Neural Encoding Models

Maneesh Sahani

Gatsby Computational Neuroscience Unit University College London

March 2021

Neural Coding

The brain appears to process sensory information in a modular way. Different structures and cortical areas process, represent and transmit different aspects of the input.

The coding questions:

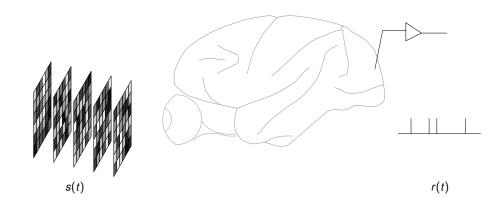
- ▶ What information is represented by a particular neural population?
 - ► easy (?) if we know the code
 - more generally, can search for selectivity / invariance (in invidual neurons in in populations)
 - encoded quantities might not be obvious: inferred latent variables, uncertainty ...
- ► How is that information encoded?
 - firing rate, spiking timing (relative to other spikes, population oscillations, onset of time-invariant stimulus)?
 - functional mapping of encoded variable to spikes?
 - ► easy (?) if we know what is encoded

A complete answer will require convergence of theory and empirical results.

Computation plays a vital part in systematising empirical data.

Neural coding

Stimulus coding



Decoding: $\hat{s}(t) = G[r(t)]$

(reconstruction)
(systems identification)

Encoding: $\hat{r}(t) = F[s(t)]$

Why?

The stimulus coding problem has sometimes been identified with the "neural coding" problem.

However, on the face of it, mapping *either* the decoding or encoding function does not by itself answer either of our basic questions about coding.

So why do we do it?

- encapsulate and systematise the response so that we can ask the questions that we want answered.
- be design hypothesis-driven stimulus-coding models: evaluate coding reliability for different function(al)s of s(t) and for different definitions of r(t).

Spikes, or rate?

Most neurons communicate using action potentials — statistically described by a point process:

$$P(\text{spike} \in [t, t + dt)) = \lambda(t|H(t), \text{stimulus}, \text{network activity})dt$$

To fully model the response we need to identify λ . In general this depends on spike history H(t) and network activity. Three options:

- ▶ Ignore the history dependence, take network activity as source of "noise" (i.e. assume firing is inhomogeneous Poisson or Cox process, conditioned on the stimulus).
- Average multiple trials to estimate the mean intensity (or PSTH)

$$\overline{\lambda}(t, \text{stimulus}) = \lim_{N \to \infty} \frac{1}{N} \sum_{n} \lambda(t|H_n(t), \text{stimulus}, \text{network}_n),$$

and try to fit this.

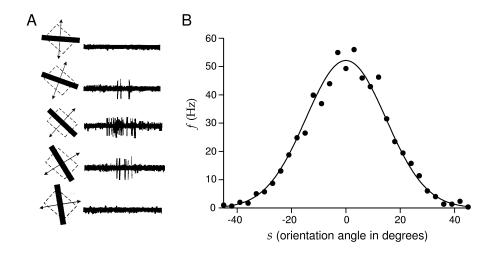
Attempt to capture history and network effects in simple models.

General approach

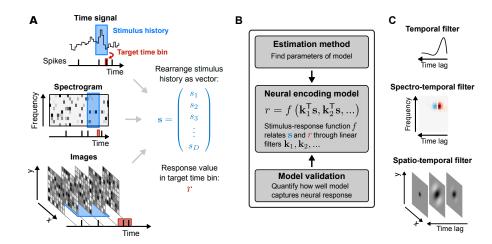
Goal: Estimate p(spike|s, H) [or intensity $\lambda(t|s[0, t), H(t))$] from data.

