
Unsupervised Learning

Week 2: Latent Variable Models

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc in Intelligent Systems, Dept Computer Science

University College London

Term 1, Autumn 2006

Unsupervised Learning
The story so far . . .

• beliefs about data represented by parameterised distribution

P (D | θ,m) =

n∏
i=1

P (xi | θ,m)

• learning involves estimating a value (or distribution) for θ

Bayes P (θ | D, m) =
P (D | θ,m)P (θ | m)

P (D | m)

MAP θ∗ = argmax
θ

P (θ | D, m)

ML θ∗ = argmax
θ

P (D | θ,m)

and (possibly) model selection

P (m|D) ∝
∫

dθ P (D|θ,m)P (θ|m)

Aren’t We Done?

No!

• direct application of Bayes’ rule is intractable for all but the simplest models.

• even maximum-likelihood (or similar) learning may be prohibitive.

• algorithms (and approximations) are dictated by form of distribution.

Correlated Continuous-Valued Data

−1 0 1
−1

0

1

 x
i1

 x
i2

Assume:

• we have a data set D = {x1, . . . , xN}
• each data point is a vector of D features:

xi = [xi1 . . . xiD]

• the data points are i.i.d. (independent and identi-
cally distributed).

One of the simplest forms of unsupervised learning: model the mean of the data and the
correlations between the D features in the data

We can use a multi-variate Gaussian (or Multi-Variate Normal) model:

p(x|µ, Σ) = |2πΣ|−
1
2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}

ML Estimation of a Gaussian

Data set D = {x1, . . . , xN}, likelihood: p(D|µ, Σ) =

N∏
n=1

p(xn|µ, Σ)

Maximise likelihood ⇔ maximise log likelihood
Goal: find µ and Σ that maximise log likelihood:

L = log

N∏
n=1

p(xn|µ, Σ) =
∑

n

log p(xn|µ, Σ)

= −N

2
log |2πΣ| − 1

2

∑
n

(xn − µ)>Σ−1(xn − µ)

Note: equivalently, minimise −L, which is quadratic in µ
Procedure: take derivatives and set to zero:

∂L
∂µ

= 0 ⇒ µ̂ =
1

N

∑
n

xn (sample mean)

∂L
∂Σ

= 0 ⇒ Σ̂ =
1

N

∑
n

(xn − µ̂)(xn − µ̂)> (sample covariance)

Note

−1 0 1
−1

0

1

 x
i1

 x
i2

modelling correlations
m

maximising likelihood of a Gaussian model
m

minimising a squared error cost function
m

minimising data coding cost in bits (assuming Gaussian distributed)

MVN Limitations

Gaussians are fundamental and widespread, but not every distribution of interest is Gaus-
sian.

• Not all random processes fit the central limit theorem.

• Some processes produce outliers.

• Some data has higher-order or non-linear structure.

• Even if data are Gaussian, if D is large the full MVN model may be difficult to handle.
There are D(D + 1)/2 parameters in the MVN covariance.

What about these data?

−1 0 1

−1

0

1

 x
i1

 x
i2

• joint distribution p(xi1, xi2) is not Normal.

• conditional distributions p(xi1 | xi2) and p(xi2 | xi1) vary, and are difficult to codify.

• easier to describe by an latent tri-valued discrete process

si ∼ Discrete[1/3, 1/3, 1/3]

xi ∼ N (µsi
, Σ)

Latent Variable Models
Explain correlations in x by assuming some latent variables y

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

y ∼ P [θy]

x | y ∼ P [θx]

p(x, y; θx, θy) = p(x | y; θx)p(y; θy)

p(x; θx, θy) =

∫
dy p(x | y; θx)p(y; θy)

Factor Analysis
Latent variable models are useful even when both latent and observed variables are Gaus-
sian.

y1

- -

-

u u u yK

-

--
x1 x2 u u u xD

Linear generative model: xd =

K∑
k=1

Λdk yk + εd

• yk are independent N (0, 1) Gaussian factors
• εd are independent N (0, Ψdd) Gaussian noise
• K <D

So, x is Gaussian with: p(x) =

∫
p(y)p(x|y)dy = N (0, ΛΛ> + Ψ)

where Λ is a D ×K matrix, and Ψ is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data
that captures the correlation structure of the data.

