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Activity-dependent modification of synapses is a powerful mech-
anism for shaping and modifying the response properties of neu-
rons, but it is also dangerous. Unless changes in synaptic strength
across multiple synapses are coordinated appropriately, the level
of activity in a neural circuit can grow or shrink in an uncontrolled
manner. Hebbian plasticity, in the form of long-term potentiation
(LTP) and depression (LTD), provides the basis for most models
of learning and memory, as well as the development of response
selectivity and cortical maps. These models often invoke ad hoc
mechanisms to stabilize levels of activity. Here we review a number
of recent developments, both experimental and theoretical, that
suggest how changes of synaptic efficacy can be distributed across
synapses and over time so that neuronal circuits can be modified
flexibly yet safely.

Hebb originally conjectured that synapses effective at evoking
a response should grow stronger, but over time Hebbian plasticity
has come to mean any long-lasting form of synaptic modification
(strengthening or weakening) that is synapse specific and depends
on correlations between pre- and postsynaptic firing. By acting
independently at each synapse, Hebbian plasticity gains great
power, but also acquires stability problems. To avoid excessively
high or low firing rates, the total amount of excitatory drive to a
neuron or within a network must be tightly regulated, which is
difficult to do if synapses are modified independently. What is
needed is a mechanism that maintains an appropriate level of total
excitation, but allows this to be distributed in different ways across
the synapses of a network by Hebbian processes.

Bienenstock, Cooper and Munro suggested one such mecha-
nism1. In the BCM model, correlated pre- and postsynaptic activ-
ity evokes LTP when the postsynaptic firing rate is higher than a
threshold value and LTD when it is lower. To stabilize the model,
the threshold shifts or slides as a function of the average post-
synaptic firing rate. For example, the threshold increases if the
postsynaptic neuron is highly active, making LTP more difficult
and LTD easier to induce. Although this idea is attractive as a com-
putational model, experimental evidence for the sliding threshold
is largely indirect2.

Three other candidate mechanisms for regulating neuronal
activity during synaptic modification—synaptic scaling, spike-
timing dependent plasticity (STDP) and synaptic redistribution—
have been characterized experimentally and theoretically. We
review these recent developments, focusing primarily on the issue

of stabilizing Hebbian plasticity, but touching briefly on other
functional implications. Our primary aim is to show that it is now
possible to build models of synaptic plasticity, based directly on
experimental data, that provide both flexible and stable mecha-
nisms for shaping neuronal responses.

Synaptic scaling
Hebbian plasticity is a positive-feedback process because effective
synapses are strengthened, making them even more effective, and
ineffective synapses are weakened, making them less so. This tends
to destabilize postsynaptic firing rates, reducing them to zero or
increasing them excessively. An effective way of controlling this
instability is to augment Hebbian modification with additional
processes that are sensitive to the postsynaptic firing rate or to the
total level of synaptic efficacy. A frequent approach in neural net-
work models is to globally adjust all the synapses onto each post-
synaptic neuron based on its level of activity3. The adjustment can
take two forms, depending on whether the synapses to a particu-
lar neuron are changed by the same amount (subtractive) or by
an amount proportional to their strength (multiplicative).

Hebbian plasticity is often used to model the development and
activity-dependent modification of neuronal selectivity to various
aspects of a sensory input, for example the selectivity of visually
responsive neurons to the orientation of a visual image. This typ-
ically requires competition between synapses, so that the neuron
becomes unresponsive to some features while growing more
responsive to others. Many of the mechanisms designed to stabilize
Hebbian plasticity introduce such competition. Both subtractive
and multiplicative global adjustments lead to competition because
they weaken all the synapses to a given neuron if any subset of
synapses evokes a high level of activity. In general, multiplicative
global adjustment is less competitive than subtractive adjustment,
and it may be insufficiently competitive for some applications3.
Competition can be enhanced under a multiplicative scheme if
synapses that are weakened below a threshold level are eliminat-
ed.