- Naive approach: measure p(spike, H|s) directly for every setting of s.
 - too hard: too little data and too many potential inputs.
- ► Estimate some functional *F*[*p*] instead (e.g. mutual information)
- Select stimuli efficiently
- ► Fit models with smaller numbers of parameters

Tuning – stationary stimuli



(Nonlinear) filtering - dynamic stimuli

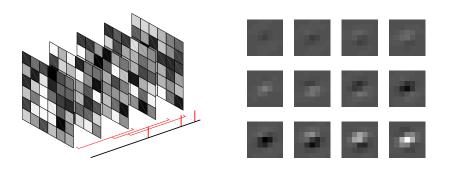


Linear regression

SW = R

$$W(\omega) = rac{S(\omega)^* R(\omega)}{|S(\omega)|^2}$$
 $W = \underbrace{(S^\mathsf{T} S)}_{\Sigma_{SS}}^{-1} \underbrace{(S^\mathsf{T} S)}_{S^\mathsf{T}}$

Spike-triggered average



Decoding: mean of P (s | r = 1)Encoding: predictive filter

Linear models

So the (whitened) spike-triggered average gives the minimum-squared-error linear model.

Issues:

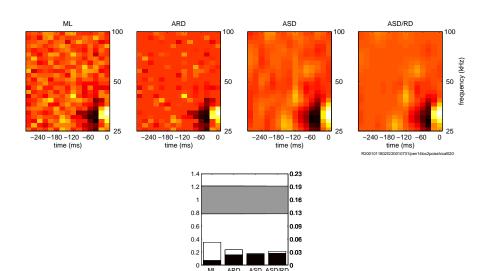
- overfitting and regularisation
 - standard methods for regression
- negative predicted rates
 - can model deviations from background
- real neurons aren't linear
 - models are still used extensively
 - interpretable suggestions of underlying sensitivity (but see later)
 - may provide unbiased estimates of cascade filters (see later)

Likelihood penalties for regularisation

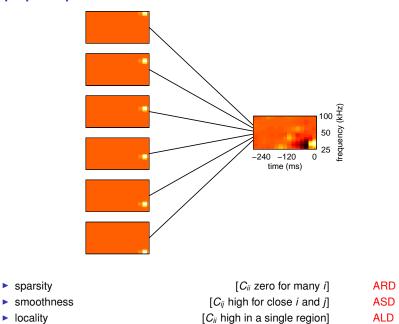
$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \underbrace{\mathcal{L}(\mathbf{w}; \textit{Data})}_{\text{Likelihood}} - \underbrace{\mathcal{R}(\mathbf{w})}_{\text{Regularise}}$$

 ${\mathcal R}$ may penalise large values of ${f w}$ (e.g. $\|{f w}\|^2$ or $\sum_i |w_i|$) or may promote smoothness or other properties.

Smoothness and sparsity (ASD/RD)



Appropriate priors



Summary

sparsity

locality

- > Studies of stimulus coding may help to provide insight into the underlying question of neural coding.
- ► Strongly hypothesis-driven studies reveal "tuning".
- ▶ More hypothesis-agnostic approaches may help to uncover unexpected structure.
- ▶ The simplest approach is linear, but this still requires careful attention to estimation.

Beyond linearity

The Volterra functional expansion

A polynomial-like expansion for functionals (or operators).

Let y(t) = F[x(t)]. Then:

$$y(t) \approx k^{(0)} + \int d\tau \, k^{(1)}(\tau) x(t-\tau) + \iint d\tau_1 \, d\tau_2 \, k^{(2)}(\tau_1, \tau_2) x(t-\tau_1) x(t-\tau_2)$$
$$+ \iiint d\tau_1 \, d\tau_2 \, d\tau_3 \, k^{(3)}(\tau_1, \tau_2, \tau_3) x(t-\tau_1) x(t-\tau_2) x(t-\tau_3) + \dots$$

or (in discretised time)

$$y_t = K^{(0)} + \sum_i K_i^{(1)} x_{t-i} + \sum_{ij} K_{ij}^{(2)} x_{t-i} x_{t-j} + \sum_{ijk} K_{ijk}^{(3)} x_{t-i} x_{t-j} x_{t-k} + \dots$$

For finite expansion, the kernels $k^{(0)}$, $k^{(1)}(\cdot)$, $k^{(2)}(\cdot,\cdot)$, $k^{(3)}(\cdot,\cdot,\cdot)$, ... are not straightforwardly related to the functional F. Indeed, values of lower-order kernels change as the maximum order of the expansion is increased.

