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Part Ill: Estimation of unnormalized models

» Often, in natural image statistics, the probabilistic models are
unnormalized

» Major computational problem
> Here, we consider new methods to tackle this problem

» Later, we see applications on natural image statistics
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Unnormalized models: Problem definition

» We want to estimate a parametric model of a multivariate
random vector x € R”

» Density function fyorm is known only up to a multiplicative
constant

Z(0)

Z(6) = /g  pl€i6) d

fnorm(x; 0) = pun(x; 9)

» Functional form of py, is known (can be easily computed)

» Partition function Z cannot be computed with reasonable
computing time (numerical integration)

> Here: How to estimate model while avoiding numerical
integration?
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Examples of unnormalized models related to ICA

ICA with overcomplete basis simple by

v

faorm(X; W) = exp[z G(w/ x)] (1)

v

Estimation of second layer in ISA and topographic ICA
: 1 T,\2
frorm (x; W, M) = Z(W. M) eXP[Z G(Z mi(w; x)%)] (2)

Non-Gaussian Markov Random Fields

v

> ... many more
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Previous solutions

» Monte Carlo methods

» Consistent estimators
(convergence to real parameter values when sample size — o)
» Computation very slow (I think)

» Various approximations, e.g. variational methods

» Computation often fast
» Consistency not known, or proven inconsistent

» Pseudo-likelihood and contrastive divergence

» Presumably consistent

» Computations slow with continuous-valued variables:
needs 1-D integration at every step, or sophisticated MCMC
methods
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Content of this talk

» We have proposed two methods for estimation of
unnormalized models

» Both methods avoid numerical integration
» First: Score matching (Hyvérinen, JMLR, 2005)
» Take derivative of model log-density w.r.t. x, so partition
function disappears
» Fit this derivative to the same derivative of data density

» Easy to compute due to partial integration trick
» Closed-form solution for exponential families

» Second: Noise-contrastive estimation
(Gutmann and Hyvérinen, JMLR, 2012)

» Learn to distinguish data from artificially generated noise:
Logistic regression learns ratios of pdf's of data and noise

» For known noise pdf, we have in fact learnt data pdf

» Consistent even in the unnormalized case
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Definition of “score function” (in this talk)

» Define model score function R” — R" as

0 |0g f;10rm (5.9)
&1

P(&:0) = : = V¢log faorm(&; €)

o) |°g frorm (Eve)
0&n

where fyorm is normalized model density.

» Similarly, define data score function as

P (€) = Ve log px(§)

where observed data is assumed to follow py(.).

> In conventional terminology: Fisher score with respect to a
hypothetical location parameter: form(x — @), evaluated at
6=0.
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Score matching: definition of objective function

» Estimate by minimizing a distance between model score
function 4 (.; @) and score function of observed data ,(.):

5O) =5 [ O - v ()

6 =arg mein J(0)

» This gives a consistent estimator almost by construction
> 1(&; 0) does not depend on Z(0) because

YP(&;0) = Ve log pun(&; 0)— V¢ log Z(0) = V¢ log pun(&; 6)—0
(4)
» No need to compute normalization constant Z,
non-normalized pdf py, is enough.

» Computation of J quite simple due to theorem below
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A computational trick: central theorem of score matching

> In the objective function we have score function of data
distribution 1), (.). How to compute it?

» In fact, no need to compute it because
Theorem

Assume some regularity conditions, and smooth densities. Then,
the score matching objective function J can be expressed as

J(6) = /&Rn Px(€) Z [3:‘%(5; 0) + %1/1,-(5; 0)?| d& + const. (5)

i=1

where the constant does not depend on 6, and

dlog pun(&; 0) 92 log pun(&; 6)

TP:(E. 0) = O&; 8512

, 0ni(§,0) =
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Simple explanation of score matching trick

» Consider objective function J(8):

3 [ PO10(€:0)1d€ — [ pu(€ysa(O)T (€ 0)de + const.

