The linear phase model does not assume that the
linear phase shifts,td

q andxm
q , are equal across quadrants, but tono-

topy suggests thatf m
1 andf m

2 should be approximately equal andtd
1 '

td
2 since the temporal delays of the neural inputs are not segregated by

quadrant. This is shown experimentally in the following text.
An interpretation oftd, for each quadrant, is that it is the sum of the

pure response latency and (roughly) half the temporal width of the
STRF. This is in contrast to the STRF’s peak delay,tSTRF, defined to
be the delay for which the STRF achieves its maximum value, which
may lead or lagtd, depending on the constant temporal phase shift,u,
defined in the following text. Similarly,fm for each quadrant may or
may not fall on the STRF’s best frequency,BFSTRF, defined to be the
frequency at which the STRF achieves its maximum value, depending
on the constant spectral phase shift,f, defined in the following text.

A convenient convention for interpreting the constant component of
the phase is to break up the constant phase anglexq into two parts

x1 5 2u 1 f, x2 5 u 1 f (14)

u andf are, respectively, the temporal polarity and spectral asymme-
try of the STRF. Spectral asymmetry parameterizes the balance of the
STRF along the spectral axis about its center. For example, a unit with
f 5 0 would have itsBFSTRFin the center of the spectral envelope of
the STRF, possibly surrounded by inhibitory regions. A unit withf .
0 would have itsBFSTRF at a lower frequency than the center of the
STRF with an inhibitory sideband aboveBFSTRF. A unit with f , 0

FIG. 5. Data analysis from ripples of fixed ripple density and varying ripple
velocities.A: raster plot of responses. Each point represents an action potential,
and each ripple stimulus is presented 15 times.B: period histogram for 3
example ripple velocities. Note how the position of the peak of the best fit
changes linearly with ripple velocity.C: magnitude and phase of the period
histogram fits.
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would have itsBFSTRF at a higher frequency than the center of the
STRF, with an inhibitory sideband belowBFSTRF(see example in Fig.
4C of Shamma et al. 1995). Similarly the temporal polarity parame-
trizes the balance of the STRF along the temporal axis about its
center: whether the peak response occurs before or after regions of
inhibition, respectively,u , 0 (“onset response at BF”) oru . 0
(“offset response at BF”). There is an ambiguity in fixingu andf that
we remove by restrictingf to lie between290 and190°, while u
ranges the full2180 to 1180°. See Fig. 7 as an illustration of the
phase behavior in the different quadrants.

In past reports (Kowalski et al. 1996a),u andf could be measured
without measuring the transfer function in the upward moving quad-
rant 2 by measuring the constant component of the phase in quadrant
1 (x1 5 2u 1 f) and along thew axis, where the constant component
of the phase is expected to be the mean across the quadrants [(x1 2
x2)/2 5 2u; note the change in convention ofu 3 2u between the
present work and Kowalski et al. (1996a)].

Because of response variability, we only fit to those points of the
transfer function that have more than half of the response power in the
first component of the Fourier transform. Then the fit is done across
the entire two-dimensional phase plane for each quadrant. Ultimately
our unwrapping method is less than ideal, and estimates ofu andf
especially reflect that (Ghiglia and Pritt 1998).

Estimating response variability: the bootstrap method

Variability in our experiments originates from multiple sources,
including internal neural mechanisms (e.g., Poisson-like distributions
of spike times), extracellular recording/identifying methods, and
equipment noise. Quantitative estimates of the reliability of our mea-
surements is crucial to its analysis and subsequent interpretation. A
method of variability estimation that is especially appropriate to these
measurements is the bootstrap method (Efron and Tibshirani 1993;
Politis 1998).

The essence of this method is to use “resamples,” in whichN
samples of bootstrap data are drawnwith replacementfrom the N
original samples of data. Repeating this procedure a large number of
times creates a population of bootstrap resamples whose probability
distribution is a good estimator of the probability distribution from
which the original data were drawn.