These global adjustment schemes were introduced into the
models ad hoc, but future models can be constructed on the basis
of recent data. A biological mechanism that globally modifies
synaptic strengths, called synaptic scaling, occurs in cultured net-
works of neocortical4, hippocampal5 and spinal-cord6 neurons.
Pharmacologically blocking ongoing activity in these systems caus-
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es synaptic strengths, characterized by the amplitudes of minia-
ture excitatory postsynaptic currents (mEPSCs), to increase in a
multiplicative manner (Fig. 1). Conversely, enhancing activity by
blocking inhibition scales down mEPSC amplitudes (Fig. 1).

Some biophysical mechanisms responsible for the bidirection-
al and multiplicative properties of synaptic scaling are understood.
Direct application of glutamate4 and fluorescent labeling of recep-
tors5,6 show that synaptic scaling is due to a postsynaptic change
in the number of functional glutamate receptors. Furthermore,
increasing synaptic strength during reduced activity is associated
with a decrease in the turnover rate of synaptic AMPA-type glu-
tamate receptors6. If receptor insertion and removal rates are dif-
ferentially scaled by activity, this can produce multiplicative changes
in synaptic strength7.

Synaptic scaling in combination with LTP and LTD seems to
generate something similar to a synaptic modification rule analyzed
by Oja8 that illustrates the power of stable, competitive Hebbian
plasticity (see Math Box). The Oja rule combines Hebbian plastic-
ity with a term that multiplicatively decreases the efficacy of all
synapses at a rate proportional to the square of the postsynaptic fir-
ing rate. In simple neuron models, this generates an interesting
form of input selectivity, related to a statistical method called prin-
cipal component analysis, in which neurons become selective to
the linear combination of their inputs with the maximum variance.
This is, in some sense, the most interesting and informative com-
bination of inputs to which the neuron can become responsive.

Activity manipulations scale both AMPA- and NMDA-receptor-
mediated forms of glutamatergic synaptic transmission9. Scaling
of the NMDA receptor component has implications for Hebbian
plasticity, because LTP and LTD are produced by calcium entry
through NMDA receptors. The standard view is that large amounts
of calcium entry induce LTP, whereas smaller amounts cause
LTD10. If neurons scale down NMDA receptor currents in response

to enhanced activity, this may make it more difficult to evoke LTP
and easier to induce LTD. Thus, in addition to multiplicatively
adjusting synaptic strengths, synaptic scaling may modify Heb-
bian plasticity in a manner functionally similar to the BCM model’s
sliding threshold.

Spike-timing dependent synaptic plasticity
Synaptic scaling is a non-Hebbian form of plasticity because it acts
across many synapses and seems to depend primarily on the post-
synaptic firing rate rather than on correlations between pre- and
postsynaptic activity. Purely Hebbian forms of plasticity can also
be used to regulate total levels of synaptic drive, but this requires a
delicate balance between LTP and LTD. The sensitivity of synap-
tic plasticity to the timing of postsynaptic action potentials (STDP)
can provide a mechanism for establishing and maintaining this
balance.

It has long been known that presynaptic activity that precedes
postsynaptic firing or depolarization can induce LTP, whereas
reversing this temporal order causes LTD11–13. Recent experimen-
tal results have expanded our knowledge of the effects of spike tim-
ing on LTP and LTD induction14–21. Although the mechanisms
that make synaptic plasticity sensitive to spike timing are not fully
understood, STDP seems to depend on an interplay between the
dynamics of NMDA receptor activation and the timing of action
potentials backpropagating through the dendrites of the postsy-
naptic neuron15,22,23.

The type and amount of long-term synaptic modification
induced by repeated pairing of pre- and postsynaptic action poten-
tials as a function of their relative timing varies in different prepa-
rations (Fig. 2). In general, synaptic modification is maximal for

