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Abstract
System identification is a growing approach to sensory neurophys-
iology that facilitates the development of quantitative functional
models of sensory processing. This approach provides a clear set
of guidelines for combining experimental data with other knowl-
edge about sensory function to obtain a description that optimally
predicts the way that neurons process sensory information. This pre-
diction paradigm provides an objective method for evaluating and
comparing computational models. In this chapter we review many
of the system identification algorithms that have been used in sen-
sory neurophysiology, and we show how they can be viewed as vari-
ants of a single statistical inference problem. We then review many
of the practical issues that arise when applying these methods to
neurophysiological experiments: stimulus selection, behavioral con-
trol, model visualization, and validation. Finally we discuss several
problems to which system identification has been applied recently,
including one important long-term goal of sensory neuroscience: de-
veloping models of sensory systems that accurately predict neuronal
responses under completely natural conditions.
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1. INTRODUCTION

Sensory neuroscience is one of the most quan-
titative and computationally sophisticated
areas of neuroscience. Sensory systems are
particularly amenable to a computational ap-
proach because sensory input can be tightly
controlled during experiments and quanti-

fied for analysis. Quantitative neurophysio-
logical studies have produced many compu-
tational models that describe the functional
relationship between sensory inputs and neu-
ronal responses, and there is now broad agree-
ment about the first-order computational
description of many sensory systems. Quan-
titative and computational models are com-
monly used to describe sensory processing
in many simple animals (Frye & Dickinson
2001), in the peripheral mammalian audi-
tory (McAlpine 2005) and visual systems
(Carandini et al. 2005), and in primary visual
cortex (Carandini et al. 1997, Daugman 1988).

The success of computational modeling
has inspired researchers to apply these meth-
ods to more complex systems. However,
progress on these more difficult problems
has been hampered by several interrelated
factors. Much of the theoretical and exper-
imental work in neurophysiology uses spe-
cialized synthetic stimuli optimized to probe
specific stimulus attributes. The resulting
models provide a good description of neu-
ronal processing of these synthetic stimuli,
but it is unclear how general the models are.
Natural stimuli have a much richer and more
complex statistical structure than those typi-
cally used in neurophysiological experiments
(Simoncelli & Olshausen 2001). Do mod-
els developed using synthetic stimuli ac-
curately describe neuronal function under
realistic conditions? This question can be ad-
dressed by examining how well each model
predicts responses to natural stimuli, during
natural behavior (David et al. 2004, Theunis-
sen et al. 2000). Only by testing models under
natural conditions can we determine where
they fail, and only by investigating these fail-
ures is it possible to construct more general
and powerful models.

The computational modeling approach
has been used effectively to characterize sim-
ple systems and the sensory periphery, but
it has been less successful when applied to
the more central sensory systems of mam-
mals. For example, although there are good
first-order computational models of primary
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visual cortex (Carandini et al. 1997) and area
MT (Simoncelli & Heeger 1998), there are
no comparable models for other visual areas.
Similarly, quantitative models have been de-
veloped for neurons of the mammalian au-
ditory periphery (McAlpine 2005), yet there
is no agreement on an appropriate model
for primary auditory cortex. The failure to
develop models of more central sensory ar-
eas suggests these areas are less amenable
to computational approaches. This is likely
a result of several key differences between
neurons in more central sensory areas and
those in peripheral areas. Central neurons
are more nonlinear than peripheral neurons
(Carandini et al. 2005, Ito et al. 1995);
they represent more abstract, semantic,
and behaviorally relevant stimulus attributes
(Gallant et al. 1996, Kobatake & Tanaka
1994); and they are more highly modulated by
attention, learning, and memory (Reynolds &
Chelazzi 2004). All of these properties make
it difficult to apply approaches developed for
simple systems to more complex central sen-
sory systems.

This chapter reviews recent efforts to ad-
dress these problems using system identifi-
cation (SI), an approach that is receiving in-
creasing attention in sensory neuroscience. In
the classical approach to sensory neurophys-
iology, each experiment is optimized to test
a specific hypothesis about neuronal coding.
In contrast, SI treats the problems of sensory
receptive field estimation as a regression prob-
lem. SI aims to construct a quantitative model
that describes how a neuron will respond to
any potential stimulus.

Variants of the SI approach go by many
names: SI (Marmarelis & Marmarelis 1978,
Marmarelis 2004), receptive field estima-
tion (Theunissen et al. 2001), spike-triggered
analysis (Rust et al. 2005, Touryan et al.
2002), reverse correlation (Alonso et al. 2001,
Jones & Palmer 1987, Ringach et al. 1997b,
Smyth et al. 2003), and white-noise analysis
(Chichilnisky 2001). In each case the goal is
to estimate a function that describes the way
stimuli are mapped onto neuronal responses.

SI: system
identification

mapping function:
the function that
describes the
relationship between
a sensory stimulus
and neuronal
response

MAP: maximum a
posteriori

MAP estimate
(estimator): the
model parameter
values that specify a
mapping function
that is both plausible
and fits the data well

The function that relates stimulus to response
also goes by many names: the spectrotempo-
ral or spatiotemporal receptive field (Aertsen
& Johannesma 1981b; David et al. 2004;
DeAngelis et al. 1993; Klein et al. 2000;
Ringach et al. 1997b; Theunissen et al. 2001),
the kernel (Smyth et al. 2003, Willmore &
Smyth 2003), the stimulus-response func-
tion (Sahani & Linden 2003a), the transducer
(Victor & Shapley 1980), or the transfer func-
tion (Cook & Maunsell 2004, Marmarelis &
Marmarelis 1978). In this chapter, we refer
to the general strategy for understanding sen-
sory processing as the SI approach and the
function that maps stimulus to response as the
mapping function.

The SI approach offers powerful tools for
addressing the problems noted above. The
core of the method focuses on quantitative
modeling of experimental data and the evalu-
ation of models in terms of predictive power
(Marmarelis 2004). The approach can also be
used to test an existing model by redefining it
within the SI framework. Responses that are
not predicted by the model can then be inves-
tigated to determine how the model might be
improved (David et al. 2004). Predictions also
provide a straightforward method for compar-
ing models across studies (David & Gallant
2005). Finally, the SI approach can be used to
reveal novel principles of sensory coding, even
in the absence of a prior theoretical or quan-
titative model. In this case responses can be
modeled using a more open-ended framework
and a rich stimulus set. Visualization proce-
dures can then used to interpret the estimated
mapping function.

One complication of the SI approach is
that there is a large diversity of SI algo-
rithms, each making different assumptions
about the underlying nature of the system.
Here we show that virtually all of these al-
gorithms can be interpreted as maximum a
posteriori (MAP) estimates within the frame-
work of Bayesian inference (Robert 2001).
In essence, the MAP estimate describes the
most probable model, given the available data
and prior knowledge of the system. Apparent
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model class: a
restricted class of
models used to fit
the data; each model
in the class is defined
by a set of model
parameters

noise distribution:
a probability
distribution that
describes the
assumed stochastic
variability in the
response

prior: a probability
distribution that
describes our
subjective belief in
the plausibility of
each model by
specifying the
probability of the
possible values of the
model parameters

MAP objective
function: the
function that must
be minimized to
obtain the optimal
MAP estimate

differences between the various methods used
to estimate the mapping function merely re-
flect differences in how the MAP estima-
tor is constructed. Bayesian inference may
be foreign to many readers and its exposi-
tion is somewhat complicated, but the effort
is worthwhile: By viewing each algorithm as a
MAP estimator, we can clearly compare vari-
ous methods and determine which procedure
is optimal for a given problem.

This review is divided into three parts.
First, we describe the MAP estimation frame-
work in detail (Section 2) and show how cur-
rent SI algorithms fit within that framework
(Section 3). These sections are necessarily
quite technical, but we attempt to present the
information in an approachable way. Second,
we summarize the practical issues that must
be considered for successful estimation of the
mapping function in practice (Section 4). Fi-
nally, we summarize recent results obtained
with the SI approach and discuss avenues for
further research (Sections 5 and 6). Volterra
and Wiener kernel analysis are described thor-
oughly in several excellent textbooks (e.g.,
Marmarelis & Marmarelis 1978, Marmarelis
2004). Therefore we focus on other methods
that have been developed more recently.