To illustrate this procedure, consider measuring the transfer func-
tion at a point (w, V). This is done by presenting the same (w, V)
stimulusN times and constructing a period histogram based on allN
sweeps. The amplitude and phase of the first Fourier component of the
period histogram are assigned to the amplitude and phase of the
transfer function. A single bootstrap resampling of the responses will
have N sweeps, where, because they are drawn from the original

FIG. 6. Deriving the spectro-temporal
transfer function, STRF, and related param-
eters.A: magnitude of the temporal (left) and
spectral (right) transfer function cross-sec-
tions, normalized by the values at the cross-
over points (Eq. 12). The error bars are com-
puted by the bootstrap method, explained
below. B: the magnitude of the full transfer
function, resulting from the outer product of
the functions inA. C: the STRF of the cell
computed by an inverse Fourier transform of
the complex transfer functions. To theright
is the error estimate of the STRF, using the
same scale multiplied by a factor of 5 (for
legibility), resulting in error parameters of
d 5 0.03 ande 5 0.06. See Table 1 for
details.
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responses with replacement, some will be duplicated and some will be
unused. Nevertheless a period of histogram is constructed, and the
bootstrap estimate of the transfer function is assigned to its first
Fourier component. Performing a large number of bootstrap resamples
results in a population of estimates for the transfer function. This
population has a mean, variance, and higher-order moments. These
moments are estimators of the moments of the original population (of
all transfer functions of all allowable neuronal responses to the stim-
ulus). For example, the standard deviation of all bootstrap estimates of
the transfer function is an estimator of the standard deviation of
measurements of the transfer function. This allows us to put error bars
on our transfer functions and STRFs.

Effects of crossover point errors

Another significant source of error is the difference between the
responses of repeated measurements at the transfer function crossover
points. The ratio of these independent measurements,T1st(w3

q , V3
q )/

T2nd(w3
q , V3

q ) should be unity. When not unity, it reflects the same
variability measured by the bootstrap method but also additional
systematic error from having measured the two transfer function
cross-sections at different times. To account for this disparity, the total
squared error of the STRF is set to the sum of the bootstrap STRF
variance and the square of the crossover errors3

sSTRF
2 5 sBootstrap

2 1 s3
2 (15)

wheres3(t, x) captures the systematic error from not having taken all
data at the same time and is given by

FIG. 8. Three examples of spectro-temporal transfer function sections, corresponding STRFs. For each rowA–C: magnitude of
the temporal (left) and spectral (middle) transfer functions. All other details are as in Fig. 6; (right), STRFs.

FIG. 7. A: the phase of the transfer function can be well described by a linear
fit containing 6 parameters over most of the relevant regions of thew-V plane.B:
in this cartoon, the slope is constant for most of the curves, after (left) 22pwtd

q has
been subtracted in each quadrant, corresponding to a center frequency that is
independent of the ripple density, and (right) after 2pVxm

1 has been subtracted,
corresponding to a delay that is independent of ripple velocity. At very small ripple
densities (long ripple periodicity), center frequency is less meaningful, and simi-
larly for small ripple velocity and delay, respectively. At large ripple velocity the
slope asymptotes to the signal front delay, but when this occurs, the small
amplitude of the transfer function makes it difficult to measure the phase. See
Dong and Atick (1995) and Papoulis (1962).
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s3~t, x! 5 Fmax
q
Smax~uT1

q~w3
q , V3

q !u, uT2
q~w3

q , V3
q !u!

uTeff
q ~w3

q , V3
q !u D2 1G

3 uSTRF~t, x!u (16)

Finally, we collapse the error over the entire (t, x) plane into two
dimensionless termsd ande

d 5
1

DTDXEE dtdxsSTRF~t, x!
1

max~uSTRF~t, x!u!
(17)

e 5 EE dtdx@sSTRF~t, x!#2YEE dtdx@STRF~t, x!#2 (18)

whereDT andDX are the length of time and number of octaves over
which the STRF was measured.

d is a measure of the average standard deviation in units of the
maximum of the STRF.e is a measure of the variance in units of
power. If noise is additive, thene 5 Pe /(P 1 Pe) 5 1/(SNR1 1), with
P 5 power,Pe 5 noise power, and SNR5 signal-to-noise ratio.e
should go down with the number of recordings, assuming the system
can be described as the time-invariant random process.

