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1 Introduction

The brain consists of a large number of neurons – about 100 billion in humans – that
mainly communicate via spikes. (The “mainly” qualifier is because neurons can directly
communicate their voltage via gap junctions. Here we ignore gap junctions, as they don’t
play much of a role in mature mammals.) The communication is kind of complicated, as
neurons consist of multiple parts: a soma (cell body), as well as dendrites, axons and synapses
(Fig. 1).

The goal here is to understand how neurons communicate via spikes. We’ll do this in
stages: we’ll first consider the soma, then dendrites and axons, and, finally, the synapses.
We’ll start, though, with a brief introduction to biophysics in general.

2 Biophysics

In biophysics the main thing we’re interested in is the membrane potential, V (t), which
is the voltage difference between the inside and outside of a neuron. As shown in Fig. 1,
neurons have three main parts: soma, dendrites, and axons, and the membrane potential

Figure 1: Coupled neurons. The two objects on the left are neurons (which don’t really
all look alike; I was just too lazy to make them different). The neurons have three main
parts: soma (blue), dendrites (green) and axons (red). The dendrites are much, much bigger
than shown (50-100 times the size of the soma, which is on the order of 10-20 microns),
and so are the axons, which branch (because they connect to about 1,000 other neurons),
and can travel long distances (up to a meter). Neurons communicate via synapses, which
connect axons to dendrites (usually; axons can also connect directly to the soma). A typical
synapse is shown on the right: the presynaptic terminal (red) connects to a spine (green),
which is a small structure that sticks out of the dendrites. This being biology, a spine is not
always present; the conventional wisdom is that excitatory neurons connect to spines and
inhibitory neurons connect directly to dendrites or to the soma. But, this being biology, that
conventional wisdom is often violated.
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isn’t the same everywhere. Ultimately we have to derive separate equations for the membrane
potential on the different parts of the neurons. But in this section we’ll just think of V (t)
as the voltage difference between the inside and outside of a membrane. Given that, we’ll
derive a general equation for its time derivative.

Essentially, we use two equations. The first is Q = CV where V is voltage and Q is
the net charge on the inside of the membrane. Taking a time derivative (and noting that
dQ/dt = current) gives us

C
dV

dt
= −I . (1)

Here I is, by convention, the outward current – the current flowing from inside to outside.
The sign should make sense: if I is positive, current flows out and the voltage goes down; if
I is negative, current flows in and the voltage goes up.

Equation (1) is absolutely fundamental. OK, sort of absolutely fundamental: it ignores
magnetic fields, and assumes that the voltage is the same everywhere inside the membrane,
which isn’t always the case (in particular, it’s not the case for dendrites and axons, but we
have ways of dealing with that). For now, though, we’ll assume that Eq. (1) holds.

So what’s the current? If charge were carried by electrons, the current would be computed
from V = IR where R is resistance, and if R were constant, we would have a classic RC
circuit,

C
dV

dt
= −V/R (2)

which has the solution V (t) = V (0)e−t/RC . However, neurons are not nearly this simple, so
the equations are a bit more complicated. For several reasons.

First, charge is not carried by electrons, it’s carried by ions. And, because neurons have
ion pumps, the ions have different concentrations on the inside and outside of the cell. In
particular, the concentrations of sodium and chloride (abbreviated Na and Cl) are high on
the outside of the cell, while the concentration of potassium (abbreviated K) is high on the
inside. (If you ever become a neuroscientist you should memorize that; but if not I wouldn’t
bother; it’s one of those facts you can always look up.) What’s important is the effect of an
ion imbalance: even when the membrane potential, V , is zero, an ion imbalance will cause
a current to flow (for example, an inward Na current, because there’s a lot more sodium on
the outside than inside). That rules out V = IR, and it means we need something more
complicated. The thing we use is

Ix = gx(V − Ex) (3)

where x refers to the ion, so it could be Na, Cl or K (other common ions used in the brain are
Ca, for calcium, and Mg, for magnesium, but we won’t worry about either, at least for now).
The parameter gx is the conductance of a channel that allows ion x to pass through (it’s
the inverse of the resistance, Rx: gx = 1/Rx), and Ex is the reversal potential. The reversal
potential needs to be included because of the concentration imbalance. For example, the
reversal potential for Na is about 20 mV, which means the voltage on the inside of the cell
has to be about 20 mV higher than the voltage on the outside to keep the sodium current
from flowing.