2. THE MAXIMUM A
POSTERIORI ESTIMATION
FRAMEWORK

According to the SI approach, functional
characterization of sensory neurons is essen-
tially a regression problem: Given a data set
consisting of stimulus-response pairs, esti-
mate the function that maps any stimulus to
the appropriate response (Marmarelis 2004,
Theunissen et al. 2001). Because neurons are
both complicated and noisy, this estimate is
usually data limited (Victor 2005). Therefore,
it can be improved by incorporating reason-
able assumptions and prior knowledge about
the system studied into the regression pro-
cedure. The MAP estimation framework is a
systematic procedure for combining these as-
sumptions with experimental data to obtain

the most probable estimate of the stimulus-
response mapping function (Robert 2001).
The MAP estimation framework is more gen-
eral than the simple regression approach with
which many readers may be familiar; sim-
ple regression merely involves the currently
available data and does not explicitly consider
other information that might be known about
the system.

Here we characterize the three con-
stituents of the MAP estimation framework:
the model class, noise distribution, and prior,
and we use them to classify current SI algo-
rithms (Figure 1). This unified framework
clarifies the implications of choosing one al-
gorithm over another and facilitates the de-
sign and implementation of novel algorithms.

MAP estimation is an inference problem:
Infer the most probable mapping function,
y = fθ(x), from the observed data. The in-
put, x, is a vector representing the sensory
stimulus. It may span several points in time
to account for the memory of the system.
The output, y , is a scalar representing neu-
ronal activity. This might be spike counts
(Jones & Palmer 1987), membrane poten-
tial (Bringuier et al. 1999, Priebe & Ferster
2005), local field potential (Victor et al. 1994),
or instantaneous firing rate (Theunissen et al.
2001). The observed data set consists of
N stimulus-response sample pairs, {xi , yi },
where i = 1, 2, . . . , N. The model class de-
termines the form of the mapping function,
fθ, and the parameters of the model are given
by the vector, θ. The most probable value of
θ is the MAP estimate (denoted θ∗),

The quantity in the square bracket of
Equation 1 is the MAP objective function.
This function contains three constituents: the
model class, noise distribution, and prior.
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Figure 1
General overview of system identification in the maximum a posteriori (MAP) framework. (Top row) The
system identification approach aims to estimate the stimulus-response mapping function for a single
neuron. (Left and right columns) Stimulus and response data are first split into two independent sets. The
estimation set (∼90% of the data, cyan) is used to fit the model, and the validation set (∼10% of the data,
yellow) is used to validate model predictions. (Center panel) System identification can be viewed in two
perspectives: as an inference problem (top) or as an optimization problem (bottom). From the inference
perspective, the MAP estimator consists of three constituents: the model class (Section 2.1), noise
distribution (Section 2.2), and prior (Section 2.3). From the optimization perspective, the model class
determines the form of the mapping function, fθ(x), and its model parameters, θ. The MAP estimate,
θ∗, is obtained by combining the regularizer (specified by the prior) and the loss function (specified by
the model class and noise distribution), and then finding the value of θ that minimizes the resulting MAP
objective. Free parameters are optimized as necessary by cross-validation (Section 3.3). After estimation,
θ∗ can be visualized to aid interpretation (Section 4.3). (Center bottom column) Model performance is
assessed by measuring how well the estimated mapping function predicts responses in the reserved
validation set (Section 4.4).

[Each p(·) denotes a probability distribution.]
The model class specifies the form of fθ used
to fit the data. The noise distribution describes
the stochastic variability in the response. The
prior describes the subjective belief in the

plausibility of each possible model, indepen-
dent of the estimation data.

The three constituents of the MAP ob-
jective are grouped into two terms, the
likelihood and the prior. The likelihood term
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posterior
distribution: a
probability
distribution that
describes the
probability of a
model by combining
the likelihood and
prior information

likelihood: a
probability that
describes the
plausibility of each
model based on the
model’s ability to fit
the data under the
assumed noise
distribution

loss function: a
function that
measures the lack of
fit between a
particular model and
the observed data

regularizer: a
function that
measures how well
the model satisfies
the constraints
imposed by the prior

comprises two of the constituents: model class
and noise distribution. When combined, the
prior and the likelihood give the posterior dis-
tribution that describes the probability of a
model (Kass et al 2005, Robert 2001). The
MAP estimate is the set of parameter val-
ues that maximizes the posterior distribution.
To find the MAP estimate, we minimize the
negative log of posterior distribution (Robert
2001). (This is a computational trick: Mini-
mization of the negative log is equivalent to
maximization.) Minimizing the negative-log
likelihood gives the best fit to the observed
data regardless of its plausibility; minimiz-
ing the negative-log prior biases the estimate
of θ toward models that are more plausible
(Mackay 1995, Robert 2001). Thus the like-
lihood and prior work in tandem to give the
most probable parameter estimates.

So far we have treated MAP estimation as
an inference problem. In practice MAP es-
timation is implemented as an optimization
problem (Figure 1). In the optimization view
the negative-log likelihood and negative-log
prior are called the loss function and regular-
izer, respectively (Equation 1). The loss func-
tion measures the residual error between fθ
and the data. The regularizer measures how
much the model violates the constraints im-
posed by the prior. Note that the inference
view and the optimization view offer two per-
spectives of the same problem. Although the

terminology is different, the problem is the
same.

2.1. The Model Class

The model class determines the form of the
mapping function, fθ. Each model class im-
plies strong assumptions about the functional
properties that a neuron might exhibit. To ob-
tain a good estimate of the mapping function,
it is therefore important to choose a model
class that can provide a good description of
the neuron.

Common model classes used for neuronal
SI are listed in Table 1. The simplest model
class is the linear model (De Boer 1967,
Marmarelis & Marmarelis 1978). Linear
models have been used to measure temporal,
spatial, and spatiotemporal properties in the
auditory (De Boer 1967, Eggermont 1993,
Eggermont et al. 1983), visual (DeAngelis
et al. 1993, Jones & Palmer 1987), and
somatosensory systems (Arabzadeh et al.
2005, DiCarlo et al. 1998). Linear models are
easy to fit, but they cannot capture the non-
linear properties of neurons found at more
central stages of sensory processing (David &
Gallant 2005, DeAngelis et al. 1993,
Eggermont 1993).

The model class first used to describe
nonlinear sensory neurons is the Wiener
or Volterra series (Aertsen & Johannesma

Table 1 Model classes used in neuronal system identification∗

Model class Model form Model parameter θ

Linear models fθ(x) = xTβ θ = β

Nonlinear models
Parametric (data independent) Nonlinear Wiener/Volterra fθ(x) = xTβ + xTBx θ = {β, B}

Linearized model fθ(x) = L(x)Tβ θ = β and L

Nonparametric (data dependent) Neural networks fθ(x) = a + wT tanh (b + UTx) θ = {a, b, w, U}
Kernel regression fθ(x) = 〈�(x), β〉 θ = β and Φ

∗Each model is specified by a general parameter vector, θ. The definition of θ for each model class is shown in column 3. β is a vector of linear
coefficients, B is a symmetric matrix of quadratic coefficients. Nonlinear Wiener/Volterra models in general have higher-order terms but are
limited to second order in practice. L denotes a linearizing transform. For artificial neural network models, U is a matrix of input weights, b is a
vector of input biases, w is a vector of output weights, a is a scalar output bias, and tanh is a function that is applied component-wise to its
argument. For kernel regression models, Φ is the feature map that nonlinearly transforms the stimulus into a high (possibly infinite) dimensional
feature space, and 〈·, ·〉 is a general inner product.
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1981b, Emerson et al. 1987, Victor & Shapley
1980). In this case the linear model is consid-
ered to be the first-order term of a Wiener
or Volterra series expansion of the map-
ping function. Therefore, a nonlinear model
can be constructed by adding higher-order
terms to the series (Marmarelis & Marmarelis
1978). Second-order Wiener/Volterra models
have been used in the auditory (Eggermont
1993, Lewis & van Dijk 2004) and visual
systems (Anzai et al. 2001, Emerson et al.
1987, Gaska et al. 1994, Mancini et al. 1990,
Victor & Shapley 1980). One commonly used
SI algorithm that employs a second-order
model is the method of spike-triggered co-
variance (Brenner et al. 2000; Rust et al.
2005; Touryan et al. 2002, 2005). It is usu-
ally not feasible to estimate terms of the full
Wiener/Volterra models beyond second or-
der because the amount of data required to
estimate each higher-order term scales expo-
nentially with the order of the model (Victor
2005). However, if the stimulus is restricted to
a relevant low-dimensional subspace, higher-
order Volterra models can be computed by
the Volterra relevant-space technique (Rapela
et al. 2006).