Fig. 1. Synaptic scaling is
multiplicative. Quantal ampli-
tudes of miniature EPSCs
recorded from cortical pyra-
midal neurons in cultures that
experience normal levels of
spontaneous activity (control
amplitude) are rank ordered
and plotted against ampli-
tudes recorded in sister cul-
tures in which activity was
either blocked with the
sodium channel blocker
tetrototoxin (TTX) or
enhanced by blocking inhibition with bicuculline (BIC) for two days.
Activity blockade scales up mEPSC amplitude, whereas activity enhance-
ment scales it down. The plots are well fit by straight lines, indicating that
in both cases the scaling is multiplicative. Adapted from ref. 4.
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Fig. 2. The amount and type of synaptic modification (STDP) evoked by
repeated pairing of pre- and postsynaptic action potentials in different
preparations. The horizontal axis is the difference tpre – tpost between the
times of these spikes. The numerical labels on this axis are approximate
and are only intended to give an idea of the general scale. Results are
shown for slice recordings of neocortex layer 5 and layer 2/3 pyramidal
neurons14,21 and layer 4 spiny stellate cells20, in vivo recordings of retino-
tectal synapses in Xenopus tadpoles19, in vitro recordings of excitatory and
inhibitory synapses from hippocampal neurons11–13,15,17,18 (Ganguly et al.,
Soc. Neurosci. Abstr. 25, 291.6, 1999) and recordings from the electrosen-
sory lobe (ELL), a cerebellum-like structure in mormyrid electric fish16.
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small differences between pre- and postsynaptic spike times, and no
plasticity is induced if this difference grows too large. In some cases,
the sign of the time difference (that is, whether the presynaptic
spike precedes or follows the postsynaptic spike) determines
whether the protocol induces LTP or LTD (Fig. 2a–c). In other
cases, synaptic plasticity depends on the relative timing of the pre-
and postsynaptic spikes, but not on their order (Fig. 2d and e). In
the cerebellum-like structure of electric fish, LTP and LTD are
reversed relative to other systems (Fig. 2c), perhaps because the
postsynaptic neuron is inhibitory rather than excitatory. We do
not consider these cases further, but concentrate instead on the
form of plasticity observed in retinotectal connections and neo-
cortical and hippocampal pyramidal cells (Fig. 2a and b).

This form of LTP timing dependence provides a mechanism
for realizing Hebb’s original hypothesis that synapses are strength-
ened only when presynaptic activity causes postsynaptic firing.
Such a causal relationship clearly requires the pre-then-post tem-
poral ordering that increases synaptic efficacy under STDP. The
amount of LTP falls off roughly exponentially as a function of the
difference between pre- and postsynaptic spike times with a time
constant that is of the same order as a typical membrane time con-
stant. This assures that only those presynaptic spikes that arrive
within the temporal range over which a neuron integrates its inputs
are potentiated, further enforcing the requirement of causality.
STDP weakens inputs that fire shortly after a postsynaptic action
potential and therefore do not contribute to evoking it. When
presynaptic spikes occur randomly in time with respect to post-
synaptic action potentials, both LTP and LTD can be induced, and
it is interesting to ask which dominates. In the case of layer 2/3
pyramidal neurons (Fig. 2b), random pairings lead to an overall
reduction in synaptic strength21; in other words, LTD dominates
over LTP in this case. This makes functional sense, because it weak-
ens inputs that ‘accidentally’ fire in approximate coincidence with
postsynaptic action potentials, but that do not consistently con-
tribute to evoking them.

STDP is a synapse-specific Hebbian form of plasticity, and
although we might expect that the firing-rate instabilities that
plague purely Hebbian models would also occur with STDP, this is
not the case. STDP can regulate both the rate and variability of
postsynaptic firing24,25. For this to occur, synaptic strengths must
be bounded between zero and a maximum allowed value, but no
further global non-Hebbian mechanisms or ad hoc constraints are
required25.

To see how STDP can stabilize postsynaptic firing rates, imag-
ine a neuron that initially receives excessively strong uncorrelated
excitatory drive from many synapses, making it fire at an unac-
ceptably high rate. The strong multi-synaptic input to such a neu-