Estimation: model is linear in kernels, so can be estimated just like a linear (first-order) model with expanded "input".

- ► Kernel trick: polynomial kernel $K(x_1, x_2) = (1 + x_1x_2)^n$.
- M-series.

Beyond linearity

Linear models often fail to predict well. Alternatives?

- Wiener/Volterra functional expansions
 - M-series
 - Linearised estimation
 - Kernel formulations
- ► LN (Wiener) cascades
 - Spike-trigger covariance (STC) methods
 - ► "Maximimally informative" dimensions (MID) ⇔ ML nonparametric LNP models
 - ML Parametric GLM models
- NL (Hammerstein) cascades
 - Multilinear formulations
- ► LNLN and more . . .

Wiener Expansion

The Wiener expansion gives functionals of different orders that are orthogonal for white noise input x(t).

$$G_{0}[x(t); h^{(0)}] = h^{(0)}$$

$$G_{1}[x(t); h^{(1)}] = \int d\tau h^{(1)}(\tau)x(t-\tau)$$

$$G_{2}[x(t); h^{(2)}] = \iint d\tau_{1} d\tau_{2} h^{(2)}(\tau_{1}, \tau_{2})x(t-\tau_{1})x(t-\tau_{2}) - P \int d\tau_{1} h^{(2)}(\tau_{1}, \tau_{1})$$

$$G_{3}[x(t); h^{(3)}] = \iiint d\tau_{1} d\tau_{2} d\tau_{3} h^{(3)}(\tau_{1}, \tau_{2}, \tau_{3})x(t-\tau_{1})x(t-\tau_{2})x(t-\tau_{3})$$

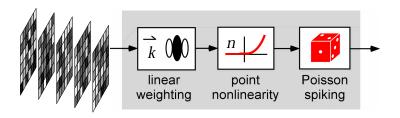
$$-3P \iint d\tau_{1} d\tau_{2} h^{(3)}(\tau_{1}, \tau_{2}, \tau_{2})x(t-\tau_{1})$$

Easy to verify that $\mathbb{E}[G_i[x(t)]G_j[x(t)]] = 0$ for $i \neq j$.

Thus, these kernels can be estimated independently. But, they depend on the stimulus.

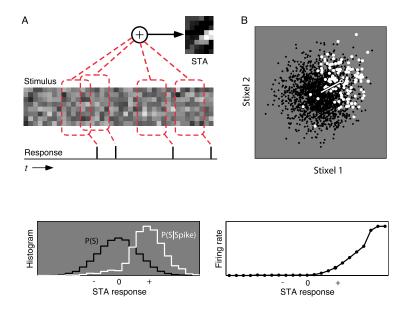
Cascade models

The LNP (Wiener) cascade

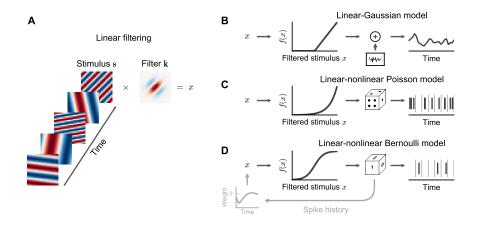


- ► Rectification addresses negative firing rates.
- ► Loose biophysical correspondance.

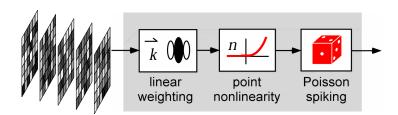
LNP estimation – the Spike-triggered ensemble



LNP cascades and noise



Single linear filter



- ► STA is unbiased estimate of filter for spherical input distribution. (Bussgang's theorem)
- ► Elliptically-distributed data can be whitened ⇒ linear regression weights are unbiased.
- ▶ Linear weights are not necessarily maximum-likelihood (or otherwise optimal), even for spherical/elliptical stimulus distributions.
- Linear weights may be biased for general stimuli (binary/uniform or natural).

Multiple filters



Distribution changes along relevant directions (and, usually, along all linear combinations of relevant directions).