Another strategy for modeling nonlinear
responses is to use a linearized model. In this
approach the stimulus is transformed nonlin-
early into a new space where the relation-
ship between the stimulus and response is
more linear (Aertsen & Johannesma 1981b).
This linearizing transform is often inspired by
biophysical considerations or previous neuro-
physiological studies. Linearized models are
efficient; a good linearized model can de-
scribe complex nonlinearities while requir-
ing relatively few model parameters (David &
Gallant 2005). A linearized model was first
developed to describe functional proper-
ties in the auditory periphery (Aertsen &
Johannesma 1981b). Since then, linearized
models have been used in central auditory ar-
eas (Kowalski et al. 1996, Machens et al. 2004,
Theunissen et al. 2000) and in primary vi-
sual cortex (Bredfeldt & Ringach 2002, David
et al. 2004, Mazer et al. 2002, Nishimoto et al.

ANN: artificial
neural network

regularization: a
computational
procedure used to
prevent overfitting
by imposing
constraints (by
adding regularizers
to the MAP
objective) on the
model

NLN: nonlinear-
linear-nonlinear

2005, Nykamp & Ringach 2002, Ringach et al.
1997a).

The nonlinear models described thus far
are parametric: Their complexity is fixed
and does not grow with the data. In the-
ory the Wiener/Volterra series is nonpara-
metric because the number of terms in the
series could potentially increase as more
data become available. In practice, how-
ever, Wiener/Volterra models are paramet-
ric because they are truncated at a fixed
order (usually second order), and this or-
der is maintained regardless of how much
data is available. Because the fixed-order
Wiener/Volterra model is parametric, it can
be viewed as a linearized model whose lin-
earizing transform is described by the non-
linear terms of the series expansion (David &
Gallant 2005).

A final strategy for estimating a nonlin-
ear stimulus-response mapping function is
to use a nonparametric nonlinear model. In
theory, nonparametric models can describe
any stimulus-response mapping. For exam-
ple, artificial neural networks (ANNs) have
been used to describe area V1 complex cells
(Lau et al. 2002, Lehky et al. 1992, Prenger
et al. 2004), and Kernel regression has been
applied to visual areas V1 and V4 (Wu &
Gallant 2004). Nonparametric models can de-
scribe response properties that have not been
modeled explicitly, but they tend to overfit to
noise. Thus, when using these models, it is
important to use appropriate regularization
(Section 2.3) and to validate the estimated
mapping function with an independent data
set (Section 4.4).

Computational models of neuronal func-
tion are often described in terms of a
nonlinear-linear-nonlinear (NLN) cascade.
SI can also be used to fit an NLN cas-
cade, though the fit process will depend on
which SI algorithm is used. The parametric
Wiener/Volterra and linearized models can
be viewed as nonlinear-linear cascades, so
they can be transformed to NLN form by
fitting the output nonlinearity in a separate
procedure (David et al. 2004, Rust et al.
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2005). Many linearized models implement
the initial nonlinearity in a preprocessing
step; in these cases the subsequent linear-
nonlinear stages are fit separately (Aertsen &
Johannesma 1981b, Eggermont 1993). Non-
parametric ANN and kernel regression mod-
els can fit the entire NLN cascade at once [i.e.,
they are universal approximators (Hammer &
Gersmann 2003, Hornik et al. 1989)], so no
additional fitting stages are required.

2.2. The Noise Distribution (Loss
Function)

The second constituent of the MAP objec-
tive function is the noise distribution. Be-
cause noise is not predictable from the stim-
ulus, the estimated mapping function should
only model the deterministic variability of the
response and not the noise. The noise dis-
tribution embodies assumptions about which
aspects of the response are likely to reflect
deterministic variability and which are likely
to reflect noise. In the MAP objective func-
tion, the noise distribution is represented by
the loss function (the negative log of the
noise distribution). During the minimization
of the MAP objective, the loss function will
penalize any residuals that are unlikely to be
a result of noise (i.e., residuals that fall in
the tails of the noise distribution). For ex-
ample, if the noise distribution is assumed
to be Gaussian, then most noise variance
will lie within two standard deviations of the
mean. Hence the corresponding loss func-
tion, the square loss (Victor 2005) (Table 2),
only lightly penalizes residuals within two

standard deviations of the mean, while levy-
ing a large penalty on residuals beyond this
range.

Selection of an appropriate noise distri-
bution involves a trade-off between biophys-
ical plausibility and computational tractabil-
ity. Most SI algorithms in neurophysiology
employ a square loss and therefore implic-
itly assume a Gaussian noise distribution. The
square loss is computationally tractable, and
the Gaussian noise distribution provides a
good approximation to the real noise when
the response is a continuous variable (e.g., in-
stantaneous firing rate). When the response
is a discrete variable, such as the spike count,
a Poisson noise distribution may be more ap-
propriate (Table 2) (Rieke et al. 1997).

2.3. The Prior (Regularizer)

The final constituent of the MAP objective
function is the prior. The prior incorporates
information about the plausibility of differ-
ent model parameter values independent of
the current data. A good prior will integrate
useful knowledge about the system under
study, thereby improving prediction accuracy
(Smyth et al. 2003, Theunissen et al. 2001). In
the MAP objective function, the prior is rep-
resented by the regularizer (the negative log of
the prior). During minimization of the MAP
objective, the regularizer will favor mapping
functions that are more probable according
to the prior. Because the MAP objective con-
tains both the loss function and the regular-
izer, the optimal MAP estimate will reveal the
model parameters that both fit the data well

Table 2 Possible noise distributions (loss functions) for neuronal system identification∗

Noise distribution p(y| fθ(x)) Loss function L( fθ(x), y) ≡ − log p(y| fθ(x)) Common names

Gaussian exp

{
−[y − fθ(x)]2

2σ 2

}
1

2σ 2 [ y − fθ(x)]2 L2 loss or square loss

Poisson
e− fθ(x)[ fθ(x)]y

y !
fθ(x) − y log[ fθ(x)] Poisson loss

∗Each noise distribution is associated with a unique loss function, obtained by taking the negative log of the noise distribution. fθ(x)
represents the predicted mean neuronal response to stimulus x over repeated presentations. σ2 is the noise variance of the neuronal response.
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(by minimizing the loss function) and satisfy
the constraints of the prior (by minimizing
the regularizer). The MAP objective is for-
mulated so that the prior will have less influ-
ence as the number of data samples, N, grows
larger (Equation 1). For this reason the op-
timal MAP estimate will rely heavily on the
prior only when few data are available, and it
will give less weight to the prior when am-
ple data are available. In practice, the relative
influence between the loss function and the
regularizer must be tuned by cross-validation
to achieve an accurate estimate of the mapping
function (Figure 2) (Section 3.3).

Many SI studies in neurophysiology use
simple algorithms that do not include an
explicit regularizer (Eggermont et al. 1983,
Jones & Palmer 1987, Rust et al. 2005,
Touryan et al. 2002). These algorithms as-
sume implicitly that all values of the model
parameters are equally likely (flat prior). Stud-
ies that specify an explicit prior often use
a Gaussian prior. A Gaussian prior assumes
that the model parameters (components of
θ) are sampled from Gaussian distributions
and that these components may be correlated
among themselves (Mackay 1995). The Gaus-
sian prior can be conveniently summarized by
a covariance matrix, A, that describes the co-
variance among the components of θ. The
Gaussian prior has several attractive features.
It specifies a quadratic regularizer that can be
minimized efficiently (Section 3.1) and it pro-
vides a good second-order approximation to
more complex priors.

Table 3 summarizes several Gaussian pri-
ors used in neuronal SI. These priors are spec-
ified by different covariance matrices, A. Note
that the elements of A are often specified by
one or more free (regularization) parameters
that must be tuned to achieve the mapping
function that best predicts responses to novel
stimuli (Section 3.3).