ron is effectively summed into a relatively constant input current.
In response to such input, a neuron will fire in much the same way
as it would in response to the injection of the equivalent constant
current through an electrode, by firing rapidly and regularly. In
such a situation, the neuron acts as an integrator, and there is lit-
tle correlation between the timing of its spikes and those of its
inputs. If LTD dominates over LTP for random pre- and post-
synaptic spike pairings21, this leads to an overall weakening of
synaptic efficacy. As STDP weakens the synaptic drive, the neuron
eventually moves into a regime where the average synaptic cur-
rent is either barely able or unable to make the postsynaptic neu-
ron fire. In this case, action potentials are primarily generated by
chance clusterings in the timing of presynaptic spikes26. The neu-
ron acts somewhat like a coincidence detector and produces an
irregular pattern of postsynaptic firing. Presynaptic spikes are more
likely to occur slightly before than slightly after postsynaptic action
potentials in this situation, because clusters of presynaptic spikes
are required to evoke a postsynaptic response. The dominance of
pre- followed by postsynaptic spiking causes synapses to be poten-
tiated more often than they are depressed, which compensates for
the dominance of LTD over LTP produced by random spike tim-
ing. This ultimately leads to a nonuniform distribution of synap-
tic strengths and a postsynaptic neuron that fires at a reasonable
rate, but irregularly25. Thus, STDP not only stabilizes Hebbian
modification, it drives neurons to a noisy but temporally sensitive
state that resembles what has been suggested to exist in vivo26.

STDP also introduces competition into Hebbian plastici-
ty19,24,25,27. Groups of synapses that are effective at rapidly gener-
ating postsynaptic spikes are strengthened by STDP, making them
even more effective at controlling the timing of postsynaptic spikes.
Synapses from other inputs that fire at random times with respect
to this dominant group will then be weakened if LTD dominates
over LTP for random temporal pairings21.

If two neurons are reciprocally connected and have correlated
activities, Hebbian plasticity will typically strengthen the synapses
between them in a bidirectional manner. This can produce strong
excitatory loops that cause recurrently connected networks to suf-
fer from self-excitatory instabilities. STDP is temporally asym-
metric and, indeed, in the case of Fig. 2a, essentially antisymmetric.
If neurons with correlated activities tend to fire in a specific tem-
poral order, synapses from the leading neuron to the lagging neu-
ron will be strengthened, whereas synapses in the opposite
direction will be weakened. Thus, the temporal asymmetry of
STDP suppresses strong recurrent excitatory loops. As a result, it is
possible for stable recurrent networks to develop based on STDP
without generating the runaway network activity typically result-
ing from Hebbian plasticity.

Fig. 3. Time dependence of the normalized average transmission ampli-
tude for a model synapse showing short-term depression and synaptic
redistribution, based on the model described in the Math Box. Following
activation at a presynaptic rate of 100 Hz, the average transmission
amplitude decreases rapidly. The control case (brown) shows a synapse
with a maximum transmission probability of p0 = 0.2. The parameter g = 1
is used to characterize the relative strength of the postsynaptic conduc-
tance induced by vesicle release. The other curves show two ways that
this synapse might be strengthened. If LTP occurs through synaptic
redistribution that changes p0 to 0.4 but leaves g unchanged, the average
initial amplitude is increased, but the ultimate average steady-state
amplitude remains unchanged (green). If, instead, the synapse is
strengthened by an increase in the postsynaptic conductance, which
changes g to 2 but leaves p0 at its initial value of 0.2, both the average ini-
tial and steady-state amplitudes increase (orange).
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In keeping with the emphasis of this review on stability, we have
focused on this aspect of STDP, but incorporating sensitivity to
timing into Hebbian plasticity has a host of other interesting impli-
cations. STDP can act as a learning mechanism for generating neu-
ronal responses selective to input timing, order and sequence. 
For example, STDP-like rules have been applied to coincidence
detection27, sequence learning28-30, path learning in navigation31,32,
and direction selectivity in visual responses32,33. In general, STDP
greatly expands the capability of Hebbian learning to address tem-
porally sensitive computational tasks.

Synaptic redistribution
A synapse can be strengthened postsynaptically by increasing the
number or efficacy of receptor channels, or presynaptically by
increasing the probability or amount of transmitter release. These
mechanisms can have quite different functional consequences. A
dramatic example of this involves the interplay of long- and short-
term synaptic plasticity.

