
Gatsby Theoretical Neuroscience Lectures:
Non-Gaussian statistics and natural images

Parts III-IV

Aapo Hyvärinen

Gatsby Unit
University College London

Aapo Hyvärinen Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts III-IV



Part III: Estimation of unnormalized models

I Often, in natural image statistics, the probabilistic models are
unnormalized

I Major computational problem

I Here, we consider new methods to tackle this problem

I Later, we see applications on natural image statistics
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Unnormalized models: Problem definition

I We want to estimate a parametric model of a multivariate
random vector x ∈ Rn

I Density function fnorm is known only up to a multiplicative
constant

fnorm(x;θ) =
1

Z (θ)
pun(x;θ)

Z (θ) =

∫
ξ∈Rn

pun(ξ;θ) dξ

I Functional form of pun is known (can be easily computed)

I Partition function Z cannot be computed with reasonable
computing time (numerical integration)

I Here: How to estimate model while avoiding numerical
integration?

Aapo Hyvärinen Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts III-IV



Examples of unnormalized models related to ICA

I ICA with overcomplete basis simple by

fnorm(x;W) =
1

Z (W)
exp[

∑
i

G (wT
i x)] (1)

I Estimation of second layer in ISA and topographic ICA

fnorm(x;W,M) =
1

Z (W,M)
exp[

∑
i

G (
∑
i

mij(w
T
j x)2)] (2)

I Non-Gaussian Markov Random Fields

I ... many more
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Previous solutions

I Monte Carlo methods
I Consistent estimators

(convergence to real parameter values when sample size →∞)
I Computation very slow (I think)

I Various approximations, e.g. variational methods
I Computation often fast
I Consistency not known, or proven inconsistent

I Pseudo-likelihood and contrastive divergence
I Presumably consistent
I Computations slow with continuous-valued variables:

needs 1-D integration at every step, or sophisticated MCMC
methods
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Content of this talk

I We have proposed two methods for estimation of
unnormalized models

I Both methods avoid numerical integration
I First: Score matching (Hyvärinen, JMLR, 2005)

I Take derivative of model log-density w.r.t. x, so partition
function disappears

I Fit this derivative to the same derivative of data density
I Easy to compute due to partial integration trick
I Closed-form solution for exponential families

I Second: Noise-contrastive estimation
(Gutmann and Hyvärinen, JMLR, 2012)

I Learn to distinguish data from artificially generated noise:
Logistic regression learns ratios of pdf’s of data and noise

I For known noise pdf, we have in fact learnt data pdf
I Consistent even in the unnormalized case
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Definition of “score function” (in this talk)

I Define model score function Rn → Rn as

ψ(ξ;θ) =


∂ log fnorm(ξ;θ)

∂ξ1
...

∂ log fnorm(ξ;θ)
∂ξn

 = ∇ξ log fnorm(ξ;θ)

where fnorm is normalized model density.

I Similarly, define data score function as

ψx(ξ) = ∇ξ log px(ξ)

where observed data is assumed to follow px(.).

I In conventional terminology: Fisher score with respect to a
hypothetical location parameter: fnorm(x− θ), evaluated at
θ = 0.
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Score matching: definition of objective function

I Estimate by minimizing a distance between model score
function ψ(.;θ) and score function of observed data ψx(.):

J(θ) =
1

2

∫
ξ∈Rn

px(ξ)‖ψ(ξ;θ)−ψx(ξ)‖2dξ (3)

θ̂ = arg min
θ

J(θ)

I This gives a consistent estimator almost by construction

I ψ(ξ;θ) does not depend on Z (θ) because

ψ(ξ;θ) = ∇ξ log pun(ξ;θ)−∇ξ log Z (θ) = ∇ξ log pun(ξ;θ)−0
(4)

I No need to compute normalization constant Z ,
non-normalized pdf pun is enough.

I Computation of J quite simple due to theorem below
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A computational trick: central theorem of score matching

I In the objective function we have score function of data
distribution ψx(.). How to compute it?

I In fact, no need to compute it because

Theorem
Assume some regularity conditions, and smooth densities. Then,
the score matching objective function J can be expressed as

J(θ) =

∫
ξ∈Rn

px(ξ)
n∑

i=1

[
∂iψi (ξ;θ) +

1

2
ψi (ξ;θ)2

]
dξ + const. (5)

where the constant does not depend on θ, and

ψi (ξ;θ) =
∂ log pun(ξ;θ)

∂ξi
, ∂iψi (ξ;θ) =

∂2 log pun(ξ;θ)

∂ξ2i
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Simple explanation of score matching trick

I Consider objective function J(θ):

1

2

∫
px(ξ)‖ψ(ξ;θ)‖2dξ −

∫
px(ξ)ψx(ξ)Tψ(ξ;θ)dξ + const.