An independence prior is used in a regular-
ization procedure called automatic relevancy
determination ARD (Mackay 1995, Prenger
et al. 2004, Sahani & Linden 2003a). ARD
assumes that model parameters are indepen-

Figure 2
Regularization optimizes mapping functions estimated using natural
stimuli. Natural stimuli contain strong correlations that can introduce noise
into estimates of the mapping function. The effects of noise can be
minimized by an appropriate regularizer. Data shown here were acquired
from a single neuron in the zebra finch thalamus during stimulation by bird
songs. The mapping function was estimated using a linearized spectrogram
model, a Gaussian noise distribution, and a Gaussian (stimulus-subspace)
prior. The stimulus-subspace prior (Table 3) requires specifying a
regularization parameter, λ, that determines the high-frequency noise
threshold. The optimal regularization parameter value was selected by
cross-validation (Section 3.3). The x-axis shows the value of the
regularization parameter and the y-axis shows the corresponding prediction
accuracy estimated via cross-validation. Insets show mapping functions
estimated using different regularization parameter values. The mapping
functions are plotted as time- (horizontal axis) frequency (vertical axis)
spectrograms. Excitatory tuning is shown in red and inhibitory tuning in
blue. Low values of the regularization parameter do not remove much
high-frequency noise, so predictions are poor. High values smooth the
mapping function too much and also produce poor predictions. Prediction
accuracy is maximized for intermediate values of the regularization
parameter. Figure adapted from Woolley et al. (2006), by permission of the
authors.

dent, and it aims to remove irrelevant model
parameters. ARD therefore tends to produce
sparse models that make effective use of the
available data. The spherical Gaussian prior
has been used in ridge-regression algorithms
for auditory SI (Machens et al. 2004).

The most effective priors are those that
incorporate known properties of the mapping
function. For example, a smooth prior is ap-
propriate if the mapping function is expected
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Table 3 Common Gaussian priors (regularizers) used in neuronal system identification∗

Prior Assumptions
Gaussian

covariance Regularizer
Flat prior All values of the parameters vector are equally likely A−1 = 0 Constant

Spherical Gaussian Parameters are independent with equal variance A = σ2
θI σ−2

θ ‖θ‖2
2 = σ−2

θ

∑
θ2

k

Independence prior Parameters are completely independent A = diag(σ2
θk

)
∑

σ−2
θk

θ2
k

Smooth prior Parameters vary smoothly over stimulus dimensions A = D
−2

δ−1θT
D

2θ = δ−1‖Dθ‖2
2

Stimulus subspace Parameters lie within a stimulus principal component subspace A = QDλQT ∑
k,dk<λ ∞(QT

k θ)2

∗Each Gaussian prior is specified by a covariance matrix, A (column 3). The associated regularizer (column 4) is obtained by taking the negative log
of the prior. σ2

θ is the variance of each model parameter, which is the same for all model parameters in the spherical prior. σ2
θk

is the variance of the

k-th model parameter in the independence prior. D2 is the discretized Laplacian operator used in the smooth prior, and δdetermines the scale over
which θ is expected to be smooth. Q is the matrix of principle components (PC) of the stimulus, where Qk is the k-th PC with associated eigenvalues,
dk · Dλ is a diagonal matrix whose k-th diagonal element is infinite if dk ≥ λ or zero if dk < λ. The stimulus subspace prior applies a threshold
operation to force parameter values to zero for those principle components with eigenvalues smaller than λ. Computationally, the regularizer of the
stimulus subspace prior will levy infinite penalty on the MAP objective whenever a parameter associated with small eigenvalue is not zero.

to be smooth in space and/or time (Sahani
& Linden 2003a, Smyth et al. 2003). The
stimulus-subspace prior can be used to atten-
uate high-frequency noise when using natu-
ral stimuli to estimate the mapping functions.
This prior requires specifying a regularization
parameter for the noise threshold, which is
usually set via cross-validation (David et al.
2004, Theunissen et al. 2001) (Figure 2 and
Section 3.3).

3. COMPUTING THE
STIMULUS-RESPONSE
MAPPING FUNCTION

Almost all SI algorithms can be described
in terms of the MAP estimation framework
(Table 4). Because the MAP constituents are
defined independently, different algorithms
can be created by combining the constituents
in different ways. To date only a few of these
potential algorithms have actually been used
in neurophysiology.

When constructing the MAP estimator,
one important consideration is how difficult it
will be to minimize the MAP objective func-
tion. Three factors influence this process: the
properties of the MAP objective itself, the

number of model parameters that need to be
fit, and the number of free parameters that
must be tuned by cross-validation.

3.1. Properties of the MAP Objective
Function

The difficulty of finding the global minimum
of the MAP objective function is determined
by two properties: whether the MAP objective
is smooth and whether it has local minima. If
the MAP objective is smooth and has no local
minima, then the unique global minimum can
be found easily with standard gradient-based
optimization methods (Fletcher 1987). If the
MAP objective function is not smooth or if
it has local minima, then it may be difficult
to find the global minimum even if one ex-
ists. If any one of the MAP constituents is not
smooth or has local minima, then the entire
MAP objective function will not be smooth
or it will have local minima. For example, the
MAP objective of an ANN is smooth, but it
has local minima (because the ANN model
class includes nonconvex functions). In con-
trast, the MAP objective of support-vector re-
gression is not smooth (because its loss func-
tion is not smooth), but it has no local minima.
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LGG: linear model
class, Gaussian noise
distribution, and
Gaussian prior

To simplify computation, most SI studies
in neurophysiology use algorithms that have a
smooth MAP objective function with no local
minima. The simplest of these consists of a
linear model class, a Gaussian noise distribu-
tion, and a Gaussian prior (the LGG family,
shaded entries in Table 4). The MAP objec-
tive of any algorithm in the LGG family can
be minimized analytically,

Here λ′ = σ 2 is the noise variance
(Table 2), and A is the covariance matrix
of the Gaussian prior. The matrix X =
[x1, . . . , xN]T gives the concatenated stimu-
lus samples, and the vector Y = [y1, . . . , yN]T

represents the response samples. The object
above the brace is the regularized inverse of
the stimulus autocovariance matrix. When the
stimulus is white noise, there are no correla-
tions between stimulus channels and the stim-
ulus autocovariance, XTX, is trivially the iden-
tity matrix (Victor 2005). Equation 2 can be
extended to nonlinear models that are linear
in the model parameters [i.e., generalized lin-
ear models (Dobson 2002)]. Generalized lin-
ear models include all the model classes in
Table 1 except ANNs.

3.2. Number of Model Parameters

The difficulty of computing the MAP esti-
mate also depends on the number of model
parameters, which in turn depends on the
choice of model class and the dimensional-
ity of the stimulus (Table 4). With few ex-
ceptions (David & Gallant 2005), nonlinear
models usually have more parameters than
linear models and therefore require more data
to fit.

When the stimulus is not white (e.g., nat-
ural stimuli) and Equation 2 is used to com-
pute the MAP estimate, then additional data
are required to correct for stimulus bias. This
correction requires computing the regular-

ized inverse, which is difficult when the model
has many parameters (e.g., Wiener/Volterra
models). The data limitation inherent in nat-
ural stimulus experiments can be mitigated
in several ways. The MAP estimate can be
computed without invoking Equation 2 by re-
cursive least squares methods (Lesica et al.
2003, Ringach et al. 2002, Stanley 2002) or by
gradient-based methods (Prenger et al. 2004).
Alternatively, linearized models that require
relatively few model parameters can be used
(Table 4).

A model with few parameters makes effi-
cient use of available data and facilitates the
interpretation of the estimated mapping func-
tion (Section 3.3). Several procedures can be
used to reduce the number of model parame-
ters. If the stimulus dimensions are separable,
a simpler model can be fit to each dimension
independently (David et al. 2004). Regular-
ization methods such as ARD (Mackay 1995,
Prenger et al. 2004, Sahani & Linden 2003a)
can be used to remove irrelevant model pa-
rameters (Section 2.3). Finally, alternative fit
algorithms such as boosting can be used to
fit sparse models with low model complex-
ity (Buhlmann & Yu 2003, Willmore et al.
2005).