Notice that the conductance depends on the ion. That’s because channels, which are
holes in the cell that ions can flow through, can be ion specific. For example, a channel
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may allow only Na, or only Cl, to flow through it. But because this is biology, which is
inherently complicated, some channels aren’t ion specific, and they let any ion flow through
them (although often with different conductances). And, of course, there’s the in-between
case: channels that let a few ions through, like Na and K but nothing else. But that doesn’t
really matter; gx measures the total conductance of ion x taken over the whole membrane.

A nice thing about conductances is that they add, which should be kind of intuitive:
adding more channels gives you more current (remember parallel circuits?). Thus, the total
current is

I =
∑
x

gx(V − Ex) . (4)

It is useful to combine Eqs. (1) and (4), which gives us

C
dV

dt
= −

∑
x

gx(V − Ex) . (5)

This is the starting point for pretty much all of biophysics, and is the main equation we’ll
use.

All the interesting behavior that we see in the brain is due to the behavior of the conduc-
tances, gx. They can – and do – depend on just about anything. In the simplest case, they’re
constant, which gives us a passive neuron. Passive neurons are simple, but not very useful
as computing devices. Consequently, evolution invented voltage-dependent conductances (to
generate spikes) and concentration-dependent conductances (to allow communication across
synapses). We’ll consider those next; after that, we’ll examine how all this changes for
extended objects like dendrites and axons.

3 The Hodgkin-Huxley model

Here we consider active channels. Channels themselves are very small, consequently, they’re
stochastic. Typically we model them as being either open or closed. Importantly, the
probability of opening or closing depends on voltage, which we write

αx(V ) = probability per unit time that channel x goes from closed to open

βx(V ) = probability per unit time that channel x goes from open to closed.
(6)

where x refers to channel type. This is a Markov model, so if x is the probability that the
channel is open, then it is is (relatively) easy to show that x obeys the equation

τx(V )
dx

dt
= x∞(V )− x (7)

where

τx(V ) =
1

αx(V ) + βx(V )
(8a)

x∞(V ) =
αx(V )

αx(V ) + βx(V )
. (8b)
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OK, this isn’t quite the whole story; a channel typically consists of more than one x, and
they all have to be open for current to flow. For the Hodgin-Huxley model, there are two
kinds of active channels: sodium and potassium. The probability that the active sodium
channel is open is m3h and the probability that the active potassium channel is open is n4,
where m, h and n obey Eq. (7), but with x replaced with the appropriate variable. For this
model, the voltage evolves according to

C
dV

dt
= −gL(V − EL)− gNam3h(V − ENa)− gKn4(V − EK) (9)

where gL is the leak (meaning passive) conductance and m, h and n are the probability of
channels being open. We typically divide by gL to give us the equation

τ
dV

dt
= −(V − EL)− ρNam3h(V − ENa)− ρKn4(V − EK) (10)

where

τ =
C

gL
≈ 10ms (11a)

ρNa =
gNa
gL
≈ 400 (11b)

ρK =
gK
gL
≈ 240 . (11c)

To understand the behavior of these equations, recall first of all that ENa ≈ +20 mV
and EK ≈ −80 mV. Second, we need to know how m∞(V ), h∞(V ), and n∞(V ), The first
and last, m and n, are increasing functions of V , while h is a decreasing function of V .
Thus, when the voltage increases past a threshold, the m-channels open, which raises the
voltage even more, which causes them to open even more. This leads to a rapid increase in
voltage. However, with a slight delay, the h-channel closes, pushing the voltage toward the
leak potential, and at the same time the n-channel opens, pushing the voltage down even
more, toward -80 Mv. For this to work, the time constant of the m-channel must be much
smaller than for the other two, which is it: τm < 1 ms, while τh and τn are both on the order
of 1-2 ms.

We would like to make this quantitative picture more quantitative, but that’s hard – the
Hodgkin-Huxley equations is a nonlinear differential equation with four variables, and as far
as anybody knows there’s no analytic solution. So we do what any self-respecting theorist
does: we change the problem. Because the m-channel is fast, we replace m in Eq. (10) with
m∞(V ). And because the potassium channel just causes the voltage to undershoot, we get
rid of it altogether. This gives us the two-variable system

τ
dV

dt
= −(V − EL)− ρNam∞(V )3h(V − ENa) + V0 . (12a)

τh(V )
dh

dt
= h∞(V )− h . (12b)

Note that we have added an external voltage (which is really an external current times
some conductance), because we may want to drive the neuron). To analyze these equations
we draw the nullclines: curves along which either dV/dt = 0 (the V -nullcline) or dh/dt = 0
(the h-nullcline). These are shown in Fig. 2. For the reversal potentials I used EL = −70 mV
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Figure 2: Nullclines for the approximate model given in Eq. (12). Red: h-nullcline. Dark
blue (higher curve): V -nullcline with V0 = 0. Light blue (lower curve): V -nullcline with
V0 = −2.

