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1. The Hodgkin-Huxley neuron

Numerically integrate the Hodgkin-Huxley equations with matlab (or your favorite package). If
you’re using matlab, it’s a good idea to use the Matlab ode45 function, or if you’re using Python,
scipy.solve ivp. The equations are:

C
dV

dt
= −gNam

3h(V − ENa)− gKn4(V − EK)− gL(V − EL) + Istim (1)

dx

dt
= αx(1− x)− βxx where x is m,n or h (2)

αn(V ) = 0.01(V + 55)/ [1− exp(−(V + 55)/10)] (3)

βn(V ) = 0.125 exp(−(V + 65)/80) (4)

αm(V ) = 0.1(V + 40)/ [1− exp(−(V + 40)/10)] (5)

βm(V ) = 4 exp(−(V + 65)/18) (6)

αh(V ) = 0.07 exp(−(V + 65)/20) (7)

βh(V ) = 1/ [exp(−(V + 35)/10) + 1] (8)

Let C = 10 nF/mm2, gL = .003 mS/mm2, gK = 0.36 mS/mm2, gNa = 1.2 mS/mm2, EK = −77 mV, EL =
−54.387 mV, and ENa = 50 mV. Use an integration time step of 0.1 ms.

Remember to keep your units consistent. F/S = Farad/Siemens = 1 second.

(a) Run the simulations with Istim = 200 nA/mm2. Plot the membrane potential (V ) and gating
variables (m, h, and n) versus time.

(b) Write down expressions for the equilibrium values of the gating variables (m∞, h∞, and n∞), and
plot them versus voltage.

(c) Plot the firing rate versus Istim, up to a firing rate of 50 Hz. The firing rate should jump suddenly
from zero to a non-zero value. This is called a type II behavior. Type I behavior is when the
firing rate begins at zero and increases continuously without any jumps.

(d) What happens to the plot of firing rate versus Istim as you decrease gK?

(e) Spikes are initiated at the axon hillock, where the axon meets the soma. This is because gNa is
very high there. What happens to the plot of firing rate versus Istim as you increase gNa?
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2. The linear integrate and fire neuron

An approximate treatment of spiking neurons is to think of them as passively integrating input and,
when the voltage crosses threshold, emitting a spike. This leads to the linear integrate and fire neuron
(sometimes called the leaky integrate and fire neuron, and often abbreviated LIF), which obeys the
equation

C
dV

dt
= −gL(V − EL) + I0 .

This is just the “linear integrate” part. To incorporate spikes, when the voltage gets to threshold (Vt),
the neuron emits a spike and the voltage is reset to rest (Vr).

(a) Compute the firing rate of the neuron as a function of I0. This firing rate will be parameterized
by three numbers: EL, Vt, and Vr.

Hint #1: The firing rate is the inverse of the time it takes to go from Vr to Vt.

Hint # 2: Changing variables, and defining new quantities, almost always makes life easier. For
example, you might let v = V − EL and define V0 ≡ I0/gL and τ ≡ C/gL.

(b) Let I(t) = gLV0 sin(ωt), Vr = EL, Vt = EL + ∆V , and define C/gL ≡ τ . Start with V0 = 0
and integrate for a long enough time that the neuron equilibrates. Then increase V0 very slowly
compared to the time constant, τ . Show that the neuron will start spiking repetitively when
V0 > (1 + τ2ω2)1/2∆V .

3. Warmup nullclines. Consider a model that is bound to come up again, in one form or another,

τx
dx

dt
= −x+ tanh

(
β(x− y)

)
τy
dy

dt
= −y + αx.

For all questions, assume α > 0 and β > 1.

(a) Draw the nullclines for an α and β of your choice.

(b) What are the conditions on α and β for there to be three fixed points?

(c) Assume α and β are such that there are three fixed points. Determine the stability of each of
them. Draw trajectories starting near x = y = 0.

(d) Assume α and β are such that there is one fixed point. Determine its stability. Draw trajectories
starting near x = y = 0.