3.3. Number of Free Parameters

Many SI algorithms contain free parameters
that are required to specify the MAP objec-
tive function before it can be minimized. Free
parameters may be required for any of the
three MAP constituents: the model class (e.g.,
the number of hidden units in an ANN); the
noise distribution (e.g., the Gaussian noise
variance); or most commonly, the prior (reg-
ularization parameters). Most priors require
at least one regularization parameter to de-
termine the trade-off between the loss func-
tion and the regularizer (Section 2.3). When
the total number of free parameters is small,
cross-validation is an objective method to
find their optimal values (David et al. 2004,
Woolley et al. 2005, Wu & Gallant 2004).
When there are too many free parameters for
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cross-validation, an iterative algorithm such as
evidence optimization can be used (Mackay
1995, Prenger et al. 2004, Sahani & Linden
2003a).

4. EXPERIMENTAL
CONSIDERATIONS FOR SYSTEM
IDENTIFICATION

Several technical aspects of neurophysiologi-
cal experiments place hard limits on the prac-
tical implementation of SI algorithms. In most
cases recordings can only be made from a sin-
gle sensory neuron in vivo for several hours.
Neuronal responses are also quite noisy owing
to the stochastic nature of spike generation
(Johnson 1980) and uncontrolled effects of
anesthesia or changes in cognitive state (Cook
& Maunsell 2004, David et al. 2002, Fritz et al.
2003). These problems are exacerbated when
studying sensory neurons at central stages of
processing. Estimating the stimulus-response
mapping function successfully requires that

the experiment be optimized practically as
well as theoretically. This section reviews
several of the most important practical
issues.

4.1. Stimulus Selection

The major stimulus classes used in neu-
ronal system identification are summarized
in Table 5. The simplest stimulus for SI is
Gaussian white noise. In white noise, each
stimulus channel varies randomly and in-
dependently, making it straightforward to
estimate first- (i.e., linear) and second-
order Wiener/Volterra models. White noise
has been used to estimate linear mapping
functions in the auditory (De Boer 1967,
Eggermont 1993), visual (Chichilnisky 2001,
Horwitz et al. 2005), and somatosensory
(Arabzadeh et al. 2005) systems. However,
white noise tends to be an inefficient stimu-
lus for more central sensory neurons. Central
neurons represent the higher-order features

Table 5 Major classes of stimuli used for neuronal system identification

Stimulus class Advantages Disadvantages Examples
White noise Computationally

convenient, spans
appropriate subspace

Huge space, inefficient White-noise sound pressure waveform (De Boer 1967,
Eggermont 1993)

Spatiotemporal white noise (Chichilnisky 2001)
High-contrast noise, m-sequences (Cottaris & De Valois
1998, DiCarlo et al. 1998; Sutter 1987)

Sparse noise (DeAngelis et al. 1993, Jones & Palmer 1987)
Parametric
noise

Computationally
convenient, effective
stimulus

Restricted subspace Random tones (Aertsen & Johannesma 1981b, deCharms
1998)

Ripples, TORCsa (Klein et al. 2000, Kowalski et al. 1996,
Miller et al. 2001)

Grating sequences (Mazer et al. 2002, Ringach et al. 1997b)
Sum of sinusoids (Victor & Shapley 1980)
Bars (Lau et al. 2002, Rust et al. 2005, Touryan et al. 2002)
Random dot noise (Borghuis et al. 2003, Cook & Maunsell
2004)

Natural stimuli Effective stimulus,
spans appropriate
subspace

Complex statistics Animal vocalizations (Aertsen & Johannesma 1981a,
Theunissen et al. 2000)

Natural image sequences (David et al. 2004, Smyth et al.
2003, Touryan et al. 2005)

Natural vision movies (David et al. 2004, Ringach et al.
2002)

a Temporally orthogonal ripple combination.
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of natural stimuli (Dan et al. 1996, Woolley
et al. 2005), and these structured patterns
occur rarely in white noise. For this reason,
most of the studies that have used white noise
to estimate second-order Wiener/Volterra
models have been conducted in simple organ-
isms or in peripheral sensory systems (Bren-
ner et al. 2000, Pece et al. 1990). Given data
limitations, one practical way to use white
noise to estimate nonlinear mapping func-
tions in more complex systems is to modulate
the noise along only a few dimensions, such
as time (Mancini et al. 1990, Sakai & Naka
1992) or one dimension of space (Citron &
Emerson 1983, Rust et al. 2005, Touryan et al.
2002).

Two variants of white noise have been
used to increase estimation efficiency. In high-
contrast (typically binary) noise, each input
channel is randomly assigned one of several
discrete power levels, thus increasing the ef-
fective contrast (Alonso et al. 2001, DiCarlo
et al. 1998, Nishimoto et al. 2006). High-
contrast noise is often used in conjunction
with the m-sequence method to maximize the
efficiency of stimulus sampling (Cottaris & De
Valois 1998, Reid et al. 1997, Sutter 1987).
In sparse noise, only one (or at most a few)
random stimulus channel(s) is active in each
sample. This increases local contrast in the
stimulus and generally produces more robust
responses (DeAngelis et al. 1993, Jones &
Palmer 1987).

As alternatives to white noise, two classes
of stimuli have been employed for mapping
function estimation. Parametric noise is not
noise in the classical sense. Rather, it is a ran-
dom series of structured patterns that span a
stimulus subspace known to be relevant for
the sensory system under study. The param-
eters that define these stimuli can be a linear
function of the stimulus (Yu & de Sa 2004) or
a nonlinear function such as spectral power
(Aertsen & Johannesma 1981b) or orienta-
tion (Ringach et al. 1997b). In the latter case
a linearized model can be used to estimate the
mapping function by fitting a linear model in
the parameter space.

In the auditory system, typical paramet-
ric noise sources are random tone sequences
(Aertsen & Johannesma 1981b, deCharms
et al. 1998), narrowband noise bursts (Nelken
et al. 1997), and harmonic stacks (i.e., rip-
ples) (Klein et al. 2000, Kowalski et al. 1996,
Theunissen et al. 2001). Because many neu-
rons in primary visual cortex are sensitive
to orientation and spatial frequency, para-
metric noise for the visual system often
consists of oriented features such as bars
(Lau et al. 2002, Rust et al. 2005, Touryan
et al. 2002), sinusoidal gratings (Bredfeldt &
Ringach 2002, Mazer et al. 2002, Ringach
et al. 1997b), or a sum of sinusoids (Victor &
Shapley 1980). Parametric moving dot noise
has also been used in motion-sensitive area
MT (Borghuis et al. 2003, Cook & Maunsell
2004).

Parametric noise presents features known
to drive more peripheral neurons, but it is not
necessarily an effective stimulus for more cen-
tral neurons tuned to higher-order combina-
tions of the parameterized features. Indeed,
simple parametric stimuli often fail to elicit
robust responses in more central sensory ar-
eas (Gallant et al. 1996, Grace et al. 2003),
and parametric noise has not been particu-
larly useful for characterizing neurons in these
areas.

A second alternative to white noise is to
use natural stimuli for mapping function es-
timation. Over the course of evolution, sen-
sory systems should have been optimized for
processing natural stimuli (Barlow 1961, Field
1987, Simoncelli & Olshausen 2001), and the
space of potential natural stimuli is many or-
ders of magnitude smaller than the entire
white-noise space (Field 1994). Natural stim-
uli sampled at random can be used just like
any other noise signal to estimate the mapping
function of sensory neurons. However, natu-
ral stimuli contain strong correlations (Field
1987, Simoncelli & Olshausen 2001), and
these must be taken into account during es-
timation to avoid systematic bias (Aertsen &
Johannesma 1981a, David et al. 2004, Sharpee
et al. 2004, Smyth et al. 2003, Theunissen
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et al. 2001). Natural stimuli have been used
to estimate the stimulus-response mapping
function in auditory (Aertsen & Johannesma
1981a, Machens et al. 2004, Theunissen et al.
2001), visual (David et al. 2004, Felsen et al.
2005, Ringach et al. 2002, Smyth et al. 2003,
Touryan et al. 2005), and somatosensory sys-
tems (Arabzadeh et al. 2005).

