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Is uncertainty special?

I Current approach: relate neural activity to physical variables and then “bolt on” codes for
uncertainty.

Arguably, this gets things backwards.

I Selective pressure on neural processing is computational rather than representational:
act effectively in response to dense sensory input over range of timescales.

I In principle, input-to-action transformations could be implemented by black-box function
approximation

I . . . but, in fact, recognisable representations seem to emerge:

I orientation, object type, phoneme, word, concept, affordance, action catagory,
reward, . . .

I activity varies systematically with small set of externally defined quantities
(selectivity and invariance)

I perhaps partitioning computation in terms of essential (causal) physical variables
aides accuracy, efficiency and flexibility; and provides the substrate for
unsupervised learning to accelerate learning of behaviour.
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Decomposing computation

A simplified view of the the brain’s computational task is to compute the values of possible
actions (or control policies) given sensory history

I Each value may depend on a limited set of causal physical variables

I But: physical quantities accessed only indirectly through (integrated) sensory inputs

⇒ partial information, sensory noise, environmental stochasticity
⇒ internal representations must reflect estimates, sufficient statistics or beliefs.

I Accurate computation requires beliefs consistent with the calculus of probabilities.

I Thus, ultimately belief-like representation is arguably more natural than univalued
representation.
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Decomposing computation

Let Xt be a set of sensory variables at time t , Zt a (set of) latent(s) and Vt a set of values
associated with different choices of action or control policy.

We want

p(Vt |X1:t ) =

∫
dLt p(Vt |Zt )p(Zt |X1:t )

where we assume Z separates V from X . (Drop time indices from here)

I Causal structure in the world suggests that Z can be broken into component variables
Z = {z1 . . . zI}, such that each vk ∈ V depends on only a subset of the zi .

I Thus, the crucial computations are to find (or approximate)

q(zi |X) ≈ p(zi |X)

(or joints over small subsets).
I Causal structure will also induce conditional independence is likely to extend amongst

the zi and xj , so this computation may itself be achievable by local message passing.
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Deterministic computation

I The core computations needed are:
I Conditional marginalisation (prediction, message passing):

q(z2) =

∫
dz1 p(z2|z1)q(z1) = Eq(z1) [p(z2|z1)]

I Action evaluation (Bayesian decision theory)

Q(a, b) = Eq(z) [Q(a, z)]

I Variational (EM) learning in latent variable models:

θnew = argmaxEq(z) [log p(x , z|θ)]

These require:

I multiplication of densities (in message passing)
I computation of expectations

Generally, there is no reason for neural circuits to decode the density q(z) from
representation (although some targets of expectation may include indicator functions).
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Stochastic computation

Probabilistic computation can be achieved using univalued representations and stochastic
(sampling) algorithms.

Sometimes called the “sampling hypothesis”. Avoids need for explicit probability
representation.

I Stochastic computation may indeed be valuable in some settings:

I accessing correlations
I exploration

I Possibly linked to neural and behavioural variability.
I But no theoretical drive to univalued representations over distributional beliefs for latent

quantities; so stochastic algorithms may equally operate on beliefs. (E.g. Sahani 2003).

Stochastic vs. deterministic algorithm is somewhat orthogonal to belief representation.
Stochastic approaches only obviate the need for distributional codes in a special case.
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Coding uncertainty

I Even parametrised beliefs almost always higher-dimensional than underlying variables.

I Thus, focus on population codes and firing rates:

Population rates ri (computed from S) represent belief q(zi ).

We will sometimes write q(zi ; ri ).

I Manipulating q(zi ) experimentally is extremely difficult:

I guess physical variable that corresponds to zi
I assume knowledge of learnt relationship between zi and S – may not correspond to

the narrow relationship established in an experiment
I may not observe invariance beyond true zi : belief likely to be affected by other

physical values

Thus, despite some attempts, the definitive experiment remains open.



Coding uncertainty

I Even parametrised beliefs almost always higher-dimensional than underlying variables.

I Thus, focus on population codes and firing rates:

Population rates ri (computed from S) represent belief q(zi ).

We will sometimes write q(zi ; ri ).

I Manipulating q(zi ) experimentally is extremely difficult:

I guess physical variable that corresponds to zi
I assume knowledge of learnt relationship between zi and S – may not correspond to

the narrow relationship established in an experiment
I may not observe invariance beyond true zi : belief likely to be affected by other

physical values

Thus, despite some attempts, the definitive experiment remains open.



Coding uncertainty

I Even parametrised beliefs almost always higher-dimensional than underlying variables.

I Thus, focus on population codes and firing rates:

Population rates ri (computed from S) represent belief q(zi ).

We will sometimes write q(zi ; ri ).

I Manipulating q(zi ) experimentally is extremely difficult:

I guess physical variable that corresponds to zi
I assume knowledge of learnt relationship between zi and S – may not correspond to

the narrow relationship established in an experiment
I may not observe invariance beyond true zi : belief likely to be affected by other

physical values

Thus, despite some attempts, the definitive experiment remains open.



Coding uncertainty

I Even parametrised beliefs almost always higher-dimensional than underlying variables.

