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Lecture notes on network dynamics

1 Background

Our goal is to understand the dynamics of networks of recurrently connected excita-
tory and inhibitory neurons. Loosely, this means: given single neuron properties and
connectivity, predict the qualitative behavior of a network without doing any computer

simulations.
We have in mind network dynamics of the form

τm
dVi

dt
= fi(Vi, t)−

∑

j

Aijgj(t)(Vi − Ej) (1a)

τs
dgj
dt

= −gj(t) + τs
∑

j,k

δ(t− tkj ) . (1b)

{network

Here fi(V, t) represents the single neuron dynamics, Ej is the reversal potential associated
with neuron j, δ(·) is the Dirac δ-function, and tkj is the time of the kth spike on neuron
j. Note that we could write down much more complicated equations – for instance, we
could include axonal delays and dendritic processing, the dynamics of gj could be made
more complicated, gj could depend on i as well as j, and, of course, the single neuron
dynamics could have additional variables associated with channels, resulting in Hodgkin-
Huxley type dynamics. However, the level of complexity in Eq. (1) will be sufficient to
get the main ideas across.

Given these equations, we would like to determine things like: the equilibrium (or
equilibria if there are more than one), stability around that equilibria, dynamics in the
case of unstable equilibria, and we might even want to predict the distribution of firing
rates. We can’t (yet) do any of this in general, but we can do some of it for some
connectivity structures. “Some” means two or three, depending on how you count, but
that may be enough to mainly understand how networks work. Here we’ll focus primarily
on randomly connected networks, and in the next couple of sections we’ll “solve” the
above equations in various limits, and for various types of randomness. At the end, we’ll
consider more structured connectivity: that associated with Hopfield networks.

2 Firing rate equations

A very phenomenological approach to studying network dynamics is to assume that neu-
rons are described totally by their firing rates, and that the firing rate of any one neuron is
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a function of the firing rates of all the other neurons in a network. Given this assumption
(which we’ll take a closer look at below), a reasonable model is that the “synaptic drive”
to a neuron is a linear sum of the firing rates of its pre-synaptic neurons, and the firing
rate of a postsynaptic neurons is a nonlinear function of the synaptic drive. This produces
a model of the form {fi_sum}

νi = φ (hi + Ii) (2a) {fi_sum.a

hi =
∑

j

Bijνj (2b) {fi_sum.b

where νi is the firing rate of neuron i, Ii is the input to neuron i, Bij is the connection
strength from neuron j to neuron i, and φ is the gain function. The later is typically
sigmoidal – zero when its argument is negative and large, and around 100 Hz when its
argument is positive and large. We could have let φ depend on index, i, but that would
have complicated notation without adding anything conceptual.

In the following we’ll solve this equation for two kinds of randomly connected networks:
those that violate Dale’s law, and those that don’t. (Recall that Dale’s law tells us that
a neuron makes either excitatory connections or inhibitory connections, but never both.)

2.1 Networks that violate Dale’s law

We’ll start by considering a network in which the elements, Bij are drawn iid from some
distribution. Although this is inconsistent with biology, it illustrates most of the tech-
niques that we’ll use. To be realistic, we’ll consider sparse connectivity, and we’ll let the
probability of a connection be K/N . This corresponds to an average of K connections per
neurons, and it means that on average a fraction 1−K/N of the Bij are zero. Typically
K/N is on the small side – about 1/10. To be honest, sparse connectivity adds very little
conceptually, so on first reading it’s OK to set K to N , which simplifies many of the
expression.