Although the space of natural stimuli is
much smaller than the space of white noise, it
is still far too large to be sampled completely
in any real neurophysiology experiment. To
enable denser sampling many experiments
focus on restricted subsets of natural stimuli:
species-specific vocalizations (Aertsen &
Johannesma 1981a, Theunissen et al. 2000),
stimuli with natural spatial structure but white
temporal structure (David et al. 2004, Smyth
et al. 2003), or vice versa (Yu et al. 2005).
However, mapping functions estimated using
these subsets do not necessarily generalize to
the entire space of natural stimuli (David et al.
2004).

4.2. Behavioral Control

There is growing evidence that the stimulus-
response mapping function of sensory neu-
rons can be modified by top-down effects such
as attention (David et al. 2002, Fritz et al.
2003) and learning (Polley et al. 2004, Yang
& Maunsell 2004). These effects can be ig-
nored in experiments involving anesthetized,
untrained animals but must be considered in
studies involving awake and behaving ani-
mals. One simple way to minimize uncon-
trolled variability in awake animals is to use
a consistent behavioral task such as passive
fixation. With the assumption that this task
induces a consistent cognitive state, the map-
ping function can then be estimated directly
without modeling top-down effects (David
et al. 2004). Alternatively, these top-down ef-
fects can be investigated by comparing esti-
mates of mapping functions obtained under
different cognitive states (Section 5.5) (Cook
& Maunsell 2004, David et al. 2002, Fritz et al.
2003).

4.3. Visualization and Interpretation

Mapping functions estimated using paramet-
ric models can usually be interpreted rel-
atively easily. Linear and linearized mod-
els can be visualized by simply plotting the
values of the model parameters (Jones &
Palmer 1987, Mazer et al. 2002). Second-
order Wiener/Volterra models can usually be
visualized by plotting the relevant stimulus
subspace (Brenner et al. 2000, Rust et al. 2005,
Touryan et al. 2002). Nonparametric models
cannot be visualized easily and are notoriously
difficult to interpret. For this reason they have
been rarely used for SI in neurophysiology
(Lau et al. 2002, Lehky et al. 1992, Prenger
et al. 2004, Wu & Gallant 2004). One effective
method for visualizing such models is to iden-
tify the stimulus dimensions that most influ-
ence responses. For example, the parameters
of an ANN define highly nonlinear interac-
tions, but the subspace of stimuli that modu-
lates responses may be relatively small. This
subspace can be extracted from the model pa-
rameters by dimensionality reduction (e.g.,
singular value decomposition), and the rele-
vant stimulus subspace can be visualized di-
rectly (Figure 3) (Lau et al. 2002, Prenger
et al. 2004).

4.4. Prediction and Validation

In SI, a good estimate of the stimulus-
response mapping function is not merely one
that is statistically significant (i.e., unlikely to
have occurred by chance). Rather, a good es-
timate is one that accurately predicts future
responses, especially responses to stimuli that
were not used for estimation (David & Gallant
2005, Machens et al. 2004, Nelken et al. 1997,
Theunissen et al. 2000). A model that accu-
rately describes the entire stimulus-response
mapping function will predict responses to
any stimulus; a bad model will not general-
ize and will predict poorly.

Mapping function estimates can be
contaminated by bias stemming from stim-
ulus statistics, experimental noise, and
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Figure 3
Effective visualization is important for interpreting nonparametric mapping functions. Nonparametric
models have many parameters and can be difficult to interpret. Data shown here were acquired from a
single V1 complex cell during stimulation with a sequence of natural images. The mapping function was
estimated with a nonparametric artificial neural network. To visualize the network, the principle
dimensions of the relevant input space were identified by singular value decomposition of the input
weights (U in Table 1). (a) The x-axis shows the projection of the stimulus onto the first principle
dimension, and the y-axis gives the corresponding response rate. The spatiotemporal filter shown
beneath the x-axis illustrates the spatiotemporal pattern of the first principle dimension. This dimension
represents tuning to vertical orientation, spatial frequency of about two cycles per receptive field, even
spatial phase, and latency of 32 ms. The gray-shaded curve represents the mean (center of curve) and two
standard errors (boundaries of curve) of the response evoked by stimuli differing along the principle
dimension. The solid line shows the response predicted by the full neural network, and the dashed line
shows the responses predicted by this principle dimension alone. The fact that the solid and dotted lines
have the same shape indicates this dimension contributes significantly to the response. Because this
neuron responds to both positive and negative projections onto the principle dimension, it is a complex
cell. (b) The second principle dimension of the same network. This dimension is similar to the first except
it has an odd spatial phase. Figure adapted from Prenger et al. (2004), by permission of the authors.

regularization procedures. This is a particular
danger when comparing mapping functions
estimated using different stimuli, different
data sets, or different regularization schemes
(David et al. 2004, Sharpee et al. 2004). Pre-
dictive power provides an objective method
for evaluating the quality of an estimate and
thus can help identify potential sources of
bias. Prediction accuracy can also be used
to compare competing models: If several
models are used to predict responses to a
single validation data set, the model that

produces the best prediction is the better
model (David & Gallant 2005). When two
models yield virtually identical predictive
power, the simpler model is usually favored.
It may also be useful to compare the models
directly to determine whether they describe
different aspects of the data, or whether one
of the models encompasses the other. As
long as the validation data set is independent
and distinct from the estimation set, then
prediction can always be used to compare
different models objectively.
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The most common measure of predic-
tion accuracy is the correlation between pre-
dicted and observed responses (Pearson’s r).
The correlation coefficient provides an in-
tuitive measure of predictive power: The
squared correlation coefficient gives the frac-
tion of response variance explained by the
model (David & Gallant 2005, Machens et al.
2004, Sahani & Linden 2003b). Other mea-
sures of predictive power that may be more
appropriate for neuronal spiking data have
been proposed [e.g., coherence (Hsu et al.
2004), mutual information (Sharpee et al.
2004)]. However, these measures have not
been shown to be superior to correlation
in practice. In any case, no single metric
has been shown to be appropriate for all
circumstances.

Because neurons are stochastic, it will
never be possible to predict all of the vari-
ance in neuronal responses. The potentially
explainable variance is the fraction of total
response variance that could theoretically be
predicted, given neuronal noise and a finite
sample (David & Gallant 2005, Sahani &
Linden 2003b). A perfect model will not ex-
plain all of the response variance, but it will
explain all of the potentially explainable vari-
ance. Hence the best model is the one that
predicts the largest fraction of the potentially
explainable response variance.

5. APPLICATIONS

The SI approach has undergone continual de-
velopment and refinement over the last 40
years. Early work focused on simple algo-
rithms that are easy to compute. Most of these
studies used white noise and a linear model to
investigate peripheral sensory systems. Sub-
sequent algorithmic advances and increases in
computer power have dramatically expanded
the range of problems that can be addressed.
Modern SI studies select from a wide range
of parametric and nonparametric models, use
complex stimuli, and are conducted in many
different sensory systems.

5.1. Tuning Properties

The most common application of SI in neu-
rophysiology is to efficiently characterize spa-
tial and temporal receptive fields. In more pe-
ripheral sensory systems, tuning can often be
measured with a linear model (Chichilnisky
2001, DeAngelis et al. 1993, De Boer 1967,
DiCarlo et al. 1998, Reid et al. 1997). If non-
linear response properties are known, an ap-
propriate linearizing transformation can be
used to transform the stimulus into a space
where a linear model can be fit. Linearized
models have been used to characterize non-
phase locked neurons in A1 (Kowalski et al.
1996, Machens et al. 2004, Miller et al. 2001),
complex cells in V1 (Bredfeldt & Ringach
2002; Mazer et al. 2002; Ringach et al. 1997a,
1997b), and velocity selective cells in MT
(Cook & Maunsell 2004, Pack et al. 2003,
Perge et al. 2005). Mapping functions that
describe basic tuning properties can be inter-
preted easily and generally agree with tun-
ing curves measured using more traditional
approaches (DeAngelis et al. 1993, Jones &
Palmer 1987, Kowalski et al. 1996, Nishimoto
et al. 2005, Pack et al. 2003).