Proxies to measure change in distribution:

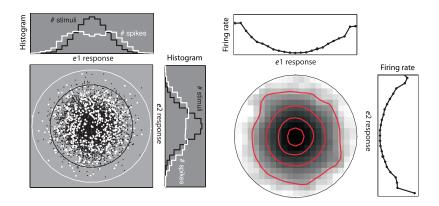
▶ mean: STA (can only reveal a single direction)

variance: STC

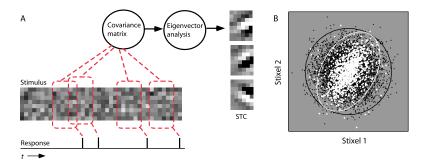
 binned (or kernel) KL divergence: MID "maximally informative directions" (equivalent to ML in LNP model with binned nonlinearity)

STC

Reconstruct nonlinearity (may assume separability)



STC



Project out STA:

$$\widetilde{S} = S - (S\mathbf{k}_{\mathsf{sta}})\mathbf{k}_{\mathsf{sta}}^{\mathsf{T}}; \quad C_{\mathsf{prior}} = \frac{\widetilde{S}^{\mathsf{T}}\widetilde{S}}{N}; C_{\mathsf{spike}} = \frac{\widetilde{S}^{\mathsf{T}}\mathsf{diag}(R)\widetilde{S}}{N_{\mathsf{spike}}}$$

Choose directions with greatest change in variance:

$$\text{k-argmax } \mathbf{v}^{\mathsf{T}} (\mathit{C}_{\mathsf{prior}} - \mathit{C}_{\mathsf{spike}}) \mathbf{v}$$

 \Rightarrow find eigenvectors of $(C_{\text{prior}} - C_{\text{spike}})$ with large (absolute) eigvals.

Biases

STC (obviously) requires that the nonlinearity alter variance. If so, subspace is unbiased provided distribution is

- radially (elliptically) symmetric
- ► AND independent
- ⇒ Gaussian.

May be possible to correct for non-Gaussian stimulus by transformation, subsampling or weighting (latter two at cost of variance).

More LNP methods

Non-parametric non-linearities:

"Maximally informative dimensions" (MID) \(\Display \) "non-parametric" maximum likelihood.

▶ Intuitively, extends the variance difference idea to arbitrary differences between marginal and spike-conditioned stimulus distributions.

$$\mathbf{k}_{\text{MID}} = \mathop{\text{argmax}}_{\mathbf{k}} \mathbf{KL}[P(\mathbf{k} \cdot \mathbf{x}) \| P(\mathbf{k} \cdot \mathbf{x} | \text{spike})]$$

- ► Measuring KL requires binning or smoothing—turns out to be equivalent to fitting a non-parametric nonlinearity by binning or smoothing (Williamson, Sahani, Pillow PLoSCB 2015).
- ▶ Difficult to use for high-dimensional LNP models (but ML viewpoint suggests separable or "cylindrical" basis functions – see Williamson et al.).
- ▶ Parametric non-linearities: the "generalised linear model" (GLM).

Generalised linear models

Poisson distribution $\Rightarrow f = \exp()$ is canonical (natural params = βx).

Canonical link functions give concave likelihoods ⇒ unique maxima.

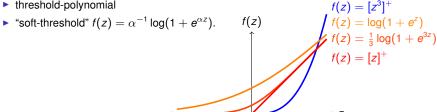
Generalises (for Poisson) to any *f* which is convex and log-concave:

$$log-likelihood = c - f(\beta \mathbf{x}) + y log f(\beta \mathbf{x})$$

Includes:

threshold-linear

threshold-polynomial



Generalised linear models

LN models with specified nonlinearities and exponential-family noise.

In general (for monotonic g):

$$y \sim \text{ExpFamily}[\mu(\mathbf{x})]; \qquad g(\mu) = \beta \mathbf{x}$$

For our purposes easier to write

$$y \sim \text{ExpFamily}[f(\beta \mathbf{x})]$$

(Continuous time) point process likelihood with GLM-like dependence of λ on covariates is approached in limit of bins \rightarrow 0 by either Poisson or Bernoulli GLM.