» Constant does not depend on . First term easy to compute.

» The trick is to use partial integration on second term. In one
dimension:

/ D\dx — AP oy g
[ pxdtog ) (i ) = [ bt )t
= /p;(x)w(x; Q)dx:O—/pX(x)wl(x; 0)dx

» This is why score function of data distribution px(x)
disappears!

Aapo Hyvérinen Gatsby Theoretical Neuroscience Lectures: Non-Gaussian sta



Final method of score matching

» Replace integration over data density px(.) by sample average

» Given T observations x(1),...,x(T), minimize

1 T n 1
Z Z {0 i(x(t); 0) + Svi(x(t); 0)2} (6)

t:l =

where 1); is a partial derivative of non-normalized model
log-density log pun, and 0;1); a second partial derivative

» Only needs evaluation of some derivatives of the
non-normalized (log)-density pyn which are simple to compute
(by assumption)

» Thus: a new computationally simple and statistically
consistent method for parameter estimation
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Closed-form solution in the exponential family

» Assume pdf can be expressed in the form

log pun(&; 0) Zeka(g log Z(8) (7)

» Define matrices of partial derivatives:

OFk O?Fy

Kii(€) = 56 and Hy;(€§) = 082

» Then, the score matching estimator is given by:

~

0= [E{K(x K(x)T}] ZE{h (9)

where E denotes the sample average, and the vector h; is the
i-th column of the matrix H.
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ICA with overcomplete basis

i
?'h

- ra -
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Second method: Noise-contrastive estimation (NCE)

» Train a nonlinear classifier to discriminate observed data from
some artificial noise

» To be successful, the classifier must “discover structure” in
the data

» For example, compare natural images with Gaussian noise

Natural images

SIS
St Y

‘Gaussmn nOISe
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Definition of classifier in NCE

Observed data set X = (x(1),...,x(T)) with unknown pdf py
Generate "noise” Y = (y(1),...,y(T)) with known pdf py

Define a nonlinear function (e.g. multilayer perceptron)
g(u; 0), which models data log-density log px(u).

v

v

v

v

We use logistic regression with the nonlinear function

G(u;0) = g(u; 0) — log py(u). (10)
Well-known developments lead to objective (likelihood)

= D log A(x(0): )] + og 1 ~ ly(0):)]

1
1+ exp[—G(u; 0)]

v

where h(u; 0) = (11)
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What does the classifying system do in NCE?

» Theorem:

» Assume our parametric model g(u;6) (e.g. an MLP)
can approximate any function.
» Then, the maximum of classification objective is attained when

g(u;0) = log px(u) (12)

where py(u) is the pdf of the observed data.
» Corollary: If data generated according to model,
i.e. log px(u) = g(u; 0%) ,
we have a statistically consistent estimator.
» Supervised learning thus leads to unsupervised estimation of a
probabilistic model given by log-density g(u; ).
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The really important point:

NCE estimates unnormalized models

» The maximum of objective function is attained when
g(u;0) =log py(u), S
and there is no constraint on g in this optimization problem!
> In particular, no normalization constraint
(such as [exp(g(u;0))du =1)
» Even if the family g(u;0) is not normalized, the maximum is
still attained for the properly normalized pdf
» In practice, normalization constant (partition function) can be
estimated like any other parameter

» For an unnormalized model, add a new parameter ¢
g(u;0) — g(u;0) + ¢
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ice of noise distribution in

» The noise distribution py is an important design parameter.
» We would like to have py which fullfills the following:
1. Easy to sample from
> But we only need to sample noise once, off-line
2. Has an analytical expression
> But we only need to, e.g., normalize it once
3. It leads to a small mean-squared error of the estimator.
> This can be analyzed, but optimization not simple

» In practice, we can take Gaussian noise with the same mean
and covariance as the data.

