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Neural Coding

� The brain manipulates information by combining and generating action potentials (or
spikes).

� It seems natural to ask how information (about sensory variables; inferences about the
world; action plans; cognitive states . . . ) is represented in spike trains.

� Experimental evidence comes largely from sensory settings
� ability to repeat the same stimulus (although this does not actually guarantee that all

information represented is identical, but some is likely to be shared across trials).
� Computational methods are needed to characterise and quantify these results.

� Theory can tell us what representations should look like.

� Theory also suggests what internal variables might need to be represented:
� categorical variables
� uncertainty
� reward predictions and errors



Spikes

� The timecourse of every action potential (AP) in a cell measured at the soma may vary
slightly, due to differences in the open channel configuration.



Spikes

� The timecourse of every action potential (AP) in a cell measured at the soma may vary
slightly, due to differences in the open channel configuration.

� However, axons tend to contain only the Na+ and K+ channels needed for AP
propagation, and therefore exhibit little or no AP shape variation.



Spikes

� The timecourse of every action potential (AP) in a cell measured at the soma may vary
slightly, due to differences in the open channel configuration.

� However, axons tend to contain only the Na+ and K+ channels needed for AP
propagation, and therefore exhibit little or no AP shape variation.

� No experimental evidence (as far as I know) that AP shape affects vesicle release.



Spikes

� The timecourse of every action potential (AP) in a cell measured at the soma may vary
slightly, due to differences in the open channel configuration.

� However, axons tend to contain only the Na+ and K+ channels needed for AP
propagation, and therefore exhibit little or no AP shape variation.

� No experimental evidence (as far as I know) that AP shape affects vesicle release.

� Thus, from the point of view of inter-neuron communication, it seems that the only thing
that matters about an AP or spike is its time of occurance.



Notation for spike trains

A spike train is the sequence of times at which a cell spikes:

S = {t1, t2, . . . tN}.

It is often useful to write this as a function in time using the Dirac-delta form,

s(t) =
N�

i=1

δ(t − ti) (D&A call this ρ(t))

or using a (cumulative) counting function for the number of spikes to time t ,

N(t) =
� →t

0
dξ s(ξ)

(→ t means that t is not included in the integral)

or as a vector by discretizing with time step Δt

s = (s1 . . . sT/Δt); st =

� →t

t−Δt
dξ s(ξ)

Note that the neural refractory period means that for Δt ≈ 1ms, st is binary.



Variability
Empirically, spike train responses to a repeated stimulus are (very) variable. This is
particularly true in the cortex, but might be less so at earlier stages.
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is likely to affect firing, particularly in cortex; and there is experimental evidence for this.
This might lead to variability on a slower time-scale than noise.
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This variability probably arises in more than one way.

� Noise. Perhaps due to vesicle release; or thermal noise in conductances.
� Ongoing processes. The brain doesn’t just react to sensory input. Ongoing processing

is likely to affect firing, particularly in cortex; and there is experimental evidence for this.
This might lead to variability on a slower time-scale than noise.

We do not know the relative sizes of these two contributions.



Count variability

Everything about the spike train can be variable, even the spike count on the i th repetition (or
“trial”) Ni =

� T
0 dξ si(ξ)

Variability in Ni is on order of the mean.

Fits of the form Var[Ni ] = A · E[Ni ]
B yield values of A and B between about 1 and 1.5.



Point Processes

A probabilistic process that produces events of the type

S = {t1, . . . , tN} ⊂ T

is called a point process.

This is the statistical object best suited for the description of spike trains. We take T = [0, T ]
to be an interval of time.

Every point process (on an ordered set) is associated with a dual counting process which
produces events of the type

N(t) such that N(t) ≥ 0

N(t �) ≥ N(t) if t � > t

N(t)− N(s) = N[s, t) ∈ Z

N(t) gives the number of events with ti < t .



Homogeneous Poisson Process: Nλ(t)

In the simplest point process, events are all independent and occur at a fixed rate λ.

Independence is defined formally:

1. Independence. For all disjoint intervals [s, t) and [s�, t �), Nλ[s, t) ⊥ Nλ[s�, t �).

Knowing the number (or times) of one or more events tells us nothing about other possible
events.