Factor Analysis (cont.)

y1

- -

-

u u u yK

-

--

x1 x2 u u u xD

• ML learning finds Λ and Ψ given data

• parameters (corrected for symmetries): DK + D − K(K − 1)

2
<

D(D + 1)

2

• no closed form solution for ML params: N (0, ΛΛ> + Ψ)

• [Bayesian treatment would also have priors over Λ and Ψ and would average over them
for prediction.]

Principal Components Analysis

y1

- -

-

u u u yK

-

--

x1 x2 u u u xD

Noise variable becomes infinitesimal compared to the scale of the data: Ψ = lim
σ2→0

σ2I

Equivalently: reconstruction cost becomes infinite compared to the cost of coding the hidden
units under the prior.

Eigenvalues and Eigenvectors

λ is an eigenvalue and x is an eigenvector of A if:

Ax = λx

and x is a unit vector (x>x = 1).

Interpretation: the operation of A in direction x is a scaling by λ.

The K Principal Components are the K eigenvectors with the largest eigenvalues of the
data covariance matrix (i.e. K directions with the largest variance).

Note: Σ can be decomposed:
Σ = USU>

where S is diag(σ2
1, . . . , σ

2
D) and U is a an orthonormal matrix.

Example of PCA: Eigenfaces

from www-white.media.mit.edu/vismod/demos/facerec/basic.html

Mutual Information and PCA

Problem: Given x, find y = Ax with columns of A unit vectors, s.t. I(y; x) is maximised
(assuming that P (x) is Gaussian).

I(y; x) = H(y) + H(x)−H(y, x) = H(y)

So we want to maximise the entropy of y. What is the entropy of a Gaussian?

H(z) = −
∫

dz p(z) ln p(z) =
1

2
ln |Σ| + D

2
(1 + ln 2π)

Therefore we want the distribution of y to have largest volume (i.e. det of covariance matrix).

Σx = AΣyA
> = AUSyU

>A>

So, A should be aligned with the columns of U which are associated with the largest eigen-
values (variances).

Network Interpretations
and Encoder-Decoder Duality

output
units x̂1 x̂2

u u u x̂D


decoder
“generation”

hidden
units

y1
- -

-

u u u yK

-

--


encoder

“recognition”

input
units

x1

-
-

x2

-

-

u u u xD

-

-

From Supervised Learning to PCA

output
units x̂1 x̂2

u u u x̂D


decoder
“generation”

hidden
units

y1

- -

-

u u u yK

-

--


encoder

“recognition”

input
units

x1

-

-

x2

-

-

u u u xD

-

-

A linear autoencoder neural network trained to minimise squared error learns to perform
PCA (Baldi & Hornik, 1989).

Probabilistic PCA

y1

- -

-

u u u yK

-

--

x1 x2 u u u xD

Linear generative model: xd =

K∑
k=1

Λdk yk + εd

• yk are independent N (0, 1) Gaussian factors
• εd are independent N (0, σ2) Gaussian noise
• K <D
PPCA is factor analysis with isotropic noise: Ψ = σ2I
Finds the same principal subspace as PCA but provides a well-defined probabilistic model.

Gradient Methods of Learning FA

Write down negative log likelihood:

1

2
log |2π(ΛΛ> + Ψ)| + 1

2
x>(ΛΛ> + Ψ)−1x

Optimise w.r.t. Λ and Ψ (need matrix calculus) subject to constraints

We will soon see an easier way to learn latent variable models...