R E S U L T S

Data presented here were collected from 22 single-unit and
54 multiunit recordings in 11 ferrets. In the summary histo-
grams, both single units and multiunit are included but are
distinguished from each other.

Most units encountered in AI respond well to moving rip-

ples. Responses are typically phase-locked to the moving en-
velope of the ripple over a range of ripple velocities and
densities. However, of a total of 172 recordings made, only 76
cases provided adequate quality and quantity of responses. The
reasons for this low yield vary. For example, we have encoun-
tered responses from a few units that were either poorly phase-
locked or were inconsistent from trial to trial; such units were
abandoned since our analysis methods are unsuitable for their
characterization. Also because of extended recording times,
typically over an hour, units were sometimes lost before suf-
ficient data could be collected to carry out a full analysis. In
other cases, the unit or animal changed state during the record-
ing session, rendering the data unreliable. The reason for the
extended recording time is to present ripple sounds and other
sounds consisting of combinations of ripples, so we can verify
linearity by using the STRFs to predict the response of the cell
to new sounds. We found empirically that about 10,000 spikes
are typically needed to obtain an STRF with well-defined
features in response to single ripples, which with our sound
paradigm usually corresponds to a 20-min presentation per
cross-section. To eliminate data corresponding to unreliable
cells, as described in the preceding text, we use units only with
values ofd # 0.12 ande # 0.7 (seeMETHODS) as the threshold
for rejecting the data. These reliability statistics takes into
account most of the preceding sources of error. The values of
0.12 and 0.7 are somewhat arbitrary, though we found that
cells tended to separate themselves into two populations above

FIG. 9. Further examples of spectro-temporal transfer function sections, corresponding STRFs. Conventions as in Fig. 8.A: with
narrow ripple velocity bandwidth.B: with broad ripple velocity bandwidth.C: a spectrally asymmetric unit.
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and below these thresholds, respectively, and that the mathe-
matical criteria of reliable versus noisy cell corresponded well
with our intuitive perception based on visual inspection.

Responses to moving ripples

On average, AI units synchronize their responses to upward
and downward moving ripples equally effectively with ripple
velocities ranging from 2 to over 100 Hz, and ripple densities
up to 4 cycle/octave. Examples of several temporal and spec-
tral transfer function magnitudes are shown in Figs. 8–10, each
with its corresponding STRF. In all cases, units respond well
only over a specific range of ripple velocities and ripple den-
sities, but the detailed shape and extent of the transfer functions
vary from one unit to another. For instance, the unit in Fig. 9A
responds well only to ripple velocities of64 Hz, whereas the
unit in Fig. 9C responds well at least up to664 Hz. The unit
in Fig. 6 responds well to ripple densities within60.4 cycle/
octave, whereas the unit in Fig. 10A responds over a wider
range of densities but poorly at 0 cycle/octave.

As described in the preceding text, the transfer function at
w 5 0 is set to 0 since it is not well defined (and so has 0
contribution to the STRF). Additionally, for 12 cells (not
shown), the transfer function was measured from68 to61 Hz
in 1-Hz steps, and in all cases, the transfer function was
negligible at the slowest ripple velocities (in contrast to the
average firing rates, which remained significant).

Units also vary significantly in the asymmetry of their trans-
fer functions with respect to the direction of the moving ripple.
For example, responses to the two directions are relatively
equal (transfer functions are roughly symmetric) in Figs. 6 and
9A. By comparison, the temporal transfer functions in Fig. 8,
A–C, are asymmetric. The unit in Fig. 8B responds better to
upward moving ripples; the unit in Fig. 8C responds over a
wider range to downward moving ripples. These asymmetries
are discussed in depth later in the context of transfer function
separability.