I Constant does not depend on θ. First term easy to compute.

I The trick is to use partial integration on second term. In one
dimension:∫

px(x)(log px)′(x)ψ(x ; θ)dx =

∫
px(x)

p′x(x)

px(x)
ψ(x ; θ)dx

=

∫
p′x(x)ψ(x ; θ)dx = 0−

∫
px(x)ψ′(x ; θ)dx

I This is why score function of data distribution px(x)
disappears!
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Final method of score matching

I Replace integration over data density px(.) by sample average

I Given T observations x(1), . . . , x(T ), minimize

J̃(θ) =
1

T

T∑
t=1

n∑
i=1

[
∂iψi (x(t);θ) +

1

2
ψi (x(t);θ)2

]
(6)

where ψi is a partial derivative of non-normalized model
log-density log pun, and ∂iψi a second partial derivative

I Only needs evaluation of some derivatives of the
non-normalized (log)-density pun which are simple to compute
(by assumption)

I Thus: a new computationally simple and statistically
consistent method for parameter estimation
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Closed-form solution in the exponential family

I Assume pdf can be expressed in the form

log pun(ξ;θ) =
m∑

k=1

θkFk(ξ)− log Z (θ) (7)

I Define matrices of partial derivatives:

Kki (ξ) =
∂Fk

∂ξi
, and Hki (ξ) =

∂2Fk

∂ξ2i
(8)

I Then, the score matching estimator is given by:

θ̂ = −
[
Ê{K(x)K(x)T}

]−1
(
∑
i

Ê{hi (x)}) (9)

where Ê denotes the sample average, and the vector hi is the
i-th column of the matrix H.
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ICA with overcomplete basis
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Second method: Noise-contrastive estimation (NCE)

I Train a nonlinear classifier to discriminate observed data from
some artificial noise

I To be successful, the classifier must “discover structure” in
the data

I For example, compare natural images with Gaussian noise

Natural images Gaussian noise
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Definition of classifier in NCE

I Observed data set X = (x(1), . . . , x(T )) with unknown pdf px

I Generate “noise” Y = (y(1), . . . , y(T )) with known pdf py

I Define a nonlinear function (e.g. multilayer perceptron)
g(u; θ), which models data log-density log px(u).

I We use logistic regression with the nonlinear function

G (u; θ) = g(u; θ)− log py(u). (10)

I Well-known developments lead to objective (likelihood)

J(θ) =
∑
t

log [h(x(t); θ)] + log [1− h(y(t); θ)]

where h(u; θ) =
1

1 + exp[−G (u; θ)]
(11)
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What does the classifying system do in NCE?

I Theorem:
I Assume our parametric model g(u; θ) (e.g. an MLP)

can approximate any function.
I Then, the maximum of classification objective is attained when

g(u; θ) = log px(u) (12)

where px(u) is the pdf of the observed data.

I Corollary: If data generated according to model,
i.e. log px(u) = g(u; θ∗) ,
we have a statistically consistent estimator.

I Supervised learning thus leads to unsupervised estimation of a
probabilistic model given by log-density g(u; θ).
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The really important point:
NCE estimates unnormalized models

I The maximum of objective function is attained when
g(u; θ) = log px(u),
and there is no constraint on g in this optimization problem!

I In particular, no normalization constraint
(such as

∫
exp(g(u; θ))du = 1)

I Even if the family g(u; θ) is not normalized, the maximum is
still attained for the properly normalized pdf

I In practice, normalization constant (partition function) can be
estimated like any other parameter

I For an unnormalized model, add a new parameter c
g(u; θ)→ g(u; θ) + c
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Choice of noise distribution in NCE

I The noise distribution py is an important design parameter.
I We would like to have py which fullfills the following:

1. Easy to sample from
I But we only need to sample noise once, off-line

2. Has an analytical expression
I But we only need to, e.g., normalize it once

3. It leads to a small mean-squared error of the estimator.
I This can be analyzed, but optimization not simple

I In practice, we can take Gaussian noise with the same mean
and covariance as the data.

I Intuitively, noise should be rather similar to data:
classification not too easy
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Comparison between score matching and NCE

Computation

I NCE needs auxiliary noise distribution, while SM does not

I In some models (e.g. multilayer neural networks),
SM algebraically difficult
— Complexity of NCE similar to MLE of normalized model.

I In exponential families, SM particularly simple

Statistics

I Both methods are consistent

I NCE is Fisher-efficient in the limit of infinite noise sample.

I SM probably not Fisher-efficient, but can be shown to have
some other optimility properties (Hyvärinen, 2008)

I Noise-contrastive estimation turns out to be closely related to
importance sampling (Pihlaja et al, UAI, 2010).