Homogeneous Poisson Process: Nλ(t)

The rate condition can be defined in two ways.

If we assume that limds→0 Nλ[s, s + ds) ∈ {0, 1} (technically conditional orderliness – at
most one event occurs at one time) then it is sufficient to assume that

2. Mean event rate. E [Nλ[s, t)] = (t − s)λ.

Without assuming conditional orderliness, we could instead define the process by giving the
whole distribution of Nλ[s, t). Instead, we will use the more restrictive defining assumption to
derive the distribution.



Homogeneous Poisson Process: Nλ(t)
Divide [s, t) into M bins of length Δ (i.e. M = (t − s)/Δ). If Δ � 1/λ conditional orderliness
implies that spike count per bin is binary.

For a binary random variable, the expectation is the same as the probability of event, so
λΔ ≈ P(N[t, t +Δ) = 1).

Thus, distribution of N[s, t) binomial:

P [Nλ[s, t) = n] =

�
M
n

�
(λΔ)n(1 − λΔ)M−n

=
M!

n!(M − n)!

�
λ(t − s)

M

�n �
1 − λ(t − s)

M

�M−n

write µ = λ(t − s)

=
µn

n!
M(M − 1) · · · (M − n + 1)

Mn

�
1 − µ

M

�−n �
1 − µ

M

�M

now take the limit Δ → 0 or, equivalently, M → ∞

=
µn

n!
1n1ne−µ =

µne−µ

n!

So the spike count in any interval is Poisson distributed.



Homogeneous Poisson Process: Nλ(t)

So a Poisson process produces event counts which follow the Poisson distribution. As we
mentioned above, we could instead have dispensed with the conditional orderliness
assumption and instead made this a defining property of the process:

2�. Count distribution. Nλ[s, t) ∼ Poiss[(t − s)λ].

We will now derive a number of properties of the homogeneous Poisson process. These are
good to know. We will also employ some tricks in the derivations that can be applied more
generally.



Count Variance

V [Nλ[s, t)] =
�
(n − µ)2�

=
�
n2�− µ2

= �n(n − 1) + n� − µ2

=
∞�

n=0

n(n − 1)
e−µµn

n!
+ µ− µ2

=
∞�

n=0

e−µµn−2

(n − 2)!
µ2 + µ− µ2

= 0 + 0 +
∞�

(n−2)=0

e−µµn−2

(n − 2)!
µ2 + µ− µ2

= µ2 + µ− µ2 = µ

Thus:

3. Fano factor1.
V [Nλ[s, t)]
E [Nλ[s, t)]

= 1.

1Note that this ratio (unlike the CV that we will encounter later) is only dimensionless for counting processes, or other
dimensionless random variables.



ISI distribution

The next few properties relate to the inter-spike interval (ISI) statistics.

First, it is fairly straightforward that, since the counting processes before and after event ti are
independent, the times to the previous and following spikes are independent.

4. ISI independence. ∀i > 1, ti − ti−1 ⊥ ti+1 − ti .

The full distribution of ISIs can be found from the count distribution:

P [ti+1 − ti ∈ [τ, τ + dτ)] = P [Nλ[ti , ti + τ) = 0]× P [Nλ[ti + τ, ti + τ + dτ) = 1]

= e−λτλdτe−λdτ

taking dτ → 0
= λe−λτdτ

5. ISI distribution. ∀i ≥ 1, ti+1 − ti ∼ iid Exponential[λ−1].



ISI distribution

5. ISI distribution. ∀i ≥ 1, ti+1 − ti ∼ iid Exponential[λ−1].

From this it follows that

6. Mean ISI. E [ti+1 − ti ] = λ−1

7. Variance ISI. V [ti+1 − ti ] = λ−2

These two properties imply that the coefficient of variation (CV), defined as the ratio of the
standard deviation to the mean, of the ISIs generated by an homogeneous Poisson process
is 1.



Joint density

Finally, consider the probability density of observing spike train {t1 . . . tN} in interval T .