Synaptic depression is a form of short-term synaptic plasticity
that seems to be a widespread feature of cortical synaptic trans-
mission34, which has significant functional implications for neural
coding35–39. Short-term depression, which is thought to arise, at
least in part, from depletion of the pool of readily releasable vesi-
cles at a synaptic release site, is a use-dependent reduction in the
probability that a presynaptic action potential will induce release
of transmitter. This takes the form of a reduction in the probabili-
ty of release with each transmission event, followed by an expo-
nential recovery to a baseline release probability (see Math Box).

At some cortical synapses, LTP modifies the short-term plas-
ticity of synapses40,41, an effect called synaptic redistribution40.
Although the precise mechanism of synaptic redistribution is not
known, it is consistent with a form of LTP that acts presynaptical-

ly to increase the probability of transmitter release. This increases
the likelihood of transmission occurring early in a sequence of
presynaptic action potentials, but also decreases the availability of
readily releasable vesicles for transmission later in the sequence.
The overall effect is to enhance the average transmission ampli-
tude for presynaptic action potentials that occur after a period of
inactivity, but also to increase the onset rate of synaptic depres-
sion. Synaptic redistribution can significantly enhance the ampli-
tude of synaptic transmission for the first spikes in a sequence,
while having no effect on the ultimate steady-state amplitude 
(Fig. 3; although this figure was generated by a model, similar
effects are seen experimentally37,38). There is no steady-state effect
because the increased probability of release and the increased
amount of short-term depression cancel each other. It is not yet
clear if forms of LTD reverse the redistribution found in LTP, that
is, decrease the probability of release and reduce the amount of
short-term depression.

After redistribution, a synapse is much more effective at con-
veying transients, but there is no change in its efficacy for steady-
state transmission. As a result, synaptic redistribution allows
Hebbian modification to act without increasing either the steady-
state firing rates of postsynaptic neurons or the steady-state excitabil-
ity of recurrent networks. The presence of synaptic depression allows
networks to support stronger recurrent excitation without becom-
ing unstable. Such networks produce occasional spontaneous bursts
of activity during otherwise quiet periods, but prolonged periods
of high activity are suppressed42,43.

The temporal aspects of plasticity induction due to STDP can
interact with the dynamics of short-term depression in interesting
ways if STDP acts presynaptically and evokes synaptic redistribu-
tion (as reported40). STDP strengthens synapses that are effective
at making a neuron fire with short latency. By increasing the short-

MATH BOX
Although space does not permit a full discussion of the tech-
niques used to model the phenomena discussed in the text, we
present some basic approaches.

1. Synaptic scaling can be implemented along with Hebbian
synaptic modification by using something similar to the Oja
rule of artificial neural network theory8. If the presynaptic
neuron fires at a rate rpre and the postsynaptic neuron at a
rate rpost, the normal assumption of Hebbian plasticity is
that the synaptic strength changes at a rate proportional to
rprerpost. Synaptic scaling can be modeled by including an
additional non-Hebbian term, so that the synapse modifi-
cation rate is proportional to rprerpost – f(rpost)w, where f is
some function, and w is the synaptic weight parameter that
characterizes the strength of the synapse. In the case of the
Oja rule, f(rpost) = (rpost)

2, but the experimental data sup-
port a function that is either positive or negative depending
on the postsynaptic firing rate4–6.

2. STDP can be modeled25 most easily by making the approxi-
mation that each pre- and postsynaptic spike pair contributes
to synaptic modification independently and in a similar manner,
although the data show deviations from these simplifying
assumptions14,18. We assume that the curves appearing in Fig. 2
(in particular, Fig. 2a and b) can be approximated by two expo-
nential functions; A+ exp(t/τ+) (with A+ > 0) for t < 0 and 
A– exp(–t/τ–) (with A– < 0) for  t ≥ 0. A simple way to keep track

of all the spike pairs contributing to STDP at a given synapse
is to define functions Ppre(t) and Ppost(t) that satisfy the equa-
tions τ+dPpre/dt = –Ppre and τ–dPpost /dt = –Ppost . Ppre (t) is
incremented by an amount A+ every time the presynaptic
terminal receives an action potential. Similarly, Ppost(t) is
decremented by an amount A– every time the postsynaptic
neuron fires an action potential. Ppre(t) then determines how
much the synapse is strengthened if the postsynaptic neuron
fires an action potential at time t, and Ppost(t) determines
how much the synapse is weakened if the presynaptic termi-
nal transmits an action potential at time t. Synaptic strength-
ening and weakening are subject to constraints so that the
synaptic strength does not go below zero or above a certain
maximum value.