One common application of SI is to de-
termine whether the tuning of stimulus di-
mensions is separable (i.e., independent) or
whether there is an interaction between di-
mensions. Separability is often taken as a sign
that the two dimensions are processed in dis-
tinct neuronal populations (Kowalski et al.
1996). Many peripheral sensory neurons are
space-time separable (Jenison et al. 2001),
whereas many central neurons are insepara-
ble (DeAngelis et al. 1993, DiCarlo et al.
1998). Neurons in auditory cortex have insep-
arable spectral and temporal tuning, a prop-
erty that may facilitate detection of up- and
downsweeps (Depireux et al. 2001). In pri-
mary visual cortex, orientation and temporal
tuning are predominantly separable (Mazer
et al. 2002). In contrast, spatial frequency and
temporal tuning are inseparable (Bredfeldt
& Ringach 2002, Frazor et al. 2004, Mazer
et al. 2002). Inseparable spatial frequency and
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LGN: lateral
geniculate nucleus

temporal tuning may reflect the integration
of faster low spatial frequency magno- and
slower high spatial frequency parvo-cellular
inputs from the lateral geniculate nucleus
(LGN) (Frazor et al. 2004, Mazer et al. 2002).

Several studies have examined the map-
ping functions of a large sample of neurons
to make inferences about population coding.
Analysis of mapping functions in LGN sug-
gests the population of retinal ganglion cells
is optimized to convey information about nat-
ural scenes (Dan et al. 1996). Similarly, neu-
ronal tuning in the auditory thalamus of the
songbird appears to be optimized for rep-
resenting song (Woolley et al. 2005). Map-
ping functions estimated from simultaneously
recorded pairs of neurons can be broken down
into their simultaneous and asynchronous
spiking components. In LGN, mapping func-
tions estimated from simultaneous responses
of neuron pairs tend to be more narrowly
tuned than those estimated from individual
neurons (Dan et al. 1998), suggesting simulta-
neous activity of adjacent neurons is narrowly
selective for distinct stimulus features. Similar
results have been reported in auditory cortex
(Tomita & Eggermont 2005).

5.2. Nonlinear Response Properties

Sensory neurons have many nonlinear re-
sponses properties difficult to characterize us-
ing classical approaches. The SI approach
provides a general procedure for fitting para-
metric and nonparametric nonlinear models
that do not require an explicit theory about
neural coding in a particular sensory area. The
estimated mapping functions can then be used
to develop theories that can be refined in clas-
sical experiments.

Second-order Wiener/Volterra models
(Citron & Emerson 1983, Eggermont 1993,
Mancini et al. 1990) have been extremely
useful for characterizing neurons in many
sensory systems. In primary visual cortex,
a second-order model describes phase in-
variance (Gaska et al. 1994, Touryan et al.
2002), direction selectivity (Citron & Emer-

son 1983, Rust et al. 2005), and velocity se-
lectivity (Emerson et al. 1987). These find-
ings agree broadly with the predictions of the
motion-energy model (Emerson et al. 1992,
Gaska et al. 1994). Second-order models also
account for the spatially tuned suppression
(Citron & Emerson 1983, David et al. 2004,
Rust et al. 2005, Touryan et al. 2005) and
short-term adaptation (Mancini et al. 1990) of
visual cortical neurons. In the auditory system,
second-order models have been used to char-
acterize frequency-specific facilitatory and in-
hibitory interactions in auditory nerve fibers
(Young & Calhoun 2005). A second-order
nonlinearity also accounts for the envelope re-
sponses of many cells in peripheral (Yamada &
Lewis 1999) and central (Keller & Takahashi
2000, Kowalski et al. 1996, Sen et al. 2001)
pathways.

It is difficult to characterize nonlin-
ear responses beyond second order using
Wiener/Volterra models (Sections 2.1 and
3.2). Therefore, more flexible nonparametric
models have been used to investigate effects
such as nonlinear spatial pooling (Prenger
et al. 2005, Wu & Gallant 2004). Nonpara-
metric models may be particularly valuable for
investigating sensory neurons at more central
stages of sensory processing.

5.3. Functional Anatomy

Sensory systems consist of several anatomi-
cally distinct stages of processing (Felleman
& Van Essen 1991, Read et al. 2002). By mere
virtue of their connectivity, neurons at each
processing stage are likely to have different
response properties and represent different
stimulus attributes. The mapping function
provides a common currency for compar-
ing neuronal coding properties across sensory
areas.

A few studies have estimated mapping
functions for monosynaptically connected
pairs of neurons in different anatomical areas.
Comparing these mapping functions offers
insight into the circuitry that transforms sen-
sory representations between areas. One study
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that estimated linear mapping functions for
connected pairs of neurons in LGN and
primary visual cortex neurons reported that
thalamo-cortical connections are extremely
specific (Alonso et al. 2001). The ON and
OFF subregions of receptive field maps tend
to overlap closely, suggesting feedforward
connections play a dominant role in deter-
mining tuning in primary visual cortex. Map-
ping functions have also been estimated for
connected pairs of neurons in auditory thala-
mus and cortex (Miller et al. 2001). Neurons
in both areas tend to share the same charac-
teristic frequency but differ in their temporal
and spectral modulation properties. This sug-
gests neurons in auditory cortex derive some
of their basic tuning properties from intracor-
tical rather than feedforward connections.

Several other studies have compared map-
ping functions of populations of neurons
recorded in different auditory areas: A1 and
the lateral belt (Barbour & Wang 2003), A1
and anterior auditory field (Linden et al.
2003), and several auditory nuclei in the song-
bird (Sen et al. 2001). Mapping functions
differ across areas in many respects: latency
(Linden et al. 2003, Sen et al. 2001), band-
width (Linden et al. 2003), preferred mod-
ulation frequency (Sen et al. 2001), strength
of inhibition (Sen et al. 2001), and degree of
linearity (Linden et al. 2003, Sen et al. 2001).
The application of SI throughout the auditory
system has revealed the functional hierarchy
across sensory areas that were originally de-
fined only anatomically.

5.4. Natural Stimuli

The response properties of many sensory
neurons are modulated by stimuli that do
not evoke responses in isolation (Albright
& Stoner 2002, Allman et al. 1985, Nelken
2004). These contextual effects have been
described variously as contrast gain control
(Albrecht et al. 1984, Bonds 1991, Ohzawa
et al. 1985), nonclassical receptive field mod-
ulation (Gilbert & Wiesel 1990, Knierim &
Van Essen 1992, Vinje & Gallant 2002), and

side-band modulation (Bendor & Wang 2005,
Bonds 1991). Natural stimuli contain rich
combinations of features that may drive these
context-dependent responses in a way that
cannot be predicted with simple synthetic
stimuli (David et al. 2004).

Several studies have addressed this issue
by comparing mapping functions estimated
for sensory neurons using parametric noise
and natural stimuli [e.g., auditory system
(Theunissen et al. 2000, Woolley et al. 2005),
visual system (David et al. 2004, Yu et al.
2005)]. In all cases mapping functions es-
timated using the different stimulus classes
are broadly similar, but they differ in sev-
eral important and consistent respects. Broad-
band natural stimuli tend to elicit substantially
more inhibition than narrowband paramet-
ric noise, and this inhibition tends to make
tuning curves narrower in space (David et al.
2004) and time (David et al. 2004, Woolley
et al. 2005). This modulation appears to re-
flect a dynamic process in which sensory neu-
rons adapt to become more selective within
the prevailing stimulus statistics. Moreover,
V1 neurons will adapt to the statistics of nat-
ural stimuli to increase information transmis-
sion (Sharpee et al. 2006).

5.5. Cognitive Factors

Sensory neurons in more central areas are
modulated by cognitive processes such as at-
tention, learning, and memory (Desimone &
Duncan 1995, Reynolds & Chelazzi 2004).
These processes change the way sensory in-
formation is routed and pooled at succes-
sive stages of representation (Olshausen et al.
1993). SI offers a means for studying how
these cognitive processes interact with sen-
sory representation. To investigate cognitive
factors from the SI perspective, it is conve-
nient to view them as additional input chan-
nels (David et al. 2002). Because it is im-
possible to gather data under every possible
cognitive state, a single study must instead es-
timate separate mapping functions under just
a few specific states (Cook & Maunsell 2004,
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David et al. 2002, Fritz et al. 2003). The map-
ping function acquired in each state repre-
sents a single stimulus-response slice through
the complete stimulus-cognition-response
mapping function.