Mark Berman and T. Rolf Turner (1992) Approximating Point Process Likelihoods with GLIM Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1):31-38.

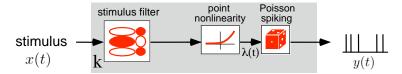
Generalised linear models

ML parameters found by

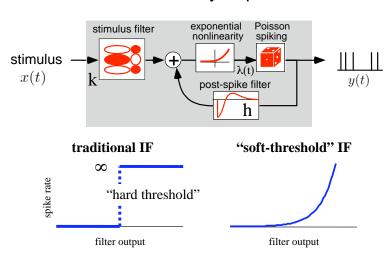
- gradient ascent
- ► IRLS

Regularisation by L_2 (quadratic) or L_1 (absolute value – sparse) penalties (MAP with Gaussian/Laplacian priors) preserves concavity.

Linear-Nonlinear-Poisson (GLM)



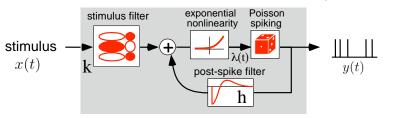
GLM with history-dependence



• "soft-threshold" approximation to Integrate-and-Fire model

GLM with history-dependence

(Truccolo et al 04)

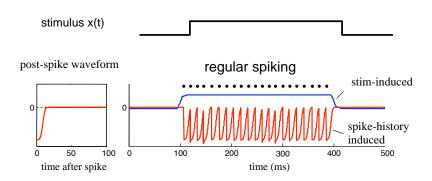


conditional intensity (spike rate)
$$\lambda(t) = f(k \cdot x(t) \ + \ h \cdot y(t))$$

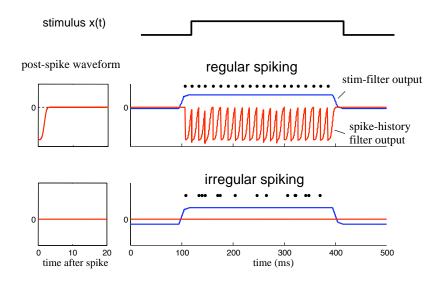
$$= e^{k \cdot x(t)} \ \cdot \ e^{h \cdot y(t)}$$

- rate is a product of stim- and spike-history dependent terms
- output no longer a Poisson process
- also known as "soft-threshold" Integrate-and-Fire model

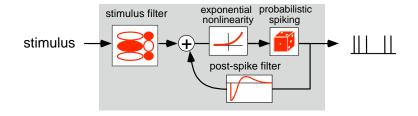
GLM dynamic behaviors



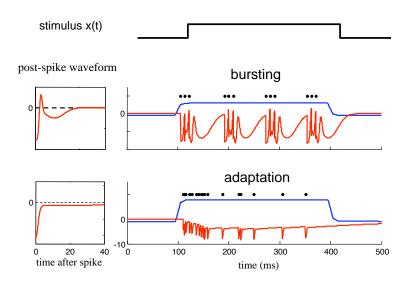
GLM dynamic behaviors



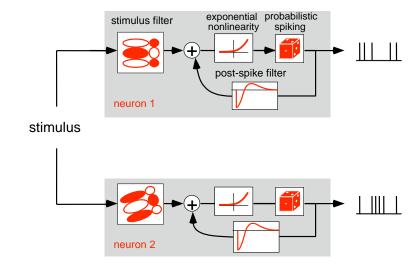
Generalized Linear Model (GLM)



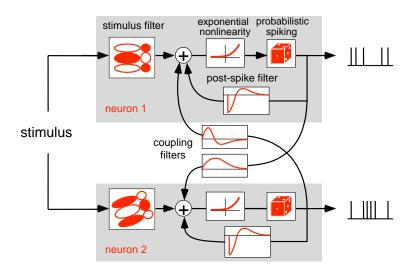
GLM dynamic behaviors



multi-neuron GLM



multi-neuron GLM



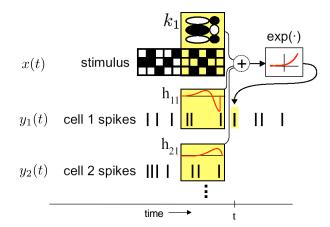
Non-LN models?