I Thus, focus on population codes and firing rates:

Population rates ri (computed from S) represent belief q(zi ).

We will sometimes write q(zi ; ri ).

I Manipulating q(zi ) experimentally is extremely difficult:
I guess physical variable that corresponds to zi

I assume knowledge of learnt relationship between zi and S – may not correspond to
the narrow relationship established in an experiment

I may not observe invariance beyond true zi : belief likely to be affected by other
physical values

Thus, despite some attempts, the definitive experiment remains open.



Coding uncertainty

I Even parametrised beliefs almost always higher-dimensional than underlying variables.

I Thus, focus on population codes and firing rates:

Population rates ri (computed from S) represent belief q(zi ).

We will sometimes write q(zi ; ri ).

I Manipulating q(zi ) experimentally is extremely difficult:
I guess physical variable that corresponds to zi
I assume knowledge of learnt relationship between zi and S – may not correspond to

the narrow relationship established in an experiment

I may not observe invariance beyond true zi : belief likely to be affected by other
physical values

Thus, despite some attempts, the definitive experiment remains open.



Coding uncertainty

I Even parametrised beliefs almost always higher-dimensional than underlying variables.

I Thus, focus on population codes and firing rates:

Population rates ri (computed from S) represent belief q(zi ).

We will sometimes write q(zi ; ri ).

I Manipulating q(zi ) experimentally is extremely difficult:
I guess physical variable that corresponds to zi
I assume knowledge of learnt relationship between zi and S – may not correspond to

the narrow relationship established in an experiment
I may not observe invariance beyond true zi : belief likely to be affected by other

physical values

Thus, despite some attempts, the definitive experiment remains open.



Coding uncertainty

I Even parametrised beliefs almost always higher-dimensional than underlying variables.

I Thus, focus on population codes and firing rates:

Population rates ri (computed from S) represent belief q(zi ).

We will sometimes write q(zi ; ri ).

I Manipulating q(zi ) experimentally is extremely difficult:
I guess physical variable that corresponds to zi
I assume knowledge of learnt relationship between zi and S – may not correspond to

the narrow relationship established in an experiment
I may not observe invariance beyond true zi : belief likely to be affected by other

physical values

Thus, despite some attempts, the definitive experiment remains open.



Bayesian decoding?
Let activity ri (computed from X ) represent q(zi )

I treat ri as a random variable (even if deterministically derived from X )
I provided the computed belief q(zi ) = p(zi |X) it must be that r is a sufficient stat and

q(zi ) = p(zi |r).
I can we then just use Bayes’ rule to find the encoding?

q(zi ; ri ) = p(zi |ri ) ∝ p(ri |zi )p(zi )

(c.f. Ma et al. discussion of “PPC”)

Three problems:

I Exact inference is generally impossible, and approximation breaks the correspondence.

I (Downstream processing cannot learn ’correct’ posterior without access to zi )

I Even if exact,

p(ri |zi ) =

∫
dX p(ri |X)p(X |zi )

and while we can measure p(ri |X), p(X |zi ) – the distribution of all natural stimuli
compatible with a particular value of zi – is inaccessible.

I In particular, p(X |zi ) is not experimentally defined distribution (unless the entire
neural computation has adapted to the experimental environment perfectly).

I Cannot distinguish information content with encoding: does retinal activity “encode”
everything about a visual scene?
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compatible with a particular value of zi – is inaccessible.

I In particular, p(X |zi ) is not experimentally defined distribution (unless the entire
neural computation has adapted to the experimental environment perfectly).

I Cannot distinguish information content with encoding: does retinal activity “encode”
everything about a visual scene?
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Plausible coding schemes

Simple:
I Firing rate encoding of binary probabilities (Rao, Deneve)
I Explicit mean/variance encoding

Distributed:
I Linear density codes (NEF, Anderson Eliassmith)
I (Noisy) convolved density functions (DPC, Zemel Dayan Pouget)
I Expected value codes (DDPC/DDC, Sahani Dayan, current work)

I exponential family mean parameters
I current variant uses difference in expectation from prior

I Log-linear codes (Rao; also most common form of PPC, Ma Beck Latham Pouget)
I exponential family natural parameters

I . . .

I Codes are defined by mapping q → r (“encoding”) or r→ q (“decoding”).
I In distributed forms, both operations depend on functions analagous to tuning curves.
I Actual form driven by learning useful r, with implicit correspondence to q.
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Linear density codes

q(z; r) ∝
[∑

a

ψa(z)ra

]
+

I Discussed by Anderson (90s); recent work by EliasSmith and others.
I Useful for “neural engineering framework” where operations defined on density can be

mapped to basis function computations by hand.
I Computations linear in probability / density become easy.
I Encoding may be difficult.
I Basis functions ψa set a bound on possible precision.
I Noise in r enters decoder directly – suppressed if uncorrelated.



Convolved density functions

ra =
[ ∫

dx ψa(z)q(z)
]
+

= [〈ψa(z)〉]+

I “Distributional Population Code” (DPC) – Zemel, Dayan, Pouget.
I Decoding to histogram from noisy rates by maximum likelihood.
I Historically confused uncertainty and multiplicity. challenging – MaxEnt or EM-like

algorithm if rates are noisy.
I Encoding can be learnt (delta rule) with access to z.
I Computations not discussed (but see DDC).