4. Hodgkin-Huxley nullclines. Consider a simplified Hodgkin-Huxley type model,

τ
dV

dt
= −(V − EL)− hm(V )V

τh
dh

dt
= h∞(V )− h

m(V ) =
1

1 + exp(−(V − Vt)/εm)

h∞(V ) =
1

1 + exp(+(V − Vh)/εh)
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with parameters

EL = −65 mV

Vt = −50 mV

εh = 10 mV

εm � 1 mV .

The remaining parameter, Vh, will be specified as needed (it will take on a range of values).

(a) Sketch the nullclines in V -h space for Vh = −60,−50 and −40 mV. Put voltage on the x-axis
and h on the y-axis. For each equilibrium, tell us whether it is stable or unstable, or hard to tell
without a detailed stability analysis.

(b) Find the condition on Vh that guarantees more than one equilibrium.

(c) For a value of Vh (which you choose) such that there is more than one equilibrium, sketch the
trajectories starting at V slightly greater than Vt and h = 1.

5. The passive cable equations.

Consider a passive cable with radius a, as shown here,

x x+dx/2x-dx/2x-dx x+dx

This is a bare-bones schematic; in addition to what’s shown, there is an external current, Ie(x, t), and
a current associated with channels, Im(x, t).

We want to derive the cable equation, which we’ll eventually restrict to the passive cable equation.
We’ll start with the equation for the membrane potential, V (x, t),

C
∂V (x, t)

∂t
= I(x− dx/2)− I(x+ dx/2)− Im(x, t) + Ie(x, t) (50j)

where C is the capacitance of the piece of dendrite between the dotted lines. Next is the equation for
the current,

I(x− dx/2) =
V (x− dx)− V (x)

R
(50k)

where R is the resistance along the dendrite, between x − dx and x. A virtually identical expression
holds for I(x+ dx). Inserting these into the equation for the voltage yields

C
∂V (x, t)

∂t
=
V (x− dx)− 2V (x) + V (x+ dx)

R
− Im(x, t) + Ie(x, t) . (50l)
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(a) Verify that when you Taylor expand the voltage terms on the right hand side to lowest non-
vanishing order, this becomes

C
∂V (x, t)

∂t
=
dx2

R

∂2V (x)

∂x2
− Im(x, t) + Ie(x, t) . (50m)

That’s the cable equation! However, we want sensible answers in the limit dx → 0. For that we
need to know how C and R scale with dx.

(b) First, resistance. You may have learned in our physics class that resistance is proportional to
length and inversely proportional to area – something that follows (with a little work) from
I = V/R. It thus makes sense to define the resistivity of a material, here denoted rL, via
R = rL × length/area. For our setup (remember that the cylinder has radius a), this means

R = rL
dx

πa2
. (50n)

Next, the capacitance. That scales with area: the more area for a given voltage, the more the
charge. Thus, it makes sense to define the specific capacitance via C = cm × area. For our setup,
the relevant voltage is across the dendritic walls, so the relevant area is 2πadx. We thus have

C = cm2πadx. (50o)

Insert these into the equation for the membrane potential, and show that

cm
∂V (x, t)

∂t
=

a

2rL

∂2V (x)

∂x2
− Im(x, t)

2πadx
+
Ie(x, t)

2πadx
. (50p)

(c) There’s still a dependence on dx; to get rid of that we define the current densities

im(x, t) ≡ Im(x, t)

2πadx
(50qa)

ie(x, t) ≡
Ie(x, t)

2πadx
. (50qb)

Inserting these into the above equation almost gives us the passive cable equation. The last
thing we need to do is write down an expression for im in terms of the voltage. We could use
Hodgkin-Huxley type equations, but here we’ll stick to passive channels. For that we’ll write, as
usual,

Im =
V − E
Rm

(50r)

where E is the reversal potential. Note that Rm is the resistance across the membrane. As usual,
resistance is proportional to distance divided by area. However, we’re mainly interested in the
area dependence; distance is the thickness of the membrane, which is pretty much constant. We’ll
thus define

Rm =
rm

2πadx
. (50s)

Here rm depends on the membrane, but it’s about the same for dendrites and neurons. Combining
this with the equation for Im, and taking into account the definition of im, we have

im =
V − E
rm

. (50t)

Show that when you insert this into our current version of the cable equation, and multiply by
rm, you end up with the standard cable equation.
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