SI studies of attention have focused on
the separability of attention and sensory tun-
ing. If these are separable, then attention
merely modulates the response rate (Luck
et al. 1997) or gain (McAdams & Maunsell
1999, Reynolds & Chelazzi 2004) of a neu-
ron. If they are inseparable, then attention can
actually change the structure of the stimulus-
response mapping function. The data avail-
able thus far present a conflicting picture of
this interaction. One study in area MT found
that spatial attention only modulates response
gain and thus is separable from sensory tuning
(Cook & Maunsell 2004). In contrast, stud-
ies in areas V4 (David et al. 2002) and A1
(Fritz et al. 2003) reported that attention can
also modulate tuning properties. This appar-
ent conflict may reflect differences in exper-
imental control of attention, the anatomical
areas investigated, or the models used to char-
acterize the mapping function. More exhaus-
tive SI studies are required to clarify this issue.

5.6. Optimal Stimuli

Estimating the entire stimulus-response map-
ping function of a sensory neuron is an ambi-
tious goal. Other studies have taken a simpler
approach, seeking merely to identify the op-
timal stimulus for sensory neurons. The most
straightforward procedure for finding an op-
timal stimulus is to search through the stim-
ulus space and identify the pattern that elicits
the largest response from a neuron (Foldiak
2001, Kobatake & Tanaka 1994, Machens
et al. 2005, Tanaka et al. 1991). An exhaus-
tive search works well in simple sensory sys-
tems where the relevant stimulus space is small
(Machens et al. 2005), but it cannot be applied
to more complex systems where the space of
potential stimuli is huge. In such cases heuris-
tic search methods can identify patterns that
elicit strong neuronal responses (Kobatake &

Tanaka 1994). However, it is difficult to con-
clude that a particular stimulus is truly optimal
when the tested stimulus set is very small.

One factor complicating the optimal stim-
ulus approach is that there is usually more than
one optimal stimulus for a neuron. In cortex,
sensory neurons are tuned to some features of
a stimulus but invariant to others. For exam-
ple, complex cells in visual cortex are insensi-
tive to the spatial phase of their optimal ori-
ented feature (De Valois et al. 1982, Movshon
et al. 1978, Touryan et al. 2002), and envelope-
sensitive cells in the central auditory path-
way are insensitive to the phase of the carrier
(Eggermont 1993). Invariant tuning becomes
even more common at more central stages of
visual processing [e.g., inferior temporal cor-
tex (Ito et al. 1995)]. Because invariant neu-
rons respond equally well to all stimuli along
the invariant dimensions, there is no single
optimal stimulus.

The mapping function obtained by SI can
describe responses along all stimulus dimen-
sions, including the invariant dimensions. By
inverting the mapping function, all stimuli
that elicit any specific level of response can
be identified. In fact, one good way to vali-
date an estimated mapping function is to use
it to generate optimal stimuli and to deter-
mine whether those stimuli actually elicit the
predicted response (deCharms et al. 1998,
Touryan et al. 2002).

5.7. Predictive Power

The SI approach can be used to compare and
evaluate models in terms of their predictive
power. Many SI studies have assessed predic-
tions between two independent sets of sim-
ple synthetic stimuli, one used for estimation
and one for validation. When these estima-
tion and validation stimuli have similar sta-
tistical properties, predictive power is often
quite high, both for neurons near the sen-
sory periphery (Arabzadeh et al. 2005, Citron
et al. 1988, Golomb et al. 1994, Nelken et al.
1997) and in more central structures (DiCarlo
et al. 1998, Lau et al. 2002). This indicates that
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the mapping functions estimated using simple
stimuli provide a good description of neuronal
responses to those specific stimuli.

Simple synthetic stimuli are experimen-
tally convenient, but the ultimate test of
any model of sensory processing is how
well it predicts neuronal responses to natu-
ral stimuli during natural sensory exploration
(Carandini et al. 2005, David & Gallant 2005).
Several studies have measured how well var-
ious nonlinear models can account for re-
sponses to natural stimuli (David & Gallant
2005, David et al. 2004, Grace et al. 2003,
Keller & Takahashi 2000, Machens et al. 2004,
Prenger et al. 2004, Touryan et al. 2005).
These predictions are uniformly lower than
those obtained for simple stimuli, reflecting
both the complexity of natural signals and the
fact that such signals often evoke nonlinear
responses not observed with simpler stimuli
(David et al. 2004, Theunissen et al. 2000,
Woolley et al. 2005). No SI studies have as-
sessed predictions during natural sensory ex-
ploration; this is a likely avenue for future
research.

6. FUTURE DIRECTIONS

Applications of SI to sensory systems have
exploded in the past decade, reflecting the
successful efforts of early pioneers (Aertsen
& Johannesma 1981b, Jones & Palmer 1987,
Lehky et al. 1992, Marmarelis & McCann
1973). Current theoretical work is focused
on several areas. Several groups are actively
developing new SI algorithms (Rust et al.
2005, Sharpee et al. 2004, Theunissen et al.
2001, Tomita & Eggermont 2005). One av-
enue is to explore novel combinations of
MAP constituents that have not previously
been used. Another is to develop new non-
parametric methods such as support-vector
regression (Wu & Gallant 2004) or maxi-
mally informative dimensions (Sharpee et al.
2004). Nonparametric models require spe-
cialized tools for interpreting and visualizing
estimated mapping functions (Prenger et al.
2004). Visualization is especially important

when the sensory neuron is highly nonlinear
and when the system is probed with spectrally
complex or natural stimuli, so this is likely be
a critical aspect of future work.

Long-term changes in neuronal response
properties over timescales ranging from
many seconds [e.g., adaptation (Bonds 1991,
Ohzawa et al. 1985)] to many weeks [e.g.,
learning (Li et al. 2004, Polley et al.
2004, Yang & Maunsell 2004)] are common
throughout all sensory systems. These non-
stationary processes complicate the estima-
tion of mapping functions. One clear avenue
for future work is to develop SI algorithms
that capture these nonstationary processes.
One recent series of studies used a recursive
least squares algorithm to model slow con-
trast adaptation in the mammalian visual sys-
tem (Lesica et al. 2003). Adaptive algorithms
such as this may also be useful for describing
effects such as attention and learning.

Neurons at central stages of sensory pro-
cessing have two important properties that
cannot be modeled using current methods.
First, these cells are likely involved in figure-
ground segmentation (Albright & Stoner
2002). Scene segmentation is a difficult prob-
lem for which no theoretical solution exists,
and little is known about how the brain ac-
complishes this task. Second, neurons in cen-
tral areas are invariant to many stimulus di-
mensions [e.g., size, position (Gallant et al.
1996, Ito et al. 1995)]. There is currently no
standard theoretical framework for represent-
ing invariances, and no systematic approach is
available for identifying invariant dimensions
in neurophysiological experiments. Of course,
scene segmentation and invariant responses
are also difficult to study using conventional
neurophysiological methods.

7. CONCLUSIONS

SI is an objective and powerful approach for
describing how sensory neurons encode infor-
mation about stimuli. The approach is more
general than classical hypothesis testing be-
cause it provides information about both the
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statistical significance and the importance of
a model. SI experiments show that current
models provide a good description of the func-
tional properties of peripheral sensory neu-
rons. As one might expect, current models
of central sensory neurons are less accurate.
Because the SI approach reveals both the
strengths and weaknesses of current models,
it provides important information about the
best directions for future research.

The SI approach is not limited to sen-
sory systems. Many current studies of rep-
resentation in motor cortex attempt to esti-
mate a mapping function that describes how

signals from a population of neurons are
transformed into a motor response (Schwartz
2004). Likewise, many functional neuroimag-
ing studies aim to describe the functional re-
lationship between sensory stimuli and cor-
tical activity (Hansen et al. 2004, Victor
2005). These are simple variants of the SI
approach reviewed here. As further research
clarifies the links between sensory processing,
motor responses, cognitive states, and func-
tional neuroimaging, the SI approach may
also provide a quantitative framework for inte-
grating findings across many stages of cortical
processing.
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