> Intuitively, noise should be rather similar to data:
classification not too easy
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Comparison between score matching and NCE

Computation
» NCE needs auxiliary noise distribution, while SM does not
» In some models (e.g. multilayer neural networks),
SM algebraically difficult
— Complexity of NCE similar to MLE of normalized model.
> In exponential families, SM particularly simple
Statistics
> Both methods are consistent
» NCE is Fisher-efficient in the limit of infinite noise sample.
» SM probably not Fisher-efficient, but can be shown to have
some other optimility properties (Hyvarinen, 2008)
» Noise-contrastive estimation turns out to be closely related to
importance sampling (Pihlaja et al, UAI, 2010).
» A general framework can be developed (Gutmann and
Hirayama, UAI 2011).
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Assume potentially infinite data set
» Estimation error limited by computation only
» Compute estimation error vs. computation time for each

method

Comparative simulation: computation-statistics trade-off

In NCE, noise sample size determines part of trade-off: For
infinite noise sample, Fisher efficient
Depends strongly on data and model

© NCE
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Conclusion: Estimation of unnormalized models

» Unnormalized models important in natural image statistics

» We presented two methods for estimating parameters in
unnormalized models

» Unlike typical methods, we avoided numerical integration (or
MC methods)

> In score matching, match gradients of log-densities
—partition function (normalization constant) is completely
avoided by taking a derivative

> In noise-contrastive estimation, learn logistic regression to

discriminate data from artificial noise
—partition function can be estimated like any parameter
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Part IV: A three-layer model of natural images

» Deep learning is often a black box

» For neurophysiological modelling, we would prefer a network
where

» The role of each unit is clear
> All cell responses model biological responses

» Instead of blindly stacking many layers on top of each other,
we must think about what each layer is doing

» Here: Fix a complex cell model, and estimate another layer by
ICA
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Going towards V2

(A)

» Compute fixed complex o
aer
cell outputs for A
natural images

» Do ICA on complex cell D
outputs

» A simple model of i
dependencies in complex
cell outputs nputimage

32
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Emergence of longer contours

v

Hoyer and Hyvarinen (2002) considered a non-negative
version of sparse coding

v

Main finding: V2 integrates longer contours

v

Bayesian inference in the model can model end-stopping etc.

v

Cf. “Ultra-long” RF's found by Liu et al (2016).
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Emergence of integration over frequencies

v

Hyvarinen, Gutmann, and Hoyer (2005) considered several
frequency bands (using ordinary ICA)

IIIIII]“"”
I.IIIH. ol | ]

Each higher-order cell corresponds to 3 frequency displays

Frequency [oyciesipixe

Classic view (of V1) emphasizes separate frequency channels

Integration could be related to sharp edges (Henriksson,
Hyvarinen, Vanni, 2009)
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Emergence of a variety of RF properties

» Hosoya and Hyvarinen (2015) used

» More densely sampling of orientations
» Strong PCA dimension reduction

> One of the simplest possible models of pooling: Works as a
simple V1 complex cell model (Hosoya and Hyvéarinen, 2016)

» Overcomplete basis

» Extensive comparison with V2 experiments
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Emergence of corner detectors

(+ long contours, end-stopping)
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Five principal classes found by Hosoya and Hyvarinen (2015)
Corner detectors (e) are robust, not just a few random gabors
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reproduces various results on V2
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Can we train all three layers?

Training all layers (not fixing complex cell model) was done by
Gutmann and Hyvarinen (2013)

Energy-based model trained by noise-contrastive estimation

v

v

» Training and interpretation a lot more difficult

» Some receptive fields visualized:
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Grand conclusion

» Visual features can be learned from natural images
> Key ingredients in the models
» Measures of non-gaussian structure:
- mainly sparsity
» Non-linearities in processing:
- invariances as is complex cells by squaring
- further selectivity in third layer
We also need suitable methods for estimating the models

» Maximum likelihood may be computationally infeasible
» We used score matching and noise-contrastive estimation

v

v

Features often similar to those found in V1,
or meaningful predictions (third layer)

v

Towards predictive theory: New properties emerge (?)
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