and ENa = 50 mV, and for the ratio of peak sodium to leak conductance I used ρNa = 400.
Finally, for h∞(V ) and m∞(V ) I used,

h∞(V ) =
0.06e−0.05(V+65)

0.06e−0.05(V+65) + 1/(1 + e−0.1(V+35))
(13a)

m∞(V ) =
0.1(V + 40)(1− e−0.1(V+40))

0.1(V + 40)(1− e−0.1(V+40)) + 4e−0.0556(V+65)
, (13b)

taken from Dayan and Abbott (I think).

4 Dendrites and axons

For dendrites and axons, we can no longer assume that V (t) is constant everywhere on the
inside of the membrane. Which makes things a bit more complicated; see biophysics.pdf.

5 Synapses

The conductances can also depend on the concentration of a neurotransmitter in the synaptic
cleft (the area between the red presynaptic terminal and the green spine in Fig. 1). In that
case the channels are on the spine, and we have

Is = gs(V − Es) (14a)

gs = gss (14b)

where s (which stands for “synaptic”), is between 0 and 1. It obeys the equation

ds

dt
= c(1− s)− βs . (15)

Here c is the neurotransmitter concentration in the synaptic cleft (which is generally near
zero, but goes up when a spike arrives at the presynaptic terminal), and β tells us how fast
the synaptic conductance decays when the concentration drops back to near zero.
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There is a bit of a subtlety associated with Eq. (14). The voltage should really refer to
the voltage in the spine, not at the soma. However, to model networks, we often pretend
that it’s the voltage at the soma; basically, we pretend that dendrites don’t exist (this is the
point neuron approximation). In that case, the current, Is = sgs(V −Es), is the current that
flows into the soma.

6 A model of networks of neurons, on fast timescales

With this approximation, we can combine Eq. (14) with the Hodgkin-Huxley equation,
Eq. (10), to give us a set of equations describing a network of neurons. Using the subscript
i to label neurons, and letting Es → Ej, s(t) → sj(t) and gs → Wij (and summing over j),
we have a set of equations that looks like

C
dVi
dt

= −gL(Vi − EL)− gNam3
ihi(Vi − ENa)− gKn4

i (Vi − EK)−
∑
j

Wij(Vi − Ej)sj(t) .

(16)

We say “on fast timescales” because it ignores the fact that the weights change, and weight
changes depend on activity.

There are several things to note about this equation. First, the reversal potential, Ej,
depends on the presynaptic neuron – something that evolution gave us. Second, we should
be aware that the weights, Wij, are very sparse: each neuron makes only about 1,000 con-
nections, and a brain the size of, say, a human, contains 100 billion neurons, so most of the
weights are zero. Third the very last term, sj(t), determines the shape of the PSP (post-
synaptic potential) associated with neuron j. It obeys something like Eq. (15), but we often
assume it has a stereotyped shape, and write

sj(t) =
∑
k

fj(t− tkj ) (17)

where tkj is the time of the kth spike on neuron j and fj(t) is a function that rises rapidly and
decays slightly more slowly than it rises. It is sometimes modeled as a double exponential,

fj(t) =
e−t/τ

s
j − e−t/τ

f
j

τ sj − τ
f
j

Θ(t) . (18)

Here τ sj and τ fs are fast and slow time constants; for fast synapses, τ ff is in the range 1-5 ms
and τ sj is in the range 3-10 ms (and they can be many 10s of ms for slow synapses), and Θ(t)
is the Heaviside step function: Θ(t) = 1 if t > 0 and 0 otherwise. However, we could swap
in just about any function and that wouldn’t have much effect on the network dynamics.

7 Summary

As you can see, things are relatively complicated. But just keep in mind two things:

1. All of biophysics comes from Eq. (5).
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2. Conductances, gx, are the interesting part of Eq. (5). So far we have seen that they
can depend on voltage and the concentration of a neurotransmitter. (They can, of
course, depend on both – this being biology, evolution has thought of just about any-
thing we can imagine, within reason.) But that’s not all. For instance, for very early
sensory processing, conductances can depend on the outside world: photoreceptors in
the retina have conductances that respond to light; hair cells in the ear have conduc-
tances that respond to mechanical vibration; the olfactory receptor neurons in the nose
have conductances that respond to chemicals, and so on. So, if we want to know the
fundamental equations describing the brain, we need to focus on conductances!
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