
Unsupervised Learning

Graphical Models

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc in Intelligent Systems, Dept Computer Science

University College London

Term 1, Autumn 2006

Some Examples

y1

I I

I

u u u yK

III

x1 x2 u u u xD

factor analysis
probabilistic PCA

y1 I

I

y2 I

I

y3 I

I

u u u I yT

I

x1 x2 x3 xT

hidden Markov models
linear dynamical systems

u1

I

I

u2

I

I

u3

I

I

uT

I

s1 I

I
I

s2 I

I
I

s3 I

I
I

u u u I sT

I
I

y1 I

I

y2 I

I

y3 I

I

u u u I yT
I

x1 x2 x3 xT

switching state-space models

Three kinds of graphical models

A B

C

D

E

�
�

�

A B

C

D

E

A B

C

D

E

I

I

I

I
I

I

factor graph undirected graph directed graph

Why do we need graphical models?

• Graphs are an intuitive way of representing and visualising the relationships between
many variables. (Examples: family trees, electric circuit diagrams, neural networks)

• A graph allows us to abstract out the conditional independence relationships between
the variables from the details of their parametric forms. Thus we can ask questions like:
“Is A dependent on B given that we know the value of C ?” just by looking at the graph.

• Graphical models allow us to define general message-passing algorithms that imple-
ment Bayesian inference efficiently. Thus we can answer queries like “What is P (A|C =
c)?” without enumerating all settings of all variables in the model.

Conditional Independence

Conditional Independence:

X⊥⊥Y |V ⇔ p(X|Y, V) = p(X|V)

when p(Y, V) > 0. Also

X⊥⊥Y |V ⇔ p(X, Y |V) = p(X|V)p(Y |V)

In general we can think of conditional independence between sets of variables:

X⊥⊥Y|V ⇔ {X⊥⊥Y |V , ∀X ∈ X and ∀Y ∈ Y}

Marginal Independence:

X⊥⊥Y ⇔ X⊥⊥Y |∅ ⇔ p(X, Y) = p(X)p(Y)

Factor Graphs

A B

C

D

E

�
�

�

A B

C

D

E

�
�

�

��

�

(a) (b)

The circles in a factor graph represent random variables.
The filled dots represent factors in the joint distribution.

(a) P (A, B, C,D, E) = 1
Zg1(A, C)g2(B, C, D)g3(C, D,E)

(b) P (A, B, C,D, E) = 1
Zg1(A, C)g2(B, C)g3(C, D)g4(B, D)g5(C, E)g6(D, E)

The gi are non-negative functions of their arguments, and Z is a normalization constant.
Two nodes are neighbours if they share a common factor.

Fact: X⊥⊥Y |V if every path between X and Y contains some node V ∈ V
Corollary: Given the neighbours of X , the variable X is conditionally independent of all
other variables: X⊥⊥Y | ne(X), ∀Y /∈ {X ∪ ne(X)}

Undirected Graphical Models

In an Undirected Graphical Model, the joint probability over all variables can be written in a
factored form:

P (x) =
1

Z

∏
j

gj(xCj
)

where x = (x1, . . . , xK), and
Cj ⊆ {1, . . . , K}

are subsets of the set of all variables, and xS ≡ (xk : k ∈ S).

This type of probabilistic model can be represented graphically.

Graph Definition: Let each variable be a node. Connect nodes i and k if there exists a
set Cj such that both i ∈ Cj and k ∈ Cj. These sets form the cliques of the graph (fully
connected subgraphs).

Note: Undirected Graphical Models are also called Markov Networks.

Undirected Graphical Models

A B

C

D

E

P (A, B, C,D, E) =
1

Z
g1(A, C)g2(B, C, D)g3(C, D,E)

Fact: X⊥⊥Y |V if every path between X and Y contains some node V ∈ V

Corollary: Given the neighbours of X , the variable X is conditionally independent of all
other variables: X⊥⊥Y | ne(X), ∀Y /∈ {X ∪ ne(X)}

Markov Blanket: V is a Markov Blanket for X iff X⊥⊥Y |V for all Y /∈ {X ∪ V}.