Spike times are independent of one another and arrive at a uniform rate. So:

p(t1 . . . tN)dt1 . . . dtN = P [N spikes in T ]× P [ith spike ∈ [ti , ti + dti)]×
[# of equivalent spike orderings]

The first term is given by the Poisson distribution, the second by the uniform distribution of
spike times conditioned on N, and the third is N!, giving us

p(t1 . . . tN)dt1 . . . dtN =
(λT )Ne−λT

N!
· dt1

T
· · · dtN

T
· N!

= λNe−λT dt1 . . . dtN

We will see another way to write down this same expression while considering the
inhomogeneous Poisson process below.



Inhomogeneous Poisson Process: Nλ(t)(t)

The inhomogeneous Poisson process generalizes the constant event-arrival rate λ to a
time-dependent one, λ(t), while preserving the assumption of independent spike arrival
times.

We can quickly summarize the properties of the inhomogeneous process by reference to the
homogeneous one.
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Inhomogeneous Poisson Process: Nλ(t)(t)

The inhomogeneous Poisson process generalizes the constant event-arrival rate λ to a
time-dependent one, λ(t), while preserving the assumption of independent spike arrival
times.

We can quickly summarize the properties of the inhomogeneous process by reference to the
homogeneous one.

To begin, the two defining properties (this time we just state the Poisson distribution property
directly.)

1. Independence. For all disjoint intervals [s, t) and [s�, t �), Nλ(t)[s, t) ⊥ Nλ(t)[s
�, t �).

2. Count distribution. Nλ(t)[s, t) ∼ Poiss[
� t

s dξ λ(ξ)].

The variance in the counts is simply a consequence of the Poisson counting distribution, and
so the next property follows directly.

3. Fano factor.
V
�
Nλ(t)[s, t)

�

E
�
Nλ(t)[s, t)

� = 1.
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ISI distribution

Independence of counting in disjoint intervals means that ISIs remain independent.

4. ISI independence. ∀i > 1, ti − ti−1 ⊥ ti+1 − ti .

The full distribution of ISIs is found in a similar manner to that of the homogeneous process
distribution:

P [ti+1 − ti ∈ [τ, τ + dτ)] = P
�
Nλ(t)(ti , ti + τ) = 0

�
P
�
Nλ(t)[ti + τ, ti + τ + dτ) = 1

�

= e−
� ti+τ

ti
λ(ξ)dξe−

� ti+τ+dτ
ti+τ λ(ξ)dξ

� ti+τ+dτ

ti+τ

λ(ξ)dξ

taking dτ → 0

= e−
� ti+τ

ti
λ(ξ)dξe−λ(ti+τ)dτλ(ti + τ)dτ

= e−
� ti+τ

ti
λ(ξ)dξ

λ(ti + τ)dτ

5. ISI distribution. ∀i ≥ 1, p(ti+1 − ti) = e−
� ti+1

ti
λ(ξ)dξ

λ(ti+1).

As the ISI distribution is not iid it is not very useful to consider its mean or variance.



Joint density

The probability density of the event {t1 . . . tN} can be derived by setting the count in intervals
between spikes to 0, and the count in an interval around ti to 1. This gives

p(t1 . . . tN)dt1 . . . dtN = P [N[0, t1) = 0]× P [N[t1, t1 + dt1) = 1]× · · · × P [N(tN , T ) = 0]

= e
� t1

0 λ(ξ)dξ × λ(t1)dt1 × · · · × e
� T

tN
λ(ξ)dξ

= e−
� T

0 λ(ξ)dξ
N�

i=1

λ(ti)dt1 . . . dtN

Setting λ(t) = λ gives us the result for the homogeneous process.



Time rescaling

Finally, we derive an additional important property of the inhomogeneous process. Let us
rewrite the density above, by changing variables from t to u according to

u(t) =
� t

0
λ(ξ)dξ i.e. ui =

� ti

0
λ(ξ)dξ

Then

p(u1 . . . un) = p(t1 . . . tn)/
�

i

dui

dti

= e−u(T )
N�

i=1

λ(ti)/
N�

i=1

λ(ti)

= e−u(T )

Comparing this to the density for a homogeneous Poisson process shows that the variables
ui are distributed according to a homogeneous Poisson process with mean rate λ = 1.

This result is called time rescaling, and is central to the study of point processes in time.



