Assignment 1 Theoretical Neuroscience [Gatsby]

TAs:
Liang Zhou (liang.zhou.18@ucl.ac.uk)
Lucas Simoes (l.simoes.18@ucl.ac.uk) William Walker (william.walker.18@ucl.ac.uk)

Due: 31 January, 2020

1. The Hodgkin-Huxley neuron

Numerically integrate the Hodgkin-Huxley equations with matlab (or your favorite package). If you're using matlab, it's a good idea to use the Matlab ode45 function, or if you're using Python, scipy.solve_ivp. The equations are:

$$
\begin{align*}
C \frac{d V}{d t} & =-\bar{g}_{N a} m^{3} h\left(V-E_{N a}\right)-\bar{g}_{K} n^{4}\left(V-E_{K}\right)-\bar{g}_{L}\left(V-E_{L}\right)+I_{s t i m} \tag{1}\\
\frac{d x}{d t} & =\alpha_{x}(1-x)-\beta_{x} x \quad \text { where } x \text { is } m, n \text { or } h \tag{2}\\
\alpha_{n}(V) & =0.01(V+55) /[1-\exp (-(V+55) / 10)] \tag{3}\\
\beta_{n}(V) & =0.125 \exp (-(V+65) / 80) \tag{4}\\
\alpha_{m}(V) & =0.1(V+40) /[1-\exp (-(V+40) / 10)] \tag{5}\\
\beta_{m}(V) & =4 \exp (-(V+65) / 18) \tag{6}\\
\alpha_{h}(V) & =0.07 \exp (-(V+65) / 20) \tag{7}\\
\beta_{h}(V) & =1 /[\exp (-(V+35) / 10)+1] \tag{8}
\end{align*}
$$

Let $C=10 \mathrm{nF} / \mathrm{mm}^{2}, \bar{g}_{L}=.003 \mathrm{mS} / \mathrm{mm}^{2}, \bar{g}_{K}=0.36 \mathrm{mS} / \mathrm{mm}^{2}, \bar{g}_{N a}=1.2 \mathrm{mS} / \mathrm{mm}^{2}, E_{K}=-77 \mathrm{mV}, E_{L}=$ -54.387 mV , and $E_{N a}=50 \mathrm{mV}$. Use an integration time step of 0.1 ms .
Remember to keep your units consistent. $F / S=$ Farad $/$ Siemens $=1$ second.
(a) Run the simulations with $I_{\text {stim }}=200 \mathrm{nA} / \mathrm{mm}^{2}$. Plot the membrane potential (V) and gating variables (m, h, and n) versus time.
(b) Write down expressions for the equilibrium values of the gating variables $\left(m_{\infty}, h_{\infty}\right.$, and $\left.n_{\infty}\right)$, and plot them versus voltage.
(c) Plot the firing rate versus $I_{\text {stim }}$, up to a firing rate of 50 Hz . The firing rate should jump suddenly from zero to a non-zero value. This is called a type II behavior. Type I behavior is when the firing rate begins at zero and increases continuously without any jumps.
(d) What happens to the plot of firing rate versus $I_{\text {stim }}$ as you decrease \bar{g}_{K} ?
(e) Spikes are initiated at the axon hillock, where the axon meets the soma. This is because $\bar{g}_{N a}$ is very high there. What happens to the plot of firing rate versus $I_{\text {stim }}$ as you increase $\bar{g}_{N a}$?

2. The linear integrate and fire neuron

An approximate treatment of spiking neurons is to think of them as passively integrating input and, when the voltage crosses threshold, emitting a spike. This leads to the linear integrate and fire neuron (sometimes called the leaky integrate and fire neuron, and often abbreviated LIF), which obeys the equation