The idea of responses depending on one or a few linear stimulus projections has been dominant, but cannot capture all non-linearities.

- ► Contrast sensitivity might require normalisation by ||s||.
- Linear weighting may depend on units of stimulus measurement: amplitude? energy? logarithms? thresholds? (NL models – Hammerstein cascades)
- Neurons, particularly in the auditory system are known to be sensitive to combinations
 of inputs: forward suppression; spectral patterns (Young); time-frequency interactions
 (Sadogopan and Wang).
- Experiments with realistic stimuli reveal nonlinear sensivity to parts/whole (Bar-Yosef and Nelken).

Many of these questions can be tackled using a multilinear (cartesian tensor) framework.

GLM equivalent diagram:



conditional intensity (spike rate)
$$\lambda_i(t) = \exp(k_i \cdot x(t) \ + \ \sum_j h_{ij} \cdot y(t))$$

Input nonlinearities

The basic linear model (for sounds):

$$\widehat{\underline{r}(i)} = \sum_{jk} \underbrace{\underline{w_{jk}^{\text{tf}}}}_{\text{STRF weights}} \underbrace{\underline{s(i-j,k)}}_{\text{stimulus power}},$$

How to measure *s*? (pressure, intensity, dB, thresholded, ...)

We can *learn* an optimal representation g(.):

$$\hat{r}(i) = \sum_{jk} w_{jk}^{\mathsf{tf}} g(s(i-j,k)).$$

Define: basis functions $\{g_i\}$ such that $g(s) = \sum_i w_i^l g_i(s)$ and stimulus array $M_{iikl} = g_i(s(i-i,k))$. Now the model is

$$\hat{r}(i) = \sum_{jkl} w_{jk}^{\mathsf{tf}} w_{l}^{\mathsf{t}} M_{ijkl} \quad \text{or} \quad \hat{\mathbf{r}} = (\mathbf{w}^{\mathsf{tf}} \otimes \mathbf{w}^{\mathsf{t}}) \bullet \mathbf{M}.$$

Multilinear models

Multilinear forms are straightforward to optimise by alternating least squares.

Cost function:

$$\mathcal{E} = \left\| \mathbf{r} - (\mathbf{w}^{\mathsf{tf}} \otimes \mathbf{w}^{\mathsf{I}}) \bullet \mathbf{M} \right\|^{2}$$

Minimise iteratively, defining matrices

$$\mathbf{B} = \mathbf{w}^{\mathsf{I}} \bullet \mathbf{M}$$
 and $\mathbf{A} = \mathbf{w}^{\mathsf{tf}} \bullet \mathbf{I}$

and updating

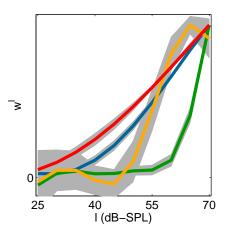
$$\mathbf{w}^{tf} = (\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \mathbf{r}$$
 and $\mathbf{w}^I = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{r}$.

Each linear regression step can be regularised by evidence optimisation (suboptimal), with uncertainty propagated approximately using *variational* methods.

Variable (combination-dependent) input gain

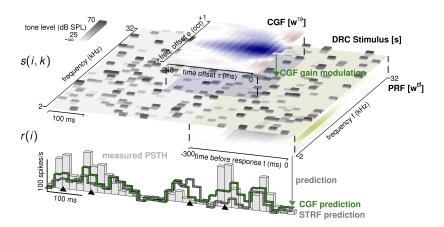
- Sensitivities to different points in sensory space are not independent.
- Rather, the sensitivity at one point depends on other elements of the stimulus that create a local sensory context.
- This context adjusts the input gain of the cell from moment to moment, dynamically refining the shape of the weighted receptive field.