3. Synaptic redistribution requires that we model the process of
synaptic depression and how it is modified by LTP37–39. Sup-
pose that a given synapse transmits a presynaptic action poten-
tial with probability p. If the synapse has been inactive for a
sufficiently long period of time, p approaches its maximum
value p0. When the synapse is active, we assume that p decreas-
es at a rate proportional to the transmission rate due, for exam-
ple, to vesicle depletion. When transmission is not occurring,
p recovers exponentially to p0 with a recovery time constant
τD. The assumption is then that, in the case of synaptic redis-
tribution, LTP modifies the value of p0. The curves in Fig. 3
were generated from this model with τD = 300 ms.
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term efficacy of a synapse while decreasing its ability to sustain mul-
tiple transmissions, synaptic redistribution constructs synapses with
exactly the properties that lead to enhancement by STDP. The
sequence-learning properties of STDP also couple in interesting
ways to the temporal characteristics of synaptic depression. For
example, synaptic depression has been suggested as a mechanism
for generating direction selectivity in simple cells of the primary
visual cortex39. STDP that induces synaptic redistribution can gen-
erate such responses (Buchs et al., Soc. Neurosci. Abstr. 25, 2259,
1999), as well as providing a developmental mechanism for orien-
tation selectivity44.

DISCUSSION
Modeling studies have clearly demonstrated the utility and power of
synaptic scaling, STDP and synaptic redistribution as mechanisms
of learning and development. Properties of these forms of plastici-
ty have been shown in studies of cultured neurons and brain slices,
and also to some extent in vivo. Preliminary data suggest that block-
ing visual input to cortical neurons in vivo during the critical peri-
od (through intraocular injection of tetrodotoxin) strengthens
synapses (measured subsequently in slices) in a multiplicative man-
ner (N.S. Desai, S.B.N. and G.G. Turrigiano, unpublished data).
This effect is similar to the synaptic scaling induced by blocking
activity in culture preparations. Recordings from hippocampal place
cells of behaving rats suggest that STDP may occur during normal
behavior32,45. Place cells fire when a rat passes through a particu-
lar location, known as the place field, in a familiar environment.
Models that incorporate STDP predict that place fields located along
a path that a rat traverses repeatedly in a fixed direction should shift
backward along the path (that is, in the direction opposite to the
rat’s motion) as a result of this experience29,31. The predicted shifts
have been observed experimentally32,45. Finally, evidence for the
occurrence of synaptic redistribution in vivo is provided by slice
recordings following sensory deprivation in rat somatosensory 
cortex46.

All three mechanisms we have discussed can contribute to the
stability of neuronal firing rates, and they might thus appear redun-
dant. However, each has its own distinctive functional roles. Synap-
tic scaling, by realizing something equivalent to the Oja rule, can
cause a neuron to become selective to the most variable aspects of its
inputs. Furthermore, among the mechanisms we have discussed,
synaptic scaling is the only one that does not require postsynaptic
activity. It can thus rescue a neuron that has become inactive due
to insufficient excitatory synaptic drive. Both STDP and synaptic
redistribution can produce interesting temporal effects. STDP pro-
vides a mechanism for learning temporal sequences, but in some
cases may require the addition of a synaptic scaling mechanism to
generate sufficient competition between synapses47,48. Synaptic
redistribution acts primarily to modify transient rather than steady-
state responses. Thus, it seems likely that all three forms of plastic-
ity, and other forms that we have not discussed, are needed to
provide a full repertoire of developmental and learning 
mechanisms.