Self-exciting point processes

A self-exciting process has an intensity function which is conditioned on past events

λ(t) → λ(t|N(t), t1 . . . tN(t))

It will be helpful to define the notation H(t) to represent the event history at time
t—representing both N(t) and the times of the corresponding events. Then the self-exciting
intensity function can be written λ(t|H(t)).



Self-exciting point processes

A self-exciting process has an intensity function which is conditioned on past events

λ(t) → λ(t|N(t), t1 . . . tN(t))

It will be helpful to define the notation H(t) to represent the event history at time
t—representing both N(t) and the times of the corresponding events. Then the self-exciting
intensity function can be written λ(t|H(t)).

This is actually the most general form of a point process – we can re-express any
(conditionally orderly) point process in this form. To see this, consider the point process to be
the limit as Δ → 0 of a binary time series {b1, b2, . . . bT/Δ} and note that

P(b1, b2, . . . bT/Δ) =
�

i

P(bi |bi−1 . . . b1)



Renewal processes

If the intensity of a self-exciting process depends only on the time since the last spike, i.e.

λ(t|H(t)) = λ(t − tN(t))

then the process is called a renewal process. ISIs from a renewal process are iid and so we
could equivalently have defined the process by its ISI density. This gives an (almost) easy
way to write the probability of observing the event {t1 . . . tN} in T . Suppose, for simplicity, that
there was an event at t0 = 0. Then, if the ISI density is p(τ):

p(t1 . . . tN) dt1 . . . dtN =
N�

i=1

p(ti − ti−1)
�

1 −
� T−tN

0
dτ p(τ)

�

The last term gives the probability that no more spikes are observed after tN . If had not
assumed that there was a spike at 0 we would have needed a similar term at the front.

The conditional intensity (sometimes called hazard function) for the renewal process defined
by its ISI density p(τ) is

λ(t|tN(t)) dt =
p(t − tN(t))

1 −
� t−tN(t)

0 dτ p(τ)
dt

which is indeed a function only of t − tN(t).



Gamma-interval process

The specific choice of the gamma-interval process with

ti+1 − ti
iid∼ Gamma[α, β]

where

τ ∼ Gamma[α, β] ⇒ p(τ) =
βα

Γ(α)
τα−1e−βτ

is an important renewal process in theoretical neuroscience, because the ISI distribution has
a refractory-like component.

A homogeneous Poisson process is a gamma-interval process (and therefore a renewal
process) with α = 1. The parameter α is sometimes called the order or the shape-parameter
of the gamma-interval process. Larger values of α shape the polynomial rising part of the
Gamma density, thus implementing a relative refractory period. The long-time behaviour is
dominated by the exponential decay with coefficient β.

You might wish to show that a gamma-interval process of integral order α can be constructed
by selecting every αth event from a homogeneous Poisson process.



Inhomogeneous renewal processes
In an inhomogeneous renewal processes, the rate depends both on time since the last spike
and on the current time.

λ(t) → λ(t, t − tN(t))

Called “inhomogeneous Markov interval” processes by Kass and Ventura (2000).

Two popular ways to construct an inhomogeneous renewal process:

1. Time-rescaling. Given unit-mean ISI density p(τ), and time-varying intensity ρ(t),
define:

p(t1 . . . tN) dt1 . . . dtN =
N�

i=1

p
�� ti

ti−1

ρ(ξ)dξ
��

1 −
� � T

tN
dξ ρ(ξ)

0
dτ p(τ)

�

2. Spike-response.
λ(t, t − tN(t)) = f (ρ(t), h(t − tN(t)))

for a simple f . Often, f just multiplies the two functions (or, equivalently, adds log
intensities).

The term “spike-response” comes from Gerstner, who uses such spike-triggered
currents to create a potentially more tractable approximation to an integrate-and-fire
neuron.

These definitions differ in how ISI density depends on ρ. Rescaling: higher rates make time
pass faster, so ISI interactions are rescaled. Spike-response: a refractory h may not
suppress spikes as well at higher rates, but the duration of influence does not change.



General Spike-Response processes

This category of processes has come to be used with increasing frequency recently,
particularly in a generalised-linear form.