Markov Boundary: minimal Markov Blanket ≡ ne(X) for undirected graphs and factor
graphs

Examples of Undirected Graphical Models

• Markov Random Fields (used in Computer Vision)

• Exponential Language Models (used in Speech and Language Modelling)

p(s) =
1

Z
p0(s) exp

{∑
i

λifi(s)

}

• Products of Experts (widely applicable)

p(x) =
1

Z

∏
j

pj(x|θj)

• Boltzmann Machines (a kind of Neural Network/Ising Model)

Clique Potentials and Undirected Graphs

Definition: a clique is a fully connected subgraph. By clique we usually mean maximal
clique (i.e. not contained within another clique)

Ci denotes the set of variables in the ith clique.

p(x1, . . . , xK) =
1

Z

∏
i

gi(xCi
)

where Z =
∑

x1···xK

∏
i gi(xCi

) is the normalization.

Associated with each clique Ci is a non-negative function
gi(xCi

) which measures “compatibility” between settings of
the variables.

Example: Let C1 = {A, C}, A ∈ {0, 1}, C ∈ {0, 1}
What does this mean?

A B

C

D

E

A C g1(A, C)
0 0 0.2
0 1 0.6
1 0 0.0
1 1 1.2

Hammersley–Clifford Theorem (1971)

Theorem: A probability function p formed by a normalized product of positive functions on
cliques of G is a Markov Field relative to G.

Definition: The distribution p is a Markov Field relative to G if all conditional independence
relations represented by G are true of p.

G represents the following CI relations: If V ∈ V lies on all paths between X and Y in G,
then X⊥⊥Y |V .

Proof: We need to show that if p is a product of functions on cliques of G then a variable
is conditionally independent of its non-neighbours in G given its neighbours in G. That is:
ne(x`) is a Markov Blanket for x`. Let xm /∈ {x` ∪ ne(x`)}

p(x`, xm, . . .) =
1

Z

∏
i

gi(xCi
) =

1

Z

∏
i:`∈Ci

gi(xCi
)

∏
j:`/∈Cj

gj(xCj
)

=
1

Z ′
f1

(
x`, ne(x`)

)
f2

(
ne(x`), xm

)
=

1

Z ′′
p(x`| ne(x`)) p(xm| ne(x`))

It follows that: p(x`, xm| ne(x`)) = p(x`| ne(x`)) p(xm| ne(x`))⇔ x`⊥⊥xm| ne(x`).

Comparing Undirected Graphs and Factor Graphs

A B

C

D

E

A B

C

D

E

�
�

�

A B

C

D

E

�
�

�

��

�

(a) (b) (c)

All nodes in (a), (b), and (c) have exactly the same neighbours and therefore these three
graphs represent exactly the same conditional independence relationships.

(c) also represents the fact that the probability factors into a product of pairwise functions.

Consider the case where each variables is discrete and can take on K possible values. Then
the functions in (a) and (b) are tables with O(K3) cells, whereas in (c) they are O(K2).

Problems with Undirected Graphs and Factor Graphs

In UGs and FGs, many useful independencies are unrepresented—two variables are con-
nected merely because some other variable depends on them:

Rain Sprinkler

Ground wet

Rain Sprinkler

Ground wet

This highlights the difference between marginal independence and conditional indepen-
dence.

R and S are marginally independent (i.e. given nothing), but they are conditionally depen-
dent given G

“Explaining Away”: Observing that the spinkler is on, explains away the fact that the ground
was wet, therefore we don’t need to believe that it rained.

Directed Acyclic Graphical Models (Bayes Net)

A B

C

D

E

I

I

I

I

I
I

A DAG Model / Bayesian Network / Bayes Net represents a factorization of the joint proba-
bility distribution in terms of conditionals:

p(A, B, C,D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D)

In general:

p(X1, . . . , Xn) =

n∏
i=1

p(Xi|Xpa(i))

where pa(i) are the parents of node i.

Conditional Independence in Bayes Nets

I

I

I

I

I
I

A B

C

D

E

Reading conditional independence from DAGs is more complicated than in undirected graphs.

• A⊥⊥E | {B, C}: observed nodes block paths

• A 6⊥⊥B | C: observed node creates path by explaining away

• A 6⊥⊥E | C: created path extends to E via D

• A⊥⊥E | {C, D}: extra path blocked by observing D

So observing (i.e. conditioning on) nodes can both create and remove dependencies.

Conditional Independence in Bayes Nets

I

I

I

I

I
I

A •
•

B

C

D

E

I
J

Reading conditional independence from DAGs is more complicated than in undirected graphs.

• A⊥⊥E | {B, C}: observed nodes block paths

• A 6⊥⊥B | C: observed node creates path by explaining away

• A 6⊥⊥E | C: created path extends to E via D

• A⊥⊥E | {C, D}: extra path blocked by observing D

So observing (i.e. conditioning on) nodes can both create and remove dependencies.

Conditional Independence in Bayes Nets

I

I

I

I