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1. Stability of equilibria

Consider Wilson-Cowan equations of the form

τ ν̇E = φE(νE , νI)− νE (1a)

τ ν̇I = φI(νI , νE)− νI (1b)

where the gain functions, φE and φI , are increasing functions of νE and decreasing functions of νI
(e.g, φE(νE , νI) ∼ 1 + tanh(WEEνE −WEIνI + θE)).

Nullclines for Eq. (1) are sketched in the figure below. Show that equilibria A and C are stable, B is
unstable, and D may or may not be stable. Give conditions for the stability of equilibrium D in terms
of the derivatives of the gain functions evaluated at the equilibrium.

Hint: This problem is relatively hard, in the sense that it requires a somewhat deep understanding
of nullclines and their construction, and also strong familiarity with linear stability analysis in two
dimensions. On the other hand, the answer doesn’t require a huge amount of algebra – only a few
lines. The main insight you need is that you can compute the slopes of the nullclines in terms of
derivatives of the gain functions. Once you do that, the rest should be easy (ish).
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Figure 1: Two possible sets of nullclines. In both figures, the red curve is the excitatory nullcline and the
blue curve is the inhibitory one.

2. Adaptation

Consider a network of N analog neurons that obey the time-evolution equations

τ
dxi
dt

= φ

 N∑
j=1

Wjxj − θi

− xi . (2)

(a) Assume that θi = θ ∀i. Show that Eq. (2) can be effectively reduced to a one-variable model,

τ
dz

dt
= φ (Jz − θ)− z . (3)

Write down expressions for z in terms of the Wi and xi and J in terms of the Wi.

(b) Let’s go back to Eq. (2), where θi depends on i. Show that Eq. (2) can still be reduced to a
one-variable model,

τ
dz

dt
= φ̃ (Jz)− z (4)

where J is the same as in part (a). Write down an expressions for φ̃(·) in terms of φ(·) and Wi

and θi.

(c) Assume that both Wi and θi are correlated random variables with joint distribution p(W, θ). As-
suming N →∞, write down an expression for φ̃(Jz) as an integral over this joint distribution.

(d) Let’s go back to the case in which θi = θ, so that z evolves according to Eq. (3). Let φ(y) = tanh(y)
(which isn’t realistic because it allows negative firing rates, but it makes the analysis easier). To
model spike frequency adaptation, let θ evolve according to

τ0θ̇ = −(θ − θ0z) , (5)

with τ0 � τ . Assume that θ0 > J − 1 > 0. Sketch the nullclines.
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(e) Show that the system exhibits bursting, and sketch z(t) and θ(t) versus time. Here “bursting”
just means a limit cycle in θ-z space. We call it bursting because τ0 � τ , so z spends most of its
time changing slowly, with only brief periods during which it changes very rapidly from positive
to negative or back.

3. Why we can ignore temporal correlations

We’re going to consider a randomly connected network of excitatory and inhibitory neurons with
current-based synapses and linear integrate-and-fire (aka LIF) neurons,

τ
dVE,i
dt

= −(VE,i − Vrest) +
1√
n

n∑
j=1

WEE,ijgE,j(t)−
1√
n

n∑
j=1

WEI,ijgI,j(t) +
√
nhE (6a)

τ
dVI,i
dt

= −(VI,i − Vrest) +
1√
n

n∑
j=1

WIE,ijgE,j(t)−
1√
n

n∑
j=1

WII,ijgI,j(t) +
√
nhI . (6b)

If a neuron exceeds threshold, it spikes and is reset to Vrest. This is a bit unrealistic: connectivity is
all-all, and the number of excitatory and inhibitory neurons are the same. But making it more realistic
would only complicate the analysis without adding any insight.

As usual, gE,j(t) and gI,j(t) are the conductance changes due to presynaptic spikes,

gE,j(t) =
∑
k

g(t− tkE,j) (7a)

gI,j(t) =
∑
k

g(t− tkI,j) (7b)

where tkE,j is the time of the kth spike on excitatory neuron j, and similarly for tkI,j . We’ll choose g(t)
so that it integrates to 1, ∫ ∞

0

dt g(t) = 1 (8)

with g(t) non-negative. And, of course, g(t < 0) = 0.