The STRFs derived from these transfer functions commonly
exhibit alternating significant regions of positive peaks and
negative basins, interpreted here as excitatory and inhibitory
regions, respectively. The four STRFs illustrated in Figs. 6 and
8 are of units that are tuned between 1 and 2 kHz. However, the
shapes of the surrounding inhibitory regions vary considerably
reflecting the different temporal and spectral transfer functions
(see Fig. 11). For instance, STRFs may be relatively symmetric
(Fig. 8A) or asymmetric (Fig. 9C). They can be clearly direc-
tional, i.e., tilted one way (Fig. 8B) or the other (Fig. 8C) on the
spectro-temporal surface.

STRFs display a wide variety of shapes that are briefly
described in the following text. The majority of AI cells exhibit
STRFs with a simple excitatory field and varying amounts of
inhibitory surround. The first peak of the excitatory portion
indicates theBFSTRF of the unit, while its extent reflects its
tuning curve at a given level.

FIG. 10. Further examples of spectro-temporal transfer function sections, corresponding STRFs. Conventions as in Fig. 8.A:
fast dynamics.B: slow dynamics.C: offset cell.
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In many cases, the inhibitory surround is spectrally asymmetric
around theBFSTRF (Fig. 9C); such asymmetry is effectively
captured by the parameterf (Eq. 14), wheref values near zero
indicate roughly symmetric STRFs, whilef ' 90° indicate strong
inhibition below theBFSTRF, and f ' 290° indicates strong

inhibition above theBFSTRF. Thef distribution in our sample is
summarized in Fig. 12C. It closely resembles that seen earlier with
downward moving and stationary ripples (Kowalski et al. 1996a;
Schreiner and Calhoun 1994; Versnel et al. 1995).

STRFs also vary considerably in their temporal dynamics,
best seen in thet 2 x domain. Some are fast with envelopes
that decay relatively rapidly (Figs. 9C and 10A). Others are
slow, taking over 150 ms to decay (as in Figs. 9A and 10B).
These response dynamics reflect details of the temporal trans-
fer function such as the ripple velocity at which it peaks
(characteristic ripple velocity) and its width (ripple velocity
bandwidth). STRFs also exhibit an onset delay (or latency) that
is captured by thetd values, derived from the phase function
(Eq. 13). The distribution of this delay tends to be well clus-
tered around 25 ms as seen in Fig. 12B. Finally, unit STRFs
can be generally classified as eitheronset(Figs. 9,A–C,and 10,

FIG. 11. Two cells with unusual receptive fields.

FIG. 12. The statistical distribution of pa-
rameters.A, left: f m

1 vs.f m
2 , i.e., center frequency

fm as determined by quadrant 1 vs. quadrant 2.
Right: fm vs. BFSTRF, i.e., quadrant averaged
center frequencyfm vs. frequency giving highest
STRF peak.B, left: t d

1 vs.t d
2, i.e., mean delaytd

as determined by quadrant 1 vs. quadrant 2.
Right: td vs.tSTRF, i.e., quadrant averaged mean
delaytd vs. delay giving highest STRF peak.C:
temporal phaseu vs. spectral phasefm. Note
that some outliers are not included in the figure;
however, all data points are used in statistics.
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A and B, most cells) oroffset (Fig. 10C), a property that
corresponds, respectively, to the negative or positive sign of
the parameteru. Onset STRFs are far more common in our
sample as seen in theu distribution in Fig. 12C.

Finally, STRFs may display very complex dynamics and
spectro-temporal selectivity that are not easily captured by
simple parameters. Two examples of such STRFs are shown in
Fig. 11. One might be tempted to dismiss such STRFs as mere

aberration or noise except that they are derived from repeatable
responses (d 5 0.10 ande 5 0.49 for Fig. 11A andd 5 0.03
ande 5 0.04 for Fig. 11B).