Most excitatory synapses onto excitatory neurons (but not onto
inhibitory neurons) examined to date show some form of long-
term plasticity. The forms of plasticity, at least as characterized by
their temporal sensitivity, vary considerably across different brain
regions and even across layers within one region (Fig. 2). Similar-
ly, redistribution occurs at neocortical synapses40,41, but seems not
to be a feature of LTP in the CA1 region of the hippocampus49,50.
Given the complexity of learning and memory, it is not surprising
to see many forms of synaptic plasticity with different mechanisms
of induction and expression. Determining how these fit together

to account for the wide variety of learning and developmental phe-
nomena is a challenge for theoretical work in the years ahead.
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Viewpoint • In the brain, the model is the goal
Both computational and empirical studies use models of neural tissue to make inferences about the intact system. Their aims and scope
are complementary, however, and their methods have different strengths and weaknesses. For example, much of our knowledge of
synaptic integration comes from in vitro slices. These slices, which finish out their brief lives in man-made extracellular fluid, are crude
models of the intact brain, with deeper resting potentials, lower background firing rates, higher input resistances, severed inputs, and so
on. Test pulses delivered to a nerve or puffs of glutamate to a dendritic branch are crude models of synaptic stimulation in vivo.
Recordings of one or two voltages within a spatially extended neuron provide a highly reduced model of the cell’s electrical state.
Similarly, long-term potentiation is a simplified model for learning, and high-contrast bars on a gray background are simplified models for
visual stimulation. Yet many things have been learned from experiments on such simplified empirical models, the results of which—often
called ‘data’—underlie our current primitive understanding of brain function.

In contrast, computer studies use models whose elements and principles of operation are explicit, usually encoded in terms of
differential equations or other kinds of laws. These models are extremely flexible, and subject only to the limitations of available
computational power: any stimulus that can be conceptualized can be delivered, any measurement made, and any hypothesis tested. In a
model of a single neuron, for example, it is simple to deliver separate impulse trains to 1,000 different synapses, controlling the rate,
temporal pattern of spikes within each train (periodic, random, bursty), degree of correlation between trains, spatial distribution of
activated synaptic contacts (clustered, distributed, apical or basal, branch tips, trunks), spatiotemporal mix of excitation and inhibition, and
so on. Furthermore, every voltage, current, conductance, chemical concentration, phosphorylation state or other relevant variable can be
recorded at every location within the cell simultaneously. And if necessary, the experiment can be exactly reproduced ten years later.

Nor are such experiments confined to reality: computers permit exploration of pure hypotheticals. Models can contrast a system’s
behavior in different states, some of which do not exist. For example, several spatial distributions of voltage-dependent channels could be
compared within the same dendritic morphology to help an investigator dissect the dastardly complex interactions between channel
properties and dendritic structure, and to tease apart their separate and combined contributions to synaptic integration. This sort of
hands-on manipulation gives the computer experimentalist insight into general principles governing the surrounding class of neural
systems, in addition to the particular system under study. 

The need for modeling in neuroscience is particularly intense because what most neuroscientists ultimately want to know about the brain
is the model—that is, the laws governing the brain’s information processing functions. The brain as an electrical system, or a chemical system,
is simply not the point. In general, the model as a research tool is more important when the system under study is more complex. In the
extreme case of the brain, the most complicated machine known, the importance of gathering more facts about the brain through empirical
studies must give way to efforts to relate brain facts to each other, which requires models matched to the complexity of the brain itself. There
is no escaping this: imagine a neuroscientist assigned to fully describe the workings of a modern computer (which has only 1010 transistors to
the brain’s 1015 synapses). The investigator is allowed only to inject currents and measure voltages, even a million voltages at once, and then
is told to simply think about what the data mean. The task is clearly impossible. Many levels of organization, from electron to web server, or
from ion channel to consciousness—each governed by its own set of rules—lie between the end of the experimentalist’s probe and a deep
understanding of the abstract computing system at hand. A true understanding of the brain implies the capacity to build a working replica in
any medium that can incorporate the same principles of operation—silicon wafers, strands of DNA, computer programs or even plumbing
fixtures. This highly elevated ‘practioner’s’ form of understanding must be our ultimate goal, since it will not only allow us to explain the brain’s
current form and function, but will help us to fix broken brains, or build better brains, or adapt the brain to altogether different uses.
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