We can perform the usual manipulations,

1√
n

n∑
j=1

WEE,ijgE,j(t) =
√
nWEEνE +

1√
n

∑
j

δWEE,ijνE,j (9)

+
√
nWEEGE(t) +

1√
n

∑
j

δWEE,ijδgE,j(t)

where most quantities have obvious definitions,

WEE =
1

n2

∑
ij

WEE,ij (10a)

δWEE,ij = WEE,ij −WEE (10b)

νE,j = 〈gE,j(t)〉t (10c)

νE =
1

n

∑
j

νE,j (10d)

δgE,j(t) = gE,j(t)− νE,j (10e)

GE(t) =
1

n

∑
j

δgE,j(t) , (10f)
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and similarly for the inhibitory neurons. The difference between what I’m doing here and what I did
in class was to separate out the term GE(t). Inserting this into Eq. (6a) gives us

τ
dVE,i
dt

= −(VE,i − Vrest) +
√
n
[
WEEνE −WEIνI + hE

]
+
√
n
[
WEEGE(t)−WEIGI(t)

]
+

1√
n

n∑
j=1

δWEE,ijνE,j(t)−
1√
n

n∑
j=1

δWEI,ijνI,j(t) (11)

+
1√
n

n∑
j=1

δWEE,ijδgE,j(t)−
1√
n

n∑
j=1

δWEI,ijδgI,j(t) .

Assume, as usual, that n � 1. Then, the first term on the right hand side of Eq. (11) fixes the mean
firing rates, to within O(1/

√
n). The second term ensures that the average temporal fluctuations are

O(1/
√
n). It’s this term that reduces correlations among neurons – or at least correlations among the

whole population. There can, of course, be instabilities that lead to oscillations, in which case neurons
do become highly correlated. But there are also regimes where oscillations are small.

(a) Finally, the actual homework problem. Define

δGE,i(t) ≡
1√
n

n∑
j=1

δWEE,ijδgE,j(t) , (12)

and similarly for δGE,i(t). Assume the weights are random – the elements are draws iid from
some distribution. Show that, in the large n limit,

〈δGE,i(t)δGE,i′(t− τ)〉t = δii′C(τ)Var[WEE,ij ] (13a)

〈δGE,i(t)δGI,i′(t− τ)〉t = 0 (13b)

where

CE(τ) ≡ 1

n

∑
j

〈δgE,j(t)gE,j(t− τ)〉t . (14)

Thus, in the large n limit, we get to ignore temporal correlations among neurons! What’s even better is
that all excitatory neurons have the same temporal correlational structure, as do all inhibitory neurons.
Of course, that correlational structure has to be found self-consistently, which is nontrivial. But it’s nice
to know that it exists.

4. Continuous time Hopfield networks

Consider a continuous time Hopfield network,

dxi
dt

= φ (hi)− xi (15)

where φ is the gain function (taken to be non-negative, more or less sigmoidal, and saturating), N is
the number of neurons, and hi is the synaptic drive,

hi ≡
N∑
j=1

Jijxj . (16)
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We’ll let

Jij =
1

Nf(1− f)

p∑
µ=1

ξµi (ξµj − f) (17)

where the ξµi are random binary vectors, a fraction f of which are 1,

ξµi =

{
1 probability f
0 probability 1− f . (18)

There are several differences between this formulation and the one we used in class: the xi are con-
tinuous rather than discrete; the gain function is smooth and non-negative (the latter ensuring that
the xi will be non-negative); the elements of the patterns are 0 and 1 rather than −1 and 1; and the
probability of 1 is f rather than 1/2. However, the analysis is nearly identical.

As usual, the goal is to find the equilibria. With this formulation, the equilibria aren’t necessarily all
that close to the patterns, ξµi . However, we still expect the equilibria to be at least related to the
patterns. With that in mind, we define the overlaps, denoted mµ, via

mµ =
1

Nf(1− f)

∑
i

(ξµi − f)xi. (19)

If xi = ξµi , mµ will be close to 1, whereas if xi is independent of ξµi , mµ will be close to zero. At an
equilibrium, we expect one of the mµ to be large and the rest to be small.

(a) For this question, we’ll let Jij be symmetric, but otherwise arbitrary. Define the “energy” E via

E ≡ 1

2

∑
ij

xiJijxj −
∑
i

ψ(hi) (20)

where ψ is obeys

dψ(x)

dx
= φ(x) . (21)

Show that

dE

dt
= −

∑
ij

dxi
dt
Jij

dxj
dt

. (22)

Thus, if Jij is symmetric and positive definite (consistent with Eq. (17) if f = 0), then E is a non-
increasing function of time. I tried, but could not find, a Lyapunov function when Jij is symmetric
but not positive definite. That does not mean one does not exist. For extra credit, find one!
For the rest of the questions, use the connection matrix given in Eq. (17).