I A general framework can be developed (Gutmann and
Hirayama, UAI 2011).
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Comparative simulation: computation-statistics trade-off

I Assume potentially infinite data set
I Estimation error limited by computation only
I Compute estimation error vs. computation time for each

method
I In NCE, noise sample size determines part of trade-off: For

infinite noise sample, Fisher efficient
I Depends strongly on data and model
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Conclusion: Estimation of unnormalized models

I Unnormalized models important in natural image statistics

I We presented two methods for estimating parameters in
unnormalized models

I Unlike typical methods, we avoided numerical integration (or
MC methods)

I In score matching, match gradients of log-densities
—partition function (normalization constant) is completely
avoided by taking a derivative

I In noise-contrastive estimation, learn logistic regression to
discriminate data from artificial noise
—partition function can be estimated like any parameter
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Part IV: A three-layer model of natural images

I Deep learning is often a black box
I For neurophysiological modelling, we would prefer a network

where
I The role of each unit is clear
I All cell responses model biological responses

I Instead of blindly stacking many layers on top of each other,
we must think about what each layer is doing

I Here: Fix a complex cell model, and estimate another layer by
ICA
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Going towards V2

I Compute fixed complex
cell outputs for
natural images

I Do ICA on complex cell
outputs

I A simple model of
dependencies in complex
cell outputs
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Emergence of longer contours

I Hoyer and Hyvärinen (2002) considered a non-negative
version of sparse coding

I Main finding: V2 integrates longer contours

I Bayesian inference in the model can model end-stopping etc.

+

0

Figure 7: A representative set of basis functions from the learned basis. The majority of units code the

simultaneous activation of collinear complex cells, indicating a smooth contour in the image.

3 Results

3.1 Properties of the learned representation

Using simulated complex cell responses to natural images as input data (see Figure 5), we thus estimated

the non-negative sparse coding model, obtaining 288 basis (activity) patterns. A representative subset of

the estimated basis patterns ai is shown in Figure 7. Note that most basis patterns consist of a variable

number of active complex cells arranged collinearly. This makes intuitive sense, as collinearity is a strong

feature of the visual world (Krüger, 1998; Sigman et al., 2001; Geisler et al., 2001). In addition, analyzing

images in terms of smooth contours is supported by evidence from both psychophysics (Field et al., 1993;

Polat and Sagi, 1993) and physiology (Kapadia et al., 1995; Polat et al., 1998; Kapadia et al., 2000), and

is incorporated in many models of contour integration, see e.g. (Grossberg and Mingolla, 1985; Li, 1999;

Neumann and Sepp, 1999). To our knowledge, ours is the first model to learn this type of a representation

from the statistics of natural images.

It is easy to understand why basis patterns consist of collinear complex cell activity patterns: Such

10

I Cf. “Ultra-long” RF’s found by Liu et al (2016).
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Emergence of integration over frequencies

I Hyvärinen, Gutmann, and Hoyer (2005) considered several
frequency bands (using ordinary ICA)

I Each higher-order cell corresponds to 3 frequency displays

I Classic view (of V1) emphasizes separate frequency channels

I Integration could be related to sharp edges (Henriksson,

Hyvärinen, Vanni, 2009)
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Emergence of a variety of RF properties

I Hosoya and Hyvärinen (2015) used
I More densely sampling of orientations
I Strong PCA dimension reduction

I One of the simplest possible models of pooling: Works as a
simple V1 complex cell model (Hosoya and Hyvärinen, 2016)

I Overcomplete basis

I Extensive comparison with V2 experiments
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Emergence of corner detectors
(+ long contours, end-stopping)

Five principal classes found by Hosoya and Hyvärinen (2015)
Corner detectors (e) are robust, not just a few random gabors

Aapo Hyvärinen Gatsby Theoretical Neuroscience Lectures: Non-Gaussian statistics and natural images Parts III-IV



Best natural image patch stimuli
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Model reproduces various results on V2

E.g. Spatio-spectral receptive fields similar to Anzai et al (2007)
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Can we train all three layers?

I Training all layers (not fixing complex cell model) was done by
Gutmann and Hyvärinen (2013)

I Energy-based model trained by noise-contrastive estimation

I Training and interpretation a lot more difficult

I Some receptive fields visualized:
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Grand conclusion

I Visual features can be learned from natural images
I Key ingredients in the models

I Measures of non-gaussian structure:
- mainly sparsity

I Non-linearities in processing:
- invariances as is complex cells by squaring
- further selectivity in third layer

I We also need suitable methods for estimating the models
I Maximum likelihood may be computationally infeasible
I We used score matching and noise-contrastive estimation

I Features often similar to those found in V1,
or meaningful predictions (third layer)

I Towards predictive theory: New properties emerge (?)
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