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Population coding

Many quantities — whether stimulus-derived or entirely internal — seem to be represented by
the activity of populations of neurons with overlapping responses.

I Improved precision from combining noisy elements.
I Redundancy (e.g. against cell death).
I Computational, processing, or memory advantages?
I Representations of confidence, uncertainty or multipotent plans?

The full relationship between stimuli and population response has been difficult to study
directly.

Instead, thinking about population codes has been dominated by guesses regarding (typically
low-dimensional) encoded variables based on the selectivity/invariance pattern.

Coding a continuous variable

Scalar coding
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Distributed encoding

fir
in

g 
ra

te

 s

fir
in

g 
ra

te

 s

fi
ri
n
g
 r

a
te

 s

Coding a continuous variable

All of these schemes have been found in biological systems.
Issues:

1. redundancy and robustness (not scalar)

2. efficiency/resolution (not labelled line)

3. local computation (not scalar or scalar distributed)

4. multiple values (not scalar, grid)



Coding in multiple dimensions
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I efficient
I problems with multiple values

Multi-D distributed
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I represent multiple values
I may require more neurons

Theory: decoding and encoding

Theoretically tractable questions:

I given assumed encoding functions, how well can we (or downstream areas) decode the
encoded stimulus value?

I what does the optimal decoder look like?
I what encoding schemes would be optimal, in the sense of allowing decoders to estimate

stimulus values as well as possible.

Optimality

I Biological systems (including brains) have evolved through natural selection.
I loosely an optimisation

I for propagation (of genes)
I in a dynamic landscape (changing environment; competitors; predators; prey . . . )

I propagation of genes requires successful individuals
I successful individuals require effective systems and components

I Much theory seems to understand evolved systems solns. as “optimal”.
I cost function?
I constraints?

In a basic sensory system:
I cost – accurate, sensitive detecton
I constraints – neuron count / energy / wiring ?

Rate coding

In the rate coding context, we imagine that the firing rate of a cell r represents a single
(possibly multidimensional) stimulus value s at any one time:

r = f (s).

Even if s and r are embedded in time-series we assume:

1. that coding is instantaneous (with a fixed lag),

2. that r (and therefore s) is constant over a short time ∆.

The actual number of spikes n produced in ∆ is then taken to be distributed around r∆, often
according to a Poisson distribution.



Tuning curves

The function f (s) is known as a tuning curve.
Commonly assumed forms:

• Gaussian r0 + rmax exp
[
− 1

2σ2
(x − xpref)

2
]

• (Thresholded) Ramp r0 + Θ(x − xthr) rmax ρ · (x − xthr)

• Cosine r0 + rmax cos(θ − θpref)

• Wrapped Gaussian r0 + rmax

∑
n

exp
[
− 1

2σ2
(θ − θpref − 2πn)2

]

• von Mises (“circular Gaussian”) r0 + rmax exp [κ cos(θ − θpref)]

• periodic (grid) f (s) = f1(sin(2πs/λ))

Cricket cercal system

ra(s) = rmax
a [cos(θ − θa)]+ = rmax

a [cT
av]+

cT
1c2 = 0

c3 = −c1

c4 = −c2

So, writing r̃a = ra/rmax
a :(

r̃1 − r̃3

r̃2 − r̃4

)
=

(
cT

1

cT
2

)
v

v = (c1c2)

(
r̃1 − r̃3

r̃2 − r̃4

)
= r̃1c1 − r̃3c3 + r̃2c2 − r̃4c4 =

∑
a

r̃aca

This is called population vector decoding.

Motor cortex (simplified)

Cosine tuning, randomly distributed preferred directions.
In general, population vector decoding works for

I cosine tuning
I cartesian or dense (tight) directions

But:
I is it optimal?
I does it generalise? (Gaussian tuning curves)
I how accurate is it?

Bayesian decoding

Take na ∼ Poisson[fa(s)∆], independently for different cells.
Then

P(n|s) =
∏

a

e−fa(s)∆(fa(s)∆)na

na!

and

log P(s|n) = −
∑

a

fa(s)∆ + nalog(fa(s)∆)− log na! + log P(s)

Assume
∑

a fa(s) is independent of s for a homogeneous population, and prior is flat.

d
ds

log P(s|n) =
d
ds

∑
a

nalog(fa(s)∆)

=
∑

a

na

fa(s)∆
f ′a(s)∆



Bayesian decoding

Now, consider fa(s) = e−(s−sa)2/2σ2
, so f ′a(s) = −(s − sa)/σ2e−(s−sa)2/2σ2

and set the derivative to 0:∑
a

na(s − sa)/σ2 = 0

ŝMAP =

∑
a nasa∑

a na

So the MAP estimate is a population average of preferred directions. Not exactly a population
vector.

Measuring the potential quality of a representation

Now consider a (one dimensional) stimulus that takes on continuous values (e.g. angle).
I contrast
I orientation
I motion direction
I movement speed

Suppose a neuron fires n spikes in response to stimulus s according to some distribution

P(n|f (s)∆)

Given an observation of n, how well can we estimate s?