Some input non-linearities



Context-sensitive gain

$$\hat{r}(i) = c + \sum_{j=0}^{J} \sum_{k=1}^{K} w_{j+1,k}^{tf} s(i-j,k) \left(1 + \sum_{m=0}^{M} \sum_{n=-N}^{N} w_{m+1,n+N+1}^{\tau \phi} s(i-j-m,k+n) \right)$$



LNLN cascades

Limited description of 'layered' structure of sensory pathways:

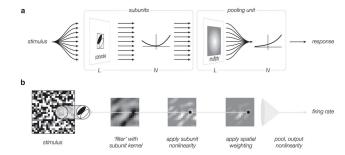
$$\hat{r}(t) = f\left(\sum_{n=1}^{N} w_n g_n(\mathbf{k}_n^{\mathsf{T}} \mathbf{s}(t))\right)$$

- \mathbf{k}_n describes the linear filter and g_n the output nonlinearity of each of N input subunits. The g_n are usually fixed half-wave rectifiers.
- Called a generalised nonlinear model (GNM; Butts et al. 2007, 2011; Schinkel-Bielefeld et al. 2012)
- ▶ Or a nonlinear input model (NIM; McFarland et al. 2013).
- Parameters estimated by maximum-likelihood using inhomogeneous Poisson noise often by alternation (following Ahrens et al. 2008).
- Resembles a (perceptron) "neural network".

Limitations of linear approximations

What are the consequences of nonlinearities in the stimulus-response function for interpretation of structure in linear models like STRFs?

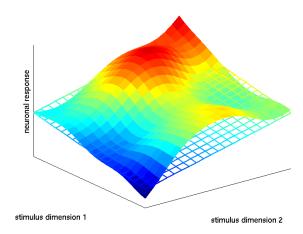
Convolutional LNLN



$$\hat{r}(t) = f\left(\sum_{c=1}^{C}\sum_{n=1}^{N}w_{c,n}\sum_{i=1}^{B}b_{c,i}g_{i}(\mathbf{k}_{c,n}^{\mathsf{T}}\mathbf{s}(t))\right)$$

- ► C "channels" each uses same kernel **k**_c translated to a different location (convolution).
- ▶ Input nonlinearities learned using basis expansion and alternation (Ahrens et al. 2008).
- Output nonlinearity f fixed.

Linear fits to non-linear functions



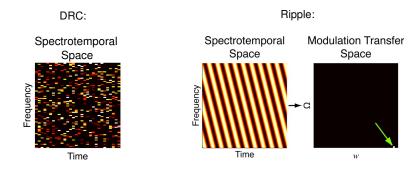
Approximations are stimulus dependent



(Stimulus dependence does not always signal response adaptation)

"Independently distributed" stimuli

Knowing stimulus power at any set of points in analysis space provides no information about stimulus power at any other point.

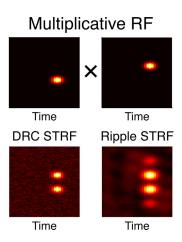


Independence is a property of stimulus and analysis space.

Consequences

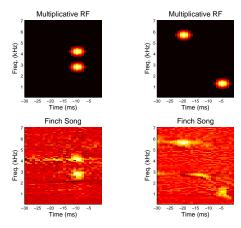
Local fitting can have counterintuitive consequences on the interpretation of a "receptive field".

Nonlinearity & non-independence distort RF estimates



Stimulus may have higher-order correlations in other analysis spaces — and interaction with nonlinearities can produce misleading "receptive fields." (Christianson, Sahani and Linden 2008 J Neurosci)

What about natural sounds?



Usually not independent in any space — so STRFs may not be conservative estimates of receptive fields.

Summary

How can we use linear models of neuronal stimulus-response functions most effectively to answer biological questions?

Pay a lot of attention to three key issues:

- 1. nature of stimulus
 - ethological/physiological relevance?
 - second-order and/or higher-order autocorrelations?
- 2. choice of stimulus representation
 - appropriate to the biology?
 - appropriate to the question?
- 3. limitations of linear approximation
 - ▶ consequences of likely nonlinearities in stimulus-response function?
 - ▶ interaction with higher-order autocorrelation in stimulus?

Linear modelling can be a simple and useful tool for answering specific questions about neural coding of stimuli, but results must be interpreted carefully.