FA vs PCA

• PCA is rotationally invariant; FA is not

• FA is measurement scale invariant; PCA is not

• FA defines a probabilistic model; PCA does not

Limitations of Gaussian, FA and PCA models

• Gaussian, FA and PCA models are easy to understand and use in practice.

• They are a convenient way to find interesting directions in very high dimensional data
sets, eg as preprocessing

• Their problem is that they make very strong assumptions about the distribution of the
data, only the mean and variance of the data are taken into account.

The class of densities which can be modelled is too restrictive.

−1 0 1

−1

0

1

 x
i1

 x
i2

By using mixtures of simple distributions, such as Gaussians, we can expand the class of
densities greatly.

Mixture Distributions

−1 0 1

−1

0

1

 x
i1

 x
i2

A mixture distribution has a single discrete latent variable:

si
iid∼ Discrete[π]

xi | si ∼ Psi
[θsi

]

Mixtures arise naturally when observations from different sources have been collated.
They can also be used to approximate arbitrary distributions.

The Mixture Likelihood

The mixture model is

si
iid∼ Discrete[π]

xi | si ∼ Psi
[θsi

]

Under the discrete distribution

P (si = m) = πm; πm ≥ 0,

k∑
m=1

πm = 1

Thus, the probability (density) at a single data point xi is

P (xi)=

k∑
m=1

P (xi | si = m)P (si = m)

=

k∑
m=1

πmPm(xi; θm)

The mixture distribution (density) is a convex combination (or weighted average) of the com-
ponent distributions (densities).

Approximation with a Mixture of Gaussians (MoG)

The component densities may be viewed as elements of a basis which can be combined to
approximate arbitrary distributions.

Here are examples where non-Gaussian densities are modelled (aproximated) as a mixture
of Gaussians. The red curves show the (weighted) Gaussians, and the blue curve the
resulting density.

−0.5 0 0.5 1 1.5
0

0.5

1

Uniform

−0.5 0 0.5 1 1.5
0

1

2

Triangle

−2 0 2
0

0.5

1

Heavy tails

Given enough mixture components we can model (almost) any density (as accurately as
desired), but still only need to work with the well-known Gaussian form.

Clustering with a MoG

Clustering with a MoG

In clustering applications, the latent variable si represents the (unknown) identity of the
cluster to which the ith observation belongs.

Thus, the latent distribution gives the prior probability of a data point coming from each
cluster.

P (si = m | π) = πm

Data from the mth cluster are distributed according to the mth component:

P (xi | si = m) = Pm(xi)

Once we observe a data point, the posterior probability distribution for the cluster it belongs
to is

P (si = m | xi) =
Pm(xi)πm∑
m Pm(xi)πm

This is often called the responsibility of the mth cluster for the ith data point.

The MoG likelihood

Each component of a MoG is a Gaussian, with mean µm and covariance matrix Σm. Thus,
the probability density evaluated at a set of n iid observations, D = {x1 . . . xn} (i.e. the
likelihood) is

p(D | {µm}, {Σm}, π) =

n∏
i=1

k∑
m=1

πmN (xi | µm, Σm)

=

n∏
i=1

k∑
m=1

πm |2πΣm|−1/2 exp

[
−1

2
(xi − µm)TΣ−1

m (xi − µm)

]
The log of the likelihood is

log p(D | {µm}, {Σm}, π) =

n∑
i=1

log

k∑
m=1

πm |2πΣm|−1/2 exp

[
−1

2
(xi − µm)TΣ−1

m (xi − µm)

]
Note that the logarithm fails to simplify the component density terms. A mixture distribution
does not lie in the exponential family. Direct optimisation is not easy.