Given that connectivity is random, it turns out that all we need are the mean and
variance of the elements of Bij . For now we’ll leave those arbitrary. We will, however,
introduce some scaling; we’ll let

Bij =
Wij

K1/2
. (3)

With this scaling, the synaptic drive, Eq. (2b), becomes

hi =
1

K1/2

∑

j

Wijνj . (4) {h_nodale

It’s not hard to see why we use this scaling: the sum on the right hand side of Eq. (4)
consists of about K terms, all of which scale as 1/K1/2; it’s spread is, therefore, about
the size of the weights, Wij , independent of the size of the network.
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Our goal is to solve Eq. (2a) with the synaptic drive given in Eq. (4). Here “solve”
doesn’t mean find the firing rate of every neuron. That’s because connectivity is random,
so the identity of any one neuron doesn’t have much meaning. Instead, “solve” means
“find the distribution over firing rates”.

To do that, we use essentially one approximation, which is so important that we’ll
highlight it in red:

Whenever we see a sum over a large number of indices, we treat it as a Gaussian
random variable.

The synaptic drive, hi, that appears in Eq. (4) qualifies as such a sum (it has about
K nonzero terms). Thus, we treat hi as a Gaussian random variable. Importantly, it’s
Gaussian with respect to index i, meaning that if we were to make a histogram of all the
hi’s, it would look Gaussian.

The nice thing about the Gaussian assumption is that all we need are the mean and
variance of h. Once we have those, we can immediately find the distribution over the
firing rates (assuming we know the distribution over the input, Ii),

P (ν) =

∫

dI P (I)

∫

dh p(h) δ
(

ν − φ(h+ I)
)

. (5) {p_nu}

Here P (h) is a Gaussian distribution, and P (I) is assumed known. (If this doesn’t make
sense, you can also get the firing rate by sampling: sample h from a Gaussian distribution,
sample I from it’s distribution, set ν to φ(h+ I), and repeat.)

So now we need the mean and variance of the Gaussian distribution over h. The mean
is given by

〈h〉 =
1

N

∑

i

1

K1/2

∑

j

Wijνj =
1

K1/2

∑

j

νj
1

N

∑

i

Wij =
N

K1/2
W ν (6) {hbar}

where ν is the population average firing rate (k = 1 in Eq. (12)) and W is the average
connection strength. Strictly speaking,

W ≡
1

N2

∑

ij

Wij , (7)

so in fact the right hand side of Eq. (6) is an approximation to 〈h〉. However, that
approximation should be good in the large K limit, as fluctuations are O(1/K1/2). Note
that for 〈h〉 to be O(1), W must be O(K1/2/N). This means that the nonzero weights (of
which there are a fraction K/N) are O(1/K1/2), which in turn means that the strengths
of the nonzero connections are O(1/K).
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The second moment of h is given by

〈h2〉 =
1

N

∑

i

1

K

∑

jj′

WijνjWij′νj′ =
1

K

∑

jj′

νjνj′
1

N

∑

i

WijWij′ . (8)

If j 6= j′, the sum over i is just W
2

; otherwise, it’s 〈W 2〉, the second moment of the
weights (in both we ignored O(1/K1/2) corrections). We thus have

〈h2〉 =
1

K

∑

jj′

νjνj′
[

W
2

(1− δjj′) + 〈W 2〉δjj′
]

=
N2

K
W

2

ν2 +
N

K
Var[W ]ν2 (9)

where ν2 is the second moment of the firing rates (k = 2 in Eq. (12)) and

〈W 2〉 ≡
1

N2

∑

ij

W 2

ij . (10)

Using Eq. (6) for the mean, we see that

Var[h] =
N

K
Var[W ]〈ν2〉 . (11)

We now have expressions for the mean and variance of h, but they depend on the first
and second moments of the firing rates, which we don’t know. However, we can express
those moments in terms of the mean and variance of h, giving us self-consistent equations.
The equations will be nonlinear, and we will have to solve them numerically, but at least
we don’t have to do any network simulations.