The product form of spike-response renewal process can be written:

λ(t, t − tN(t)) = eρ(t)+h(t−tN(t))

and then generalised to include influence from all (or > 1) past spikes:

λ(t|H(t)) = eρ(t)+
�

j h(t−t(N(t)−j))

Often, we wish to estimate the parameters of a point-process model from spike data.
Assuming a generalised linear form makes this easier. Write history influence h in terms of a
basis of fixed functions hi(τ):

λ(t|H(t)) = eρ(t)+
�

ij αi hi (t−t(N(t)−j))

If ρ(t) is also written as linear function of external covariates, then the complete model can be
fit by the standard methods used for generalised linear models (GLMs: note, a different use of
this abbreviation to the commonly used models for fMRI data).



Doubly stochastic Poisson (or Cox) process

In the doubly stochastic process, or Cox process, λ(t) is itself a random variable; or depends
on another random process x(t). An example is the randomly scaled IHPP:

λ(t) = s · ρ(t) with ρ(t) fixed and s ∼ Gamma(α, β)

These models have been the subject of some recent attention, as a way to model a
stimulus-dependent response ρ(t) which is modulated by cortical excitability. The counting
process for such a DSPP has a Fano factor > 1. DSPP models also provide a useful way to
introduce dependencies between two or more point processes, through correlations in the
intensity functions.
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Joint Models

� 2D point process is not correct model

� superimposed processes

� infinitely divisible Poisson process

� multivariate self-exciting process
� linear dependence – Hawkes process
� log-linear dependence – GLM (or generalised Hawkes process)

� doubly stochastic processes
� Common input to log-linear spike-response models
� Gaussian process factor analysis



Measuring point processes
Event data ⇒ point process generative models. What about measurement?

Consider spike trains from repeated experiments under (as far as possible) constant
experimental conditions.

s(k)(t) =
N(k)�

i=1

δ(t − t (k)i ) (trials) k = 1 . . .K

How to characterise s(k)(t), and relationship to stimulus (or task)?

� Parametric point-process model, possibly dependent on stimulus a(t):

s(k)(t) ∼ λ
�

t, a[0, t),N(k)(t), t (k)1 , . . . , t (k)
N(k)(t)

, θ
�
.

Encoding: stimulus-response function. Discussed later.
� Construct an algorithm to estimate a(t) from s(k)(t):

�a(t) = F [s(k)[0, t)].

Decoding: what does the neuron say about the world? (Not always causal). Also
discussed later.

� Estimate nonparametric features (usually moments) of the distribution of s(k)(t).



Mean intensity and PSTH

Simplest non-parametric characterisation of spike process is with mean intensity:

λ(t) = �s(t)� = lim
K→∞

1
K

K�

k=1

s(k)(t)

Not the intensity function for the point process (unless Poisson) – marginalised over history.

λ(t, a(·)) ≡
�

dN(t)
�

dt1 . . . dtN(t) p
�
t1 . . . tN(t)

�
λ
�
t, a(·),N(t), t1, . . . , tN(t)

�

For finite K , estimating λ by summing δ-functions yields spiky results. Instead, histogram:

�N[t, t +Δt) =
1
K

K�

k=1

N(k)[t, t +Δt)

This is called the Post- (or Peri-) Stimulus-Time Histogram ⇒ PSTH.



Smoothing the PSTH

If we expect λ(t) to be smooth, could use kernel φ(τ):

�λ(t) = 1
K

K�

k=1

�
dτφ(τ)s(k)(t − τ)

Resembles kernel density estimation (without normalisation).

Width of φ could be chosen adaptively, depending on local density of spikes. Note: sampling
a smoothed function makes much more sense than smoothing a binned histogram!

Alternatively, can impose a smooth prior (e.g. GP) on time-varying aspect of intensity: λ(t) for
inhomog Poisson, or (say) ρ(t) for inhomog gamma-interval of order γ:

ρ ∼ N (µ1,Kθ)

p(t1 . . . tN |ρ) =
N�

i=1

�
γxti

Γ(γ)

�
γ

ti−1�

j=ti−1

ρjΔ

�γ−1

exp
�
− γ

ti−1�

j=ti−1

ρjΔ

��

Poterior on ρ(t) can be found by approximate inference (Laplace/EP).