(b) Show that

hi =
∑
µ

ξµi mµ. (23)

(c) Show that the mµ obey the equation

dmν

dt
=

1

N

∑
i

ξνi
f
φ
(
mν +

∑
µ6=ν

ξµi mµ

)
− 1

N

∑
i

1− ξνi
1− f

φ
(∑
µ 6=ν

ξµi mµ

)
−mν . (24)
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(d) Define

ζi ≡
∑
µ6=ν

ξµi mµ. (25)

We’re going to treat ζi as a random variable with respect to index, i. Because ξνi and ξµi are
uncorrelated, it follows that ξνi is independent of ζi. Thus, in the large N limit, the equation for
the mν becomes

dmν

dt
= Φ(mν)−mν (26)

where

Φ(m) ≡
∫
dζ p(ζ)[φ(m+ ζ)− φ(ζ)] . (27)

Note that Φ(m) is just a smoothed, and offset, version of φ(m). In what follows, we’ll assume that
p(ζ) does not change with time, which is true only at equilibria.
Equation (26) has an equilibrium at mν = 0. Under what conditions is this equilibrium is stable?

(e) Assume that xi is independent of ξµi when µ 6= ν. Show that ζi is a zero mean Gaussian random
variable with variance, denoted σ2, given by

σ2 =
p− 1

N(1− f)
〈x2i 〉

[
1 +

1− 2f

Nf

]
≈ p− 1

N(1− f)
〈x2i 〉 (28)

If xi ∝ ξνi , then 〈x2i 〉 ∝ f , and σ2 ∝ f/(1 − f). Thus, small f decreases the noise and, therefore,
increases the capacity.

(f) This isn’t a question, but there are a couple things to notice. For the system to have a “memory”
– a fixed point for which mµ is O(1) – the smoothed gain function, Φ(m), must be sufficiently
steep. Thus, σ can’t be too big (because the larger σ is, the more the gain function is smoothed;
see Eq. (27)). Given Eq. (28), for small f the variance should scale as p/N , which would mean
that the capacity shouldn’t depend much on f (at least when f is small). However, I told you in
class (and in the Hopfield writeup) that capacity scales as 1/f . I have never been able to find a
simple explanation for the 1/f scaling.

5. Adding a little rigor to tacky math

Consider an all-inhibitory network of N neurons for which the firing rate of neuron i, denoted νi, is
given by

νi = φ

√Nh0 − 1√
N

∑
j

wijνj

 . (29)

The gain function, φ, is sigmoidal, the external input, h0, is positive, and the weights are non-negative,
independent and identically distributed, and their mean and variance is give by w and σ2

w, respectively.

As usual, we write wij = w + δwij , so that

1√
N

∑
j

wijνj =
√
N w ν +

1√
N

∑
j

δwijνj (30)

where

ν ≡ 1

N

∑
j

νj . (31)
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(a) Show that in the large N limit

σ2 ≡
∑
i

1

N

 1√
N

∑
j

δwijνj

2

= ν2σ2
w (32)

where

ν2 ≡ 1

N

∑
j

ν2j (33)

and corrections are O(1/
√
N).

(b) We can now write the following equation for νi,

νi = φ
(√

N(h0 − w ν) + σξi

)
(34)

where

ξi ≡
1√
σN

∑
j

δwijνj . (35)

In the large N limit,
∑
i ξ

2
i /N = 1, but that tells us nothing about its distribution. What we want

to argue is that ξi is a Gaussian random variable. For that we need δwij and νj to be weakly
correlated. To check if that’s true, compute the empirical covariance (squared), denoted ρ2i ,

ρ2i =

(∑
j δwijνj

)2
(∑

j w
2
ij

)(∑
j ν

2
j

) . (36)

Show that on average

1

N

∑
i

ρ2i ∼ O
(

1√
N

)
. (37)

If we were mathematicians, this wouldn’t mean much. But as physicists, we’ll declare this to be
sufficiently weakly correlated that we can treat ξi as a zero mean, unit variance Gaussian random
variable.
We now need to show that νi and ξi are weakly correlated. You can do that using a minor
extension of the above analysis.

6. Networks with time-varying dynamics

Consider a network of N neurons that evolves according to

dxi
dt

= φ

∑
j

Wijxj +
∑
µ

Jiµzµ +
∑
µ

Ciµuµ(t)

− xi (38)

where uµ(t) is a control signal, φ is the gain function (as usual, it’s more or less sigmoidal), and z is
related to x via

zµ =
∑
j

Aµjxj . (39)

In this setting the dimensionality of both z and u is typically much less than N , but that’s not necessary
for the questions.
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(a) Show that zµ evolves according to

dzµ
dt

=
∑
i

Aµiφ

∑
j

Wijxj +
∑
ν

Jiνzν +
∑
ν

Ciνuν(t)

− zµ (40)

Thus, if Wij = 0,

dzµ
dt

= fµ
(
z,u(t)

)
(41)

where the function fµ is given by a neural network with one hidden layer.