Separability and its relation to STRF shape

Separability is an important property of the transfer func-
tions that has significant experimental and theoretical implica-

FIG. 13. Small and a largeaSVD cell, with the distribution ofaSVD in the middle. There is no obvious separation of cells into
2 populations, fully separable and inseparable, but rather a continuum.

FIG. 14. The distribution of 3 inseparability indicators,ad, as, andat. Middle: examples of STRFs with extreme values of the
corresponding inseparability indicator.Right: distributions of each inseparability indicator, plotted against total inseparability,
aSVD. Because there is always some level of noise, no cell has anas or at exactly equal to 0.
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tions. In this paper, we assume quadrant separability and ask
whether responses are fully separable, the degree of insepara-
bility, and the origin of the inseparability. Each of these indi-
cators has a potentially useful interpretation for the shape of the
STRF and the underlying structure of processes that give rise
to it.

The simplest and most general way to examine full separa-
bility is to compute the SVD matrixaSVD (Eq. 6). Figure 13
illustrates the distribution ofaSVD, Eq. 7, computed from all
the cells used. Values near 0 indicate that only the first singular
value has a large nonzero value and hence that the STRF is
fully separable. Increasing values indicate increasing degree of
inseparability. A significant fraction of cells deviate from full
separability.

It can be shown that fully separable transfer functions must
have magnitudes that are symmetric about the (w, V) origin,
Alone, aSVD offers no insight into the specific nature of these
departures from the symmetric, separable case. However, it
will be shown that there are three parameters (Eqs. 8–10) that
in combination formaSVD and that each corresponds to a
specific distortion of a separable transfer function:

1) ad, the response directionality, or the imbalance in the
overall strength of the responses to the upward and downward
moving ripples;

2) at, the asymmetry in the temporal transfer functionF(w);
3) as, the asymmetry in the special transfer functionG(V).
The distribution of these three parameters is shown in Fig.

14. The directionality parameterad is distributed approxi-
mately normally between negative and positive values. This
parameter is closely related to the directional selectivity of the
STRF. STRFs with largeuadu values exhibit obvious directional
shapes such as seen in Fig. 14 (top, middle). A significant
proportion of units (37%) also have spectral dissimilarity val-
ues (as) exceeding 0.3. An STRF with especially largeas is
shown in Fig. 14 (middle). Note that these STRFs may not
necessarily exhibit obvious directionally selective shapes.

A strikingly different finding is the dearth of units (12%)
with significant temporal dissimilarity (a . 0.3) as seen in the
distribution in Fig. 14 (bottom, left). An STRF witha 5 0.30
is displayed in Fig. 14 (bottom, middle): it is difficult to detect
simple correlates of the largeat values in the shape of the
STRF. Note that this is not due to measuring the temporal
transfer function at six points and the spectral transfer function
at eight points in each quadrant: when the last two points of the
spectral cross section are removed, the same results are ob-
tained.

The three inseparability indicators do not appear to be sig-
nificantly correlated, based on the pairwise scatter plots in Fig.
15, suggesting that independent mechanisms underlie the ex-
pression of each factor. By contrast, each factor (as expected)
is well correlated with the total SVD index as seen in Fig. 14
(right).

We can define a composite measure of inseparability, the

mean ofat, as, anduadu. Figure 16illustrates that this measure
is highly correlated toaSVD and hence is an equally valid
measure of inseparability.

There is no sharp threshold for inseparability. In Fig. 13, for
instance,aSVD ' 0.35 clearly corresponds to an inseparable
cell. However, because of the continuum of values foraSVD,
there is no obvious cutoff.

D I S C U S S I O N

Summary of results

The emphasis of this work has been on presenting a tech-
nique to describe neural response patterns of units in the
cortex. More precisely, we use moving ripples to characterize
the spectral and temporal properties of responses of auditory
cortical neurons, although this is a general method that can be
used for any population of neurons for which responses are
shown to be substantially linear for broadband stimuli.