The kth moment of the firing rate is given by

νk ≡
1

N

∑

i

νk
i . (12) {moments_def

To express this in terms of the distribution over h, we use Eq. (2a) to write

νk =
1

N

∑

i

φk(hi + Ii) . (13) {moments

In the large n limit, we can turn the sum on the right hand side into an integral over the
distributions of h and I, giving us

νk =

∫

dI P (I)

∫

dhP (h)φk(h+ I) . (14)

We are assuming (as above) that h and I are independent.
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It is convenient to make the definitions

µ ≡
N

K1/2
W (15a)

σ2 ≡
N

K
Var[W ] , (15b)

giving us

νk =

∫

dI P (I)

∫

Dxφk
(

µν + σν2
1/2

x+ I
)

(16) {mf_nodale

where

Dx ≡
e−x2/2

(2π)1/2
. (17)

Equation (16) actually corresponds to two equations: one for ν and one for ν2; these must
be solved self-consistently. Once they are known, the full distribution of firing rates can
be computed from Eq. (5).

2.2 Networks that obey Dale’s law

The analysis in the previous ignored a salient feature of neuron in the brain: they almost
always obey Dale’s law, meaning that any particular neuron makes either excitatory
connections or inhibitory connections, but never both. We thus need to redo the analysis,
but with extra indices: E for excitatory and I for inhibitory. The analysis is essentially
the same, although it’s more complicated just because we have to keep track of which
neurons are excitatory and which are inhibitory. We do, though, gain some new insight.

We’ll start by rewriting Eq. (2) as {ei}

ναi = φ (hαi + Iαi) (18a) {ei.a}

hαi =
1

K1/2

∑

β,j

W αβ
ij νβj (18b) {ei.b}

where α and β can be either E or I. Again, all we need are the mean and variance of hαi.
Using exactly the same analysis as above, we find that

〈hα〉 = K1/2
∑

β

Wαβνβ (19a)

Var[hα] =
∑

β

σ2

αβν
2

β (19b)
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where

Wαβ ≡
1

NK

∑

ij

W αβ
ij (20a)

σ2

αβ ≡
N

K
Var
[

W αβ
ij

]

. (20b)

The moments of the firing rates have definitions analogous to Eq. (13).
Inserting this into Eq. (18), we arrive at the mean field equations

νk
α =

∫

dI P (Iα)

∫

Dxφk

(

K1/2
∑

β

Wαβνβ +
(

∑

β

σ2

αβν
2

β

)1/2

x+ Iα

)

. (21) {mf_dale

This corresponds to four equations that have to be solved self-consistently for the first
(k = 1) and second (k = 2) moments of the excitatory and inhibitory firing rates.

Note that in the large K limit things greatly simplify. That’s because the term with
K1/2 in Eq. (21) dominates. Assuming that the mean value of Iα is O(K1/2), we can solve
for the mean firing rates without doing any integrals,

∑

β

Wαβνβ +K−1/2Iα = 0 . (22)

These lead to the famous van Vreeswijk and Sompolinsky nullclines, and they do a pretty
good job describing the mean firing rates. The effect of the so-called “quenched noise,” the
x-related term in Eq. (21), is twofold: it induces a spread in firing rates, and it smooths
out the gain functions. But from a conceptual point of view it doesn’t add all that much

2.2.1 Summary for this section

Starting with a pretty much made-up model for the firing rates, we derived mean field
equations for their first and second moments, which in turn could be used to find the
distribution over the synaptic drive, h. Our main approximation – one we’ll use over
and over – was to treat large sums as Gaussian random variables. This is clearly an
approximation: for the sums to really be Gaussian, the elements have to be independent,
which they aren’t – firing rates are correlated. However, it turns out that for the networks
we study, it’s a pretty good approximation. The reasons are nontrivial, and we won’t go
into them here. We also made a second approximation, which was to turn sums into
integrals. That, however, is almost always valid.

3 A (somewhat) more rigorous approach

While the above analysis illustrated the main techniques we use, it was relatively ad hoc.
Here we do a better job deriving the firing rate equations, starting from Eq. (1). However,
although we’ll be more rigorous, there will still be some loose ends. To be continued ...
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