Assignments for TN lectures 23th and 27th Feb Gatsby Spring 2017

Aapo Hyvärinen

February 28, 2017

1. In ICA, we can assume without loss of generality that the variances of the independent components s_i are equal to one, and their means are zero.

Consider a general linear combination $y = \sum_{i=1}^{n} q_i s_i$ of the independent components.

- (a) Compute the variance of y.
- (b) Compute the kurtosis of y.
- 2. Assume for simplicity $kurt(s_i) = 1$ for all *i*.
 - (a) Let's constrain the variance of y to unity; what does this mean geometrically for the q_i ?
 - (b) Set n = 2 for simplicity; sketch the isocontours of the kurtosis of y in the space of q_1, q_2 .
 - (c) Can you see geometrically why the extrema of kurtosis correspond to the independent components?
- 3. (a) Derive the score matching objective for the multivariate Gaussian distribution parametrized by the mean and the covariance matrix.
 - (b) Find its minimum, i.e. the score matching estimator for the mean and the covariance matrix (simple formulae are possible!).
- 4. Derive the score matching objective function for an exponential family.