$$
C \frac{d V}{d t}=-g_{L}\left(V-\mathcal{E}_{L}\right)+I_{0}
$$

This is just the "linear integrate" part. To incorporate spikes, when the voltage gets to threshold $\left(V_{t}\right)$, the neuron emits a spike and the voltage is reset to rest $\left(V_{r}\right)$.
(a) Compute the firing rate of the neuron as a function of I_{0}. This firing rate will be parameterized by three numbers: \mathcal{E}_{L}, V_{t}, and V_{r}.
Hint \#1: The firing rate is the inverse of the time it takes to go from V_{r} to V_{t}.
Hint \# 2: Changing variables, and defining new quantities, almost always makes life easier. For example, you might let $v=V-\mathcal{E}_{L}$ and define $V_{0} \equiv I_{0} / g_{L}$ and $\tau \equiv C / g_{L}$.
(b) Let $I(t)=g_{L} V_{0} \sin (\omega t), V_{r}=\mathcal{E}_{L}, V_{t}=\mathcal{E}_{L}+\Delta V$, and define $C / g_{L} \equiv \tau$. Start with $V_{0}=0$ and integrate for a long enough time that the neuron equilibrates. Then increase V_{0} very slowly compared to the time constant, τ. Show that the neuron will start spiking repetitively when $V_{0}>\left(1+\tau^{2} \omega^{2}\right)^{1 / 2} \Delta V$.
3. Warmup nullclines. Consider a model that is bound to come up again, in one form or another,

$$
\begin{aligned}
\tau_{x} \frac{d x}{d t} & =-x+\tanh (\beta(x-y)) \\
\tau_{y} \frac{d y}{d t} & =-y+\alpha x
\end{aligned}
$$

For all questions, assume $\alpha>0$ and $\beta>1$.
(a) Draw the nullclines for an α and β of your choice.
(b) What are the conditions on α and β for there to be three fixed points?
(c) Assume α and β are such that there are three fixed points. Determine the stability of each of them. Draw trajectories starting near $x=y=0$.
(d) Assume α and β are such that there is one fixed point. Determine its stability. Draw trajectories starting near $x=y=0$.
4. Hodgkin-Huxley nullclines. Consider a simplified Hodgkin-Huxley type model,

$$
\begin{aligned}
\tau \frac{d V}{d t} & =-\left(V-\mathcal{E}_{L}\right)-h m(V) V \\
\tau_{h} \frac{d h}{d t} & =h_{\infty}(V)-h \\
m(V) & =\frac{1}{1+\exp \left(-\left(V-V_{t}\right) / \epsilon_{m}\right)} \\
h_{\infty}(V) & =\frac{1}{1+\exp \left(+\left(V-V_{h}\right) / \epsilon_{h}\right)}
\end{aligned}
$$

with parameters

$$
\begin{aligned}
\mathcal{E}_{L} & =-65 \mathrm{mV} \\
V_{t} & =-50 \mathrm{mV} \\
\epsilon_{h} & =10 \mathrm{mV} \\
\epsilon_{m} & \ll 1 \mathrm{mV} .
\end{aligned}
$$

The remaining parameter, V_{h}, will be specified as needed (it will take on a range of values).
(a) Sketch the nullclines in V - h space for $V_{h}=-60,-50$ and -40 mV . Put voltage on the x-axis and h on the y-axis. For each equilibrium, tell us whether it is stable or unstable, or hard to tell without a detailed stability analysis.
(b) Find the condition on V_{h} that guarantees more than one equilibrium.
(c) For a value of V_{h} (which you choose) such that there is more than one equilibrium, sketch the trajectories starting at V slightly greater than V_{t} and $h=1$.

5. The passive cable equations.

Consider a passive cable with radius a, as shown here,

This is a bare-bones schematic; in addition to what's shown, there is an external current, $I_{e}(x, t)$, and a current associated with channels, $I_{m}(x, t)$.
We want to derive the cable equation, which we'll eventually restrict to the passive cable equation. We'll start with the equation for the membrane potential, $V(x, t)$,

$$
\begin{equation*}
C \frac{\partial V(x, t)}{\partial t}=I(x-d x / 2)-I(x+d x / 2)-I_{m}(x, t)+I_{e}(x, t) \tag{50j}
\end{equation*}
$$

where C is the capacitance of the piece of dendrite between the dotted lines. Next is the equation for the current,