Continuous estimation

Useful to consider a limit given N →∞ measurements ni all generated by the same stimulus
s∗.

The posterior over s is

log P(s|{ni}) =
∑

i

log P(ni |s) + log P(s)− log Z({ni})

Taking N →∞ we have

1
N

log P(s|{ni})→ 〈log P(n|s)〉n|s∗ + 0− log Z(s∗)

and so

P(s|{ni})→ eN〈log P(n|s)〉n|s∗ /Z

= e−NKL[P(n|s∗)‖P(n|s)]/Z

(Note: Z is being redefined as we go, but never depends on s)

Continuous estimation

Now, Taylor expand the KL divergence in s around s∗:

KL[P(n|s∗)‖P(n|s)]

= −〈log P(n|s)〉n|s∗ + 〈log P(n|s∗)〉n|s∗

= −〈log P(n|s∗)〉n|s∗ − (s − s∗)
〈

d log P(n|s)

ds

∣∣∣
s∗

〉
s∗
− 1

2
(s − s∗)2

〈
d2 log P(n|s)

ds2

∣∣∣
s∗

〉
s∗

+ . . .

+ 〈log P(n|s∗)〉n|s∗

= −1
2

(s − s∗)2
〈

d2 log P(n|s)

ds2

∣∣∣
s∗

〉
s∗

+ . . .

=
1
2

(s − s∗)2J(s∗) + . . .

So in asymptopia, the posterior→ N (s∗, 1/J(s∗)).
J(s∗) is called the Fisher Information.

J(s∗) = −
〈

d2 log P(n|s)

ds2

∣∣∣
s∗

〉
s∗

=

〈(d log P(n|s)

ds

∣∣∣
s∗

)2
〉

s∗

(You will show that these are identical in the homework.)



Cramér-Rao bound

The Fisher Information is important even outside the large data limit due to a deeper result
that is due to Cramér and Rao.

This states that for any N, any unbiased estimator ŝ({ni}) of s will have the property that〈
(ŝ({ni})− s∗)2〉

ni |s∗
≥ 1

J(s∗)
.

Thus, Fisher Information gives a lower bound on the variance of any unbiased estimator. This
is called the Cramér-Rao bound.

[For estimators with bias b(s∗) = 〈ŝ({ni})− s∗〉 the bound is:〈
(ŝ({ni})− s∗)2

〉
ni |s∗

≥ (1+b′(s∗))2

J(s∗)
+ b2(s∗)]

The Fisher Information will be our primary tool to quantify the performance of a population
code.

Fisher Info and tuning curves
n = r∆ + noise; r = f (s)⇒

J(s∗) =

〈(
d
ds

∣∣∣
s∗

log P(n|s)

)2〉
s∗

=

〈(
d

dr∆

∣∣∣
f (s∗)

log P(n|r∆)∆f ′(s∗)

)2〉
s∗

= Jnoise(r∆)∆2f ′(s∗)2
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Fisher info for Poisson neurons
For Poisson neurons

P(n|r∆) =
e−r∆

(r∆)n
n!

so

Jnoise[r∆] =

〈(
d

dr∆

∣∣∣
r∗∆

log P(n|r∆)

)2〉
s∗

=

〈(
d

dr∆

∣∣∣
r∗∆
− r∆ + n log r∆− log n!

)2〉
s∗

=

〈(
− 1 + n/r∗∆

)2〉
s∗

=

〈
(n − r∗∆)2

(r∗∆)2

〉
s∗

=
r∗∆

(r∗∆)2
=

1
r∗∆

[not surprising! r̂∗∆ = n and V [n] = r∗∆]

and, referred back to the stimulus value:

J[s∗] = f ′(s∗)2∆/f (s∗)

Population Fisher Info – independent noise

Fisher Informations for independent random variates add:

Jn(s) =

〈
− d2

ds2
log P(n|s)

〉
=

〈
− d2

ds2

∑
a

log P(na|s)

〉

=
∑

a

〈
− d2

ds2
log P(na|s)

〉
=
∑

a

Jna (s).

= ∆
∑

a

f ′a(s)2

fa(s)
[for Poisson cells]



Population Fisher Info – correlated (Gaussian) noise

r ∼ N (µ(s),Σ(s))

J(s) = −
〈
∂2

∂s2
log p(r|s)

〉
=

1
2

〈
− ∂2

∂s2
log
∣∣Σ−1∣∣+

∂2

∂s2
Tr
[
Σ−1(r− µ)(r− µ)T

]〉
=

1
2

〈
− ∂

∂s
Tr
[
Σ(Σ−1)′

]
+

∂

∂s
Tr
[
(Σ−1)′(r− µ)(r− µ)T

]
− 2

∂

∂s
Tr
[
Σ−1µ′(r− µ)

]〉
=

1
2

〈
−Tr

[
Σ′(Σ−1)′

]
− Tr

[
Σ(Σ−1)′′

]
+ Tr

[
(Σ−1)′′(r− µ)(r− µ)T

]
− 2Tr

[
(Σ−1)′µ′(r− µ)T

]
−2Tr

[
(Σ−1)′µ′(r− µ)

]
− 2Tr

[
Σ−1µ′′(r− µ)