Log-linear codes

q(z; r) ∝ exp
(∑

a

ψa(z)ra

)

I Natural parameters of an exponential family.
I Message multiplication (e.g. cue combination) easy.
I Encoding may be difficult to learn.
I Uncorrelated noise in activities may average away.
I Basis functions set maximum log-precision.



Probabilistic Population Codes
Defined by Bayesian decoding:

q(z; r) = p(z|r) ∝ p(r|z)p(z)

but see previous discussion.

In practice, commonly assumes “Poisson-like” p(r|z) (expfam with linear sufficient statistic):

p(r|z) = eψ(z)Tr−A(z)ν(r)

⇒ q(z; r) ∝ erTψ(z)ν(z)

so gives log-linear/natural parameter encoding

I Poisson-like intuition derives from measure neural variability, but this is conditioned on S
not z, and so neglects realistic P(S|z).

I Neural variability conditioned on stimulus cannot sensibly be part of deterministic coding
(though could reflect stochastic computation).

I Gain modulation of tuned population appears to encode changes in confidence without
change in width of activity.

I If true, consistent with observations of contrast-invariant orientation tuning in V1.
I However, for uncertainty to be non-negligible, noise must be strongly correlated
⇒ stochastic shifts in bump of activity
⇒ predicted widening at greater uncertainty.



Distributed distributional codes

r = 〈ψ(z)〉q(z) =

∫
dz ψ(z)q(z)

I Encoding essentially the same as DPC, but intepretation differs.
I Doubly-DPC (Sahani, Dayan) proposed expectation form, based on (thresholded) DPC

encoding of multiplicities. Let z = z(x) be a feature map (e.g. motion strength as
function of angle).

r =
〈 [ ∫

dx z(x)φ(x)
]+

︸ ︷︷ ︸
ψ(z)

〉
q[z(x)]

I Maxent intepretation: q maximally uncertain given constraints⇒

q(z; r) ∝ eη
Tψ(z)

exponential family, with r representing the mean parameters.
(DDPC paper also discussed decoding to a mixture by ML)

I Maxent interpetation may be important for unsupervised learning; but supervised
learning and computation can be formulated without it.

I [Related to belief states, predictive state representations and RKHS mean embeddings]



DDC computation

I Many computations depend on finding expectations wrt q.
I If the ψa(z) form an adequate basis for the required functions of z, then these

expectations can be computed as linear combinations of ra:

f (z) =
∑

a

αaψa(z)

⇒ E [f (z)] =
∑

a

αaE [ψa(z)] =
∑

a

αara

I Marginalisation, value computation and some forms of learning reduce to linear
operations.

I Message combination may require mapping to natural parameters.



Supervised learning

I Expectations are easily learned from samples:

{x (s), z(s)} ∼ p(x , z)

I Consider a network that learns a parameter(ρ)-dependent function R(x ; ρ)

• • •

• • •

• • •target: ψ(z(s))

input: x (s)

⇒ R(x ; ρ) 〈ψ(z)〉p(z|x).
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Unsupervised learning: the Helmholtz machines

The Helmholtz Machine (Dayan et al. 1995). Approximate inference by recognition network.

• • •

• • •

• • •

Generative or causal network
A model of the data

• • •

• • •

• • •

Recognition or inference network
Reasons about causes of a datum

Learning:

I Wake phase: estimate mean-field representation ẑ = q(z) = R(x ; ρ). Update
generative parameters θ to increase a likelihood-related function F .

I Sleep phase: sample from generative model. Update recognition parameters ρ.

Vértes & Sahani, NeurIPS 2018



Distributed Distributional Recognition for a Helmholtz Machine

x1 x2 xD• • •

z11 z12 z1K1• • •

zL1 zLKL• • •

ψ1(z1) ψ2(z1) ψN(z1)• • •

DDC

ψ1(zL) ψ2(zL) ψN(zL)• • •

DDC
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Wake phase – learning the model

Learning requires expected gradients of joint likelihood.

x1 x2 xD• • •

z11 z12 z1K1• • •

zL1 zLKL• • •

ψ1(z1) ψ2(z1) ψN(z1)• • •

DDC

ψ1(zL) ψ2(zL) ψN(zL)• • •

DDC

∇θF(zl , θ) ≈
∑

i

γ i
lψi(zl) ⇒ 〈∇θF(zl , θ)〉q ≈

∑
i

γ i
l 〈ψi(zl)〉

Vértes & Sahani, NeurIPS 2018



Sleep phase – learning to recognise and to learn

Sleep phase simulation are used to learn the recognition model and the gradients needed for
learning.

x1 x2 xD• • •

z11 z12 z1K1• • •

zL1 zLKL• • •

samples

samples

ψ1(z) ψ2(z) ψN(z)• • •

ψ1(z) ψ2(z) ψN(z)• • •

I Train ρ to map x to 〈ψ(z)〉|x
I Train weights γ to map ψ(z) to∇θF

Vértes & Sahani, NeurIPS 2018
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