$$
\begin{equation*}
I(x-d x / 2)=\frac{V(x-d x)-V(x)}{R} \tag{50k}
\end{equation*}
$$

where R is the resistance along the dendrite, between $x-d x$ and x. A virtually identical expression holds for $I(x+d x)$. Inserting these into the equation for the voltage yields

$$
\begin{equation*}
C \frac{\partial V(x, t)}{\partial t}=\frac{V(x-d x)-2 V(x)+V(x+d x)}{R}-I_{m}(x, t)+I_{e}(x, t) . \tag{501}
\end{equation*}
$$

(a) Verify that when you Taylor expand the voltage terms on the right hand side to lowest nonvanishing order, this becomes

$$
\begin{equation*}
C \frac{\partial V(x, t)}{\partial t}=\frac{d x^{2}}{R} \frac{\partial^{2} V(x)}{\partial x^{2}}-I_{m}(x, t)+I_{e}(x, t) \tag{50~m}
\end{equation*}
$$

That's the cable equation! However, we want sensible answers in the limit $d x \rightarrow 0$. For that we need to know how C and R scale with $d x$.
(b) First, resistance. You may have learned in our physics class that resistance is proportional to length and inversely proportional to area - something that follows (with a little work) from $I=V / R$. It thus makes sense to define the resistivity of a material, here denoted r_{L}, via $R=r_{L} \times$ length/area. For our setup (remember that the cylinder has radius a), this means

$$
\begin{equation*}
R=r_{L} \frac{d x}{\pi a^{2}} \tag{50n}
\end{equation*}
$$

Next, the capacitance. That scales with area: the more area for a given voltage, the more the charge. Thus, it makes sense to define the specific capacitance via $C=c_{m} \times$ area. For our setup, the relevant voltage is across the dendritic walls, so the relevant area is $2 \pi a d x$. We thus have

$$
\begin{equation*}
C=c_{m} 2 \pi a d x \tag{50o}
\end{equation*}
$$

Insert these into the equation for the membrane potential, and show that

$$
\begin{equation*}
c_{m} \frac{\partial V(x, t)}{\partial t}=\frac{a}{2 r_{L}} \frac{\partial^{2} V(x)}{\partial x^{2}}-\frac{I_{m}(x, t)}{2 \pi a d x}+\frac{I_{e}(x, t)}{2 \pi a d x} \tag{50p}
\end{equation*}
$$

(c) There's still a dependence on $d x$; to get rid of that we define the current densities

$$
\begin{align*}
i_{m}(x, t) & \equiv \frac{I_{m}(x, t)}{2 \pi a d x} \tag{50qa}\\
i_{e}(x, t) & \equiv \frac{I_{e}(x, t)}{2 \pi a d x} \tag{50qb}
\end{align*}
$$

Inserting these into the above equation almost gives us the passive cable equation. The last thing we need to do is write down an expression for i_{m} in terms of the voltage. We could use Hodgkin-Huxley type equations, but here we'll stick to passive channels. For that we'll write, as usual,

$$
\begin{equation*}
I_{m}=\frac{V-\mathcal{E}}{R_{m}} \tag{50r}
\end{equation*}
$$

where \mathcal{E} is the reversal potential. Note that R_{m} is the resistance across the membrane. As usual, resistance is proportional to distance divided by area. However, we're mainly interested in the area dependence; distance is the thickness of the membrane, which is pretty much constant. We'll thus define

$$
\begin{equation*}
R_{m}=\frac{r_{m}}{2 \pi a d x} \tag{50s}
\end{equation*}
$$

Here r_{m} depends on the membrane, but it's about the same for dendrites and neurons. Combining this with the equation for I_{m}, and taking into account the definition of i_{m}, we have

$$
\begin{equation*}
i_{m}=\frac{V-\mathcal{E}}{r_{m}} \tag{50t}
\end{equation*}
$$

Show that when you insert this into our current version of the cable equation, and multiply by r_{m}, you end up with the standard cable equation.