]
− 2Tr

[
Σ−1µ′µ′T

]〉
=

1
2

(
−Tr

[
Σ′(Σ−1)′

]
− Tr

[
Σ(Σ−1)′′

]
+ Tr

[
(Σ−1)′′Σ

]
− 2Tr

[
Σ−1µ′µ′T

])
=

1
2

Tr
[
Σ′Σ−1Σ′Σ−1]+ µ′TΣ−1µ′

Gaussian FI

J(s) =
1
2

Tr
[
Σ′Σ−1Σ′Σ−1]+ µ′TΣ−1µ′

I Most focus on second term.
I “Linear” Fisher information – gives performance of a locally-optimal linear decoder.
I Eigendecomposition Σ =

∑
i λi vi vT

i

⇒ J1(s) =
∑

i

λ−1
i (vT

i µ
′)2 .

I Large eigenvalue along µ′ gives low FI – sometimes called ’differential correlation’ or
’information-limiting’ correlation.

Optimal tuning properties

Consider a population of cells that codes the value of a D dimensional stimulus, s. Let the ath
cell emit r spikes in an interval τ with probability distribution that is conditionally independent
of the other cells (given s) and has the form

Pa(r | s, τ) = S(r , f a(s), τ).

Also let the tuning curve of the ath cell, f a(s), be circularly symmetric:

f a(s) = F · φ
(
(ξa)2) ; (ξa)2 =

D∑
i

(ξa
i )2; ξa

i =
si − ca

i

σ
,

where F is a maximal rate and the function φ is monotically decreasing. The parameters ca

and σ give the centre of the ath tuning curve and the (common) width.

Optimal tuning properties

Now, the (ij)th term in the FI matrix for the ath cell is (by definition)

Ja
ij (s) = E

[
∂

∂si
log Pa(r | s, τ)

∂

∂sj
log Pa(r | s, τ)

]
Applying the chain rule repeatedly, we find that

∂

∂si
log Pa(r | s, τ) =

1
S(r , f a(s), τ)

∂

∂si
S(r , f a(s), τ)

=
S(2)(r , f a(s), τ)

S(r , f a(s), τ)

∂

∂si
f a(s)

(where S(2) indicates differentiation with respect to the second argument)

=
S(2)(r , f a(s), τ)

S(r , f a(s), τ)
Fφ′

(
(ξa)2) ∂

∂si

D∑
i

(ξa
i )2

=
S(2)(r , f a(s), τ)

S(r , f a(s), τ)
Fφ′

(
(ξa)2) 2(si − ca

i )

(σa
i )2



Optimal tuning properties

So,

Ja
ij (s) = E

[(
S(2)(r , f a(s), τ)

S(r , f a(s), τ)

)2
]

4F 2 (φ′ ((ξa)2))2 (si − ca
i )(sj − ca

j )

σ4

= Aφ
(
(ξa)2, F , τ

) (si − ca
i )(sj − ca

j )

σ4

where the function Aφ does not depend explicitly on σ.

Optimal tuning properties
We assumed neurons were independent⇒ Fisher information adds. Approximate by integral
over the tuning curve centres, assuming uniform density η of neurons.

Jij (s) =
∑

a

Ja
ij (s)

≈
∫ +∞

−∞
dca

1 · · ·
∫ +∞

−∞
dca

D ηJa
ij (s)

=

∫ +∞

−∞
dca

1 · · ·
∫ +∞

−∞
dca

D ηAφ
(
(ξa)2, F , τ

) (si − ca
i )(sj − ca

j )

σ4

Change variables: ca
i → ξa

i

=

∫ +∞

−∞
σdξa

1 · · ·
∫ +∞

−∞
σdξa

D ηAφ
(
(ξa)2, F , τ

) ξa
i ξ

a
j

σ2

=
σD

σ2
η

∫ +∞

−∞
dξa

1 · · ·
∫ +∞

−∞
dξa

D Aφ
(
(ξa)2, F , τ

)
ξa

i ξ
a
j

Now, if i 6= j , integral is odd in both ξa
i and ξa

j , and thus vanishes. If i = j , then the integral
has some value D · Kφ(F , τ,D), independent of σ. Thus,

Jii = σD−2ηDKφ(F , τ,D)

and the total Fisher information is proportional to σD−2.

Optimal tuning properties
Thus optimal tuning width depends on the stimulus dimension through the interplay of two
effects:

slope: f ′(s) ∝ σ−1 ⇒ Ja(s) ∝ σ−2 per cell

number of cells: N(s) ∝ σD ⇒ J(s) ∝ σD−2 population

I D = 1

⇒ σ → 0 (although a lower limit is encountered when the tuning width falls below the
inter-cell spacing)

I D = 2

⇒ J independent of σ.
I D > 2

⇒ σ →∞ (actual limit set by valid stimuli).

I If circular symmetry is relaxed to allow different scales in each dimension for different
cells then solution is a Cartesian code (narrow in one dimension, wide in others).

I Single-bump constraint is essential to analysis. Fisher information cannot address
ambiguity between bumps.

I Single coded value – analysing multiple values or distributions is more complex.