Autocorrelation

The autocorrelation function for a process that generates spike trains s(t) is:

Rss(τ) =

�
1
T

�
dt s(t)s(t − τ)

�

where �·� is expectation wrt to random draws of s(t) from the process.

Time-averaged local second moment of joint on s(t); λ(t) was the (non-time-averaged) first
moment.

Note that, since s(t) is a sum δ functions, Rss(0) = ∞ under this definition.

Alternatively, could define Rss as time-averaged conditional first moment ⇒ mean intensity at
t + τ , conditioned on event at t , averaged over t .

Ralt
ss (τ) =

1
T

�
dt �λ(t + τ |∃i : ti = t)�,

where �·� is expectation with respect to N(T ) and tj �=i . Now Ralt
ss (0) = 0.

We will stick to the first (i.e., second moment) definition.



Autocovariance
Using the identity

�
x2
�
=

�
(x − µ)2

�
+ µ2, we can decompose the autocorrelation function:

Rss(τ) = Λ
2
+

1
T

�
dt (λ(t)− Λ)(λ(t − τ)− Λ)

+

�
1
T

�
dt (s(t)− λ(t))(s(t − τ)− λ(t − τ))

�

� �� �
Qss(τ)

where Λ is the time-averaged mean rate. Qss(τ) is called the autocovariance function.

[D&A call Qss the autocorrelation function; in the experimental literature, estimates of Qss are
usually called “shift-” or “shuffle-corrected autocorrelograms”.]

� For an (inhomogeneous) Poisson process Qss(τ) = δ(τ), by independence.
� For a general self-exciting process, Qss(τ) gives (to second order) dependence on

nearby spike times.
� Often used to look for oscillatory structure in spike trains (where spikes tend to repeat

around fixed intervals, but at random phase wrt stimulus) or similar spike-timing
relationships.

� But, as any point process is self-exciting, any non-Poisson process will have non-δ
autocovariance, even if nearby spike-timing relationships are not the most natural (or
causal) way to describe the generative process. (Think about effects of random (but
slow) variations in a non-constant λ(t), as in a DSPP).





Estimating correlation functions

� Correlation functions are typically estimated by constructing correlograms: histograms
of time differences between (not necessarily adjacent) spikes.

� Covariance function is estimated by subtracting an estimate of the correlation of the
mean intensity:

1
T

�
dt �λ(t)�λ(t − τ)

=
1

TK 2

�
dt

�

k

s(k)(t)
�

k�
s(kp)(t − τ) =

1
TK 2

�

kk�

�
dt s(k)(t)s(kp)(t − τ)

’Shift’ or ’shuffle’ correction.
� May also be constructed in frequency domain: power spectrum, spectrogram,

coherence (for multiple processes). Usually based on FT of binary-binned spike trains.



Multiple spike trains

Often, we may be interested in simultaneously modelling responses from many cells.

If no two processes can generate events at precisely the same time (a form of conditional
orderliness), or if simultaneous spiking events are independent, then dependences between
the processes generally by dependence on all previous events in all cells:

λ(c)(t) → λ(c)
�

t|N(c)(t), t (c)1 , . . . , t (c)
N(c)(t)

, {N(c�)(t), t (c
�)

1 , . . . , t (c
�)

N(c�)(t)
}
�

This is analogous to the self-exciting point process intensity function.

Dependencies can also be expressed by other forms, for example by DSPPs with the latent
random process shared (or correlated) between cells. Such representations may often be
more natural or causally accurate.



Cross-correlations

Techniques for measuring relationships between cells, analogous to those for single
processes—cross-correlogram estimates of the cross-correlation function:

Rs(c)s(c�)(τ) =

�
1
T

�
dt s(c)(t)s(c�)(t − τ)

�
;

shift- or shuffle-corrected correlogram estimates of the cross-covariance function:

Qs(c)s(c�)(τ) =

�
1
T

�
dt (s(c)(t)− λ

(c)
(t))(s(c�)(t − τ)− λ

(c�)
(t − τ))

�
;

or by cross-spectra or empirical coherences.

As for autocovariograms, structure in a cross-covariogram needn’t imply that dependencies
between individual spike times are the most natural way to think about the interaction
between the processes – DSPPs with shared latents may also give significant
cross-covariance structure.


