
Assignment 2

Theoretical Neuroscience

TAs:
Liang Zhou (liang.zhou.18@ucl.ac.uk)
Lucas Simoes (l.simoes.18@ucl.ac.uk)

William Walker (william.walker.18@ucl.ac.uk)

Due 14 February, 2019

1. Infinite cable response to arbitrary time-varying input

As we all know, the passive cable equation can be written

τm
∂u

∂t
− λ2 ∂

2u

∂x2
+ u = rmie (1)

where u(x, t) = V (x, t)−EL is the membrane potential relative to the leak reversal potential, τm is the
membrane time constant, λ = (rma/2rL)1/2 is the length constant, rm is the specific resistance of the
membrane, rL is the longitudinal resistivity, and a is the radius of the cable.

(a) Let ie = r−1m δ(x)δ(t). (Yes, we know this has the wrong units but, as you’ll see below, there’s a
reason for this.) Show that

u(x, t) =
1

τm

exp[−x2/(4λ2t/τm)− t/τm]

(4πλ2t/τm)1/2
Θ(t)

where Θ(t) is the Heaviside step function (Θ(t) = 1 if t > 0 and 0 otherwise).

Hint: Fourier transform both sides of Eq. (1) with respect to x (but not t), solve the resulting
differential equation in time, then Fourier transform back.

(b) Plot the time course of the voltage at position x = 0, λ, 2λ. Write down an expression for the
maximum amplitude of the voltage (with respect to time) as a function of x. Use this expression
to determine the “speed” at which signals travel in a passive cable. Here speed is defined as
x/tmax(x) where tmax is the time at which the voltage reaches a maximum at position x. Why is
speed in quotes?

(c) Let uδ(x, t) be the solution to Eq. (1) with ie = r−1m δ(x)δ(t). This is the Green function for the
infinite, linear cable. The Green function is useful because it allows us to solve the equation

τ
∂u

∂t
− λ2 ∂

2u

∂x2
+ u = rmie(x, t) . (2)

Show that the solution to Eq. (2) is
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u(x, t) =

∫ ∞
−∞

dt′
∫ ∞
−∞

dx′uδ(x− x′, t− t′)rmie(x′, t′) .

The Green function method for solving linear inhomogeneous ODEs is an extremely powerful one;
you should remember it.

2. Propagation in axons

Between nodes of Ranvier, the membrane potential in axons obeys the equation

∂V

∂t
= D

∂2V

∂x2
+ c0a1δ(t)δ(x)

where a1 is inner radius of the axon. This equation implies that a bolus of charge is injected at position
x = 0 (the location of a node of Ranvier) at time t = 0

(a) Why is the total injected charge proportional to the inner radius?

(b) Verify, by directly computing the derivatives, that this has the solution

V (x, t) = c0a1
e−x

2/4Dt

(4πDt)1/2
Θ(t).

(c) We want to know how long it takes the voltage to reach a value large enough to cause a spike in
the next node of Ranvier. Assume “large enough” is V0, so the goal is to find the value of t0 that
satisfies

V (L, t0) = V0.

Show that

t0 = γ(L/a1, V0)
L2

4D
(3)

where γ is an increasing function of V0.

Note that if a1 ∝ L (as it is in real axons), the time to reach V0 is is independent of the inner
diameter of the axon.

(d) Show that there is a critical value of V0 above which the membrane potential never reaches V0.

(e) Show that at the critical value, γ(L/a1, V0) = 2.

3. Noise in the amount of neurotransmitter per vesicle

It is common to model the neuromuscular junction as a synapse with n release sites. When an action
potential arrives at the synapse, neurotransmitter is released (or not) from each site independently.
The probability of release for all sites is p. If neurotransmitter is released from a particular site, the
amount released, which we’ll call q, is drawn from a distribution, denoted P (q). This distribution has
mean q and variance σ2

q .

(a) What is the mean total amount of neurotransmitter released in terms of n, p, q and σ2
q?

(b) What is the variance of the total amount of neurotransmitter released in terms of n, p, q and σ2
q?

(c) Plot the probability distribution of total neurotransmitter released. Assume P (q) is Gaussian
with standard deviation 0.5, q = 1, n = 10 and p = 0.25.

(d) Why is the Gaussian assumption unrealistic?
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For part c, you’ll need to know that the probability that neurotransmitter is released at exactly k sites,
denoted p(k), is

p(k) = pk(1− p)n−k n!

k!(n− k)!
.

This is the famous binomial distribution.

4. Spike-time dependent plasticity

In an STDP model proposed by Graupner and Brunel (PNAS 109:39913996, 2012), and simplified by
me, the calcium concentration, C, in postsynaptic terminals obeys the differential equation

dC

dt
= − C

τ
+
∑
i

δ(t− tprei −D) + ρ
∑
j

δ(t− tpostj )

where tprei are the times of the presynaptic spikes, tpostj are the times of the postsynaptic spikes, and
δ(·) is the Dirac delta-function. The delay, D is positive, as is ρ. The strength of the synapse, denoted
w, evolves according to

τw
dw

dt
= Θ(C − C0)−Θ(C − C1)Θ(C0 − C)

where Θ(·) is the Heaviside step function. Under this rule, the weight increases when C > C0 and
decreases when C0 > C > C1; it can also be written

∆w =
(total time for which C > C0)− (total time for which C0 > C > C1)

τw

where ∆w is the change in weight.

For simplicity, in what follows, assume that there is only one presynaptic spike at time t = 0, and one
postsynaptic spike at time t = t0.

(a) Assume that 1 + ρ > C0 > C1 > max(1, ρ). List several reasons why we make this assumption.

(b) Derive an expression for C(t).

(c) Derive an expression for the total change in weight (at a time long after the pair of spikes) versus
t0.

(d) Plot the expression for the total change in weight versus t0, using ρ = 1, C0 = 1.2 and C1 = 1.1.
How would you choose D to make this look as much as possible like classical STDP?

5. Oja’s rule

In an incredibly simple model of a neuron, the output, y, is related to the input, x, via

y = w · x.

The weight, w, is updated after each presentation of x according to

∆w = ηy(x− yw)
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(a) Show that the average change in weight, 〈∆w〉, is given by

〈∆w〉 = η(w ·Σ−w ·Σ ·w w)

where

Σ ≡ 〈xx〉

is the covariance matrix of the input (assuming it’s zero mean; otherwise Σ has another name).

(b) Show that in equilibrium (when 〈∆w〉 = 0), the weights have unit length: w ·w = 1.

(c) Show that in equilibrium (when 〈∆w〉 = 0), the weight points in the direction of the eigenvector
of Σ with the largest eigenvalue.

(d) What happens if there are two eigenvectors with largest eigenvalue?
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