We have examined the nature of AI responses to rippled
spectra moving in both upward and downward directions and
incorporated these responses into the STRF. A summary of the
main results follows.

1) We confirm earlier findings (Kowalski et al. 1996a) that
AI units respond in a phase-locked fashion to the moving
ripples over a range of velocities and directions that depend on
the ripple density of the spectrum. In particular, responses are
usually tuned around a specific ripple velocity and density. In
the ferret, responses are commonly best in the 4- to 16-Hz
range and densities lower than 2 cycle/octave. These findings
are roughly consistent with those found in different species
using different experimental paradigms: experiments with dy-
namic spectra (e.g., narrowband such as AM and FM tones or
broadband such as modulated noise and click trains) have
found similar maximum rates of synchronized responses in AI
(Eggermont 1994; Schreiner and Urbas 1988).

2) We demonstrate a similarity between responses to upward
and downward moving ripples. Specifically, the response pa-
rameter values and distributions to either direction are compa-
rable (even if unequal), and hence reflect general dynamic
response properties, not direction specific properties per se.

3) Complete spectro-temporal transfer functions are mea-
sured that exhibit a rich variety of shapes and cover a wide
range of stimulus parameters. The STRF describes the way AIFIG. 15. The correlation of 3 inseparability indicators,at, as, andad.

FIG. 16. The correlation between the mean ofat, as, andad andaSVD.
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units integrate stimulus power along the spectro-temporal di-
mensions.

4) We illustrate a variety of STRFs with a broad range of
BFs, bandwidths, asymmetrical inhibition, temporal dynamics,
and direction selectivity. We have assessed the prevalence of
these features over all sampled units by examining the distri-
bution of specific parameters that reflect each of these features.

5) The degree and origin of inseparability of the unit transfer
functions is assessed using two methods. In the first, SVD
analysis is applied to the entire transfer function to determine
the number and ratio of the resulting singular values. The
results indicate that AI units span a relatively uniform distri-
bution between full separability to moderate inseparability. In
the second method, we examine the origin of inseparability and
find that it is primarily due to two factors: imbalance in the
response power and an asymmetry in the spectral transfer
function relative to the direction of ripple motion. Interestingly,
we find that temporal (but not spectral) transfer functions are
relatively symmetric and hence contribute little to overall
transfer function inseparability.

In Kowalski et al. (1996a,b), pentobarbital was used for
anesthesia; in the present study, a ketamine/xylazine combina-
tion was used. In Kohn et al. (1996), the effect of different
anesthetics on the tuning properties of auditory cortical cells as
a whole was presented. Under ketamine, a wider variety of
responses was found, tuning to ripple density was slightly
lower (from 1.05 cycle/octave under pentobarbital to 0.8 cycle/
octave under ketamine), and no significant change in temporal
tuning was observed. Other properties, though, such as linear-
ity of the STRF for downward moving ripples, were un-
changed. These results can be accounted for by assuming that
overall, response fields measured with ripples have less inhi-
bition under ketamine than under pentobarbital.

Separability and its implications

An important property of the responses is that for ripples
moving in only one direction, the spectral and temporal func-
tions are separable: within each quadrant they can be measured
independently of each other. The property of quadrant separa-
bility makes it possible to measure the overall spectro-temporal
transfer function in reasonable times using only single ripples
since only a few velocity and spectral density combinations
need to be measured. We have established (Kowalski et al.
1996a) that all recorded transfer functions in AI exhibit quad-
rant separability. In the experiments reported here, we assumed
quadrant separability (Kowalski et al. 1996a,b) and proceeded
to examine whether the resulting two-dimensional transfer
functions are fully separable. Our findings indicate that AI
responses fall uniformly on a continuum between moderately
to fully separable.