(b) Assume the goal of the network is to produce as output the function z∗µ(t). Show that under the
learning rule

∆Aµi = η
(
z∗µ(t)− zµ(t)

)
xi(t), (42)

the instantaneous error,
(
z∗µ(t) − zµ(t)

)2
, decreases. Assume that η, the learning rate, is small.

Is there any guarantee that the total error, which is the time average of
(
z∗µ(t) − zµ(t)

)2
, will

decrease?

7. Coupled line attractor

Consider a coupled network of N neurons whose units evolve according to

dri
dt

= φ
(∑

j

Wi−jrj + hi

)
− ri (43a)

τ
dhi
dt

= g(t)
∑
j

Ai−jrj − hi. (43b)

We’ll take W to be symmetric: Wi−j = Wj−i. Assume that when hi = 0, Eq. (43a) has a stable
equilibrium given by f(θi − θ),

f(θi − θ) = φ
(∑

j

Wi−jf(θj − θ)
)

(44)

where the θi are equally spaced. Assume that this equation is satisfied for all θ, making it a true line
attractor.

(a) In the limit that g(t) is infinitesimally small, show that the position on the line attractor, θ, evolves
according to

τ
d2θ

dt2
+
dθ

dt
= g(t)

∑
ij

v†0i(θ)φ
′
iAi−jf(θj − θ) (45)

where

φ′i ≡ φ′
(∑

j

Wi−jf(θj − θ)
)
, (46)

v†0(θ) is the adjoint eigenvalue of the linearized dynamics whose eigenvalue is 0,∑
j

v†0j(θ)φ
′
jWj−i = v†0i(θ) (47)
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and it’s normalized so that ∑
i

v†0i(θ)f
′(θi − θ) = 1. (48)

(b) Recall that the adjoint eigenvector is related to f(θi − θ) via

v†0i(θ) =
f ′(θi − θ)/φ′i(θ)

Z
(49)

where

Z ≡
∑
i

f ′(θi − θ)2

φ′i(θ)
. (50)

Consequently, θ evolves according to

τ
d2θ

dt2
+
dθ

dt
=
g(t)

Z

∑
ij

f ′(θi − θ)Ai−jf(θj − θ). (51)

Show that in the large N limit, Z is independent of θ.

(c) Show that in the large N limit, the right hand side of Eq. (51) becomes independent of θ. Show
also that if Ai−j is even (Ai−j = Aj−i), the right hand side is zero.

8. Sparse connectivity

Consider a network whose equilibrium is given by

νi = φ(hi) (52a)

hi =
1√
k

n∑
j=1

wijνj (52b)

where the weights are given by

wij =

{
w + ξij probability k/n
0 probability 1− k/n , (53)

and the ξij are independent zero-mean random variables with variance σ2. The parameter k is the
average number of connections/neurons. As usual, we’re interested in the empirical mean and variance
of hi with respect to the index i.

Show that, in the large k limit,

hi =
√
kw〈ν〉+ ηi (54)

where ηi is a zero mean random variable with variance (with respect to index i) given by

Var[ηi] =
[
σ2 + w2(1− k/n)

]
〈ν2〉 . (55)

As usual,

〈νp〉 =
1

n

∑
i

νpi . (56)
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9. More fun with averages

Assume wij are a set independent, zero-mean, random variables with variance σ2, with both indices
running from 1 to n. Assume n� 1. Define

zi ≡
1√
n

n∑
j=1

wijνj (57)

where the νj are a fixed set of firing rates. Define

z ≡ 1

n

∑
i

zi . (58)

We want to compute the variance of z with respect to the index, i (the mean is obviously zero). The
variance, denoted σ2

z , is given by

σ2
z =

1

n

 1√
n

n∑
j=1

wijνj

2

. (59)

As usual, we write this

σ2
z =

1

n

∑
jk

νjνk
1

n

∑
i

wijwik (60)

= 1

n

∑
j

ν2j
1

n

∑
i

w2
ij +

1

n

∑
j 6=k

νjνk
1

n

∑
i

wijwik .

The first term is easy – in the large n limit it’s 〈ν2〉σ2. In class we claimed that the second term was
small. Your job is to verify that. Show that

Var

 1

n

∑
j 6=k

νjνk
1

n

∑
i

wijwik

 ≈ 2〈ν2〉2σ4

n
. (61)

10