Maximum Likelihood for a Mixture Model

The log likelihood is: L=

n∑
i=1

log

k∑
m=1

πmPm(xi; θm)

Its partial derivative wrt θm is

∂L
∂θm

=

n∑
i=1

πm∑k
m=1 πmPm(xi; θm)

∂Pm(xi; θm)

∂θm

or, using ∂P/∂θ = P × ∂ log P/∂θ,

=

n∑
i=1

πmPm(xi; θm)∑k
m=1 πmPm(xi; θm)︸ ︷︷ ︸

∂ log Pm(xi; θm)

∂θm

=

n∑
i=1

rim
∂ log Pm(xi; θm)

∂θm

And its partial derivative wrt πm is

∂L
∂πm

=

n∑
i=1

Pm(xi; θm)∑k
m=1 πmPm(xi; θm)

=

n∑
i=1

rim

πm

MoG Derivatives

For a MoG, with θm = {µm, Σm} we get

∂L
∂µm

=

n∑
i=1

rimΣ−1
m (xi − µm)

∂L
∂Σ−1

m

=
1

2

n∑
i=1

rim

(
Σm − (xi − µm)(xi − µm)T

)
These equations can be used (along with the derivatives wrt to πm) for gradient based learn-
ing; e.g., taking small steps in the direction of the gradient (or using conjugate gradients).

The K-means Algorithm

The K-means algorithm is a limiting case of the mixture of Gaussians (c.f. PCA and Factor
Analysis).

Take πm = 1/k and Σm = σ2I , with σ2 → 0. Then the responsibilities become binary

rim → δ(m, argmin
l

‖xi − µl‖2)

with 1 for the component with the closest mean and 0 for all other components. We can then
solve directly for the means by setting the gradient to 0.

The k-means algorithm iterates these two steps:

• assign each point to its closest mean
(

set rim = δ(m, argmin
l

‖xi − µl‖2)

)
• update the means to the average of their assigned points

(
set µm =

∑
i rimxi∑
i rim

)

This usually converges within a few iterations, although the fixed point depends on the initial
values chosen for µm. The algorithm has no learning rate, but the assumptions are quite
limiting.

A preview of the EM algorithm

We wrote the k-means algorithm in terms of binary responsibilities. Suppose, instead, we
used the fractional responsibilities from the full (non-limiting) MoG, but still neglected the
dependence of the responsibilities on the parameters. We could then solve for both µm and
Σm.

The EM algorithm for MoGs iterates these two steps:

• Evaluate the responsibilities for each point given the current parameters.

• Optimise the parameters assuming the responsibilities stay fixed:

µm =

∑
i rimxi∑
i rim

and Σm =

∑
i rim(xi − µm)(xi − µm)T∑

i rim

Although this appears ad hoc, we will see (later) that it is a special case of a general algo-
rithm, and is actually guaranteed to increase the likelihood at each iteration.

Issues

There are several problems with the new algorithms:

• slow convergence for the gradient based method

• gradient based method may develop invalid covariance matrices

• local minima; the end configuration may depend on the starting state

• how do you adjust k? Using the likelihood alone is no good.

• singularities; components with a single data point will have their covariance going to zero
and the likelihood will tend to infinity.

	Unsupervised Learning
	Aren't We Done?
	Correlated Continuous-Valued Data
	ML Estimation of a Gaussian
	Note
	MVN Limitations
	What about these data?
	Latent Variable Models
	Factor Analysis
	Factor Analysis (cont.)
	Principal Components Analysis
	Eigenvalues and Eigenvectors
	Example of PCA: Eigenfaces
	Mutual Information and PCA
	Network Interpretations and Encoder-Decoder Duality
	From Supervised Learning to PCA
	Probabilistic PCA
	Gradient Methods of Learning FA
	FA vs PCA
	Limitations of Gaussian, FA and PCA models
	Mixture Distributions
	The Mixture Likelihood
	Approximation with a Mixture of Gaussians (MoG)
	Clustering with a MoG
	Clustering with a MoG
	The MoG likelihood
	Maximum Likelihood for a Mixture Model
	MoG Derivatives
	The K-means Algorithm
	A preview of the EM algorithm
	Issues