A fully separable cell cannot be directionally selective in its
responses. Inseparability is a necessary condition for the for-
mation of more complex STRFs; direction selectivity is one
possible consequence of inseparability. A directionally selec-
tive STRF usually has a distinctive elongated form along a
spectro-temporal direction that matches that of its most sensi-
tive ripple stimulus. For example, the STRF illustrated in Fig.
8B is most responsive to a rippleV 5 20.4 cycle/octave,w 5
28 Hz, whose spectrogram matches well the outline of the
STRF spacing and orientation. Direction selectively implies

that a unit is differentially responsive to one direction of ripple
movement and hence must have a significant nonzero direc-
tionality index. Therefore direction selectivity necessarily im-
plies an inseparable STRF. The opposite is not true: an insep-
arable STRF might reflect other factors such as asymmetric
temporal and/or spectral transfer functions (at or as Þ 0),
which do not manifest themselves in an obvious elongated
form or preferential responses to one direction or another (as
shown in Fig. 14,center column, middleandbottom).

Separability also places strong constraints on the underlying
biological processes that give rise to the STRF shapes. For
example, full separability suggests that the STRF is constituted
of independent temporal and spectral processing stages. By
contrast, inseparability (or just quadrant separability) implies
spectrally and temporally intertwined stages of processing with
the specific form of the model being entirely dependent on the
details of the transfer functions. Quadrant separability in par-
ticular is a very strong constraint on both the neural inputs and
the processing of the unit: almost all neural networks (whether
linear or nonlinear) with multiple fully separable STRFs as
inputs will in general produce a totally inseparable STRF. In
particular, the naive procedure of constructing a directionally
sensitive STRF by talking the simple sum of two fully sepa-
rable STRFs with differingfm and td will produce a totally
inseparable STRF which is not quadrant separable. To produce
a quadrant separable STRF requires special inputs and/or spe-
cial processing.

It can be shown that a quadrant separable, temporally symmet-
ric (i.e., at ,, 1), cortical neuron can be easily constructed by
taking inputs from (potentially) many units with (potentially)
different spectral response fields and even with (potentially) dif-
ferent temporal impulse response properties as long as the tem-
poral dynamics of the inputs to the cortical cell are fast compared
with the temporal dynamics of the cortical cell itself (Simon et al.
2000). Quadrant separability then occurs when the inputs are
temporally phase-lagged relative to each other [though not nec-
essarily 90° as in Saul and Humphrey (1990) and Dong and Atick
(1995)].

This is consistent with the input neural connectivity one
expects from layer IV cortical neurons, which receive input
from thalamic medial geniculate body (MGB). MBG neurons
may have fully separable STRF [as is the case for typical
inferior colliculus central (ICC) neurons (Escabi and Schreiner
1999)] with different spectral response fields (differing in
width, extent/location of inhibitory bands, and to a lesser
extent, best frequency). MGB temporal cross-sections of trans-
fer functions are essential constant when low-passed at a cutoff
frequency appropriate to cortical behavior (e.g., typically well
below 100 Hz) (Yeshurun et al. 1985). Furthermore some
MGB neurons may have a temporal phase lag, as in the visual
system’s lateral geniculate’s “lagged cells” (Saul and Hum-
phrey 1990).

Significantly, the property of quadrant separability with tem-
poral symmetry does not allow for any cortical inputs unless
those inputs have the same temporal behavior as the neuron
studied. If, for instance, all neurons in the same cortical column
have similar temporal properties, including similar neural de-
lays, this would be consistent with quadrant separability. Oth-
erwise, cortical inputs would break quadrant separability and
create a totally inseparable neuron. Total inseparability would
be expected for cortical neurons in layers that receive signifi-
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cant input from other cortical columns or from any other neural
source with significantly different temporal processing, includ-
ing (but not limited to) any significant delays.

It is possible that this extremely constraining result is an
anesthesia-induced effect. If not, the result is a fascinating
constraint on the neural network providing input to a given
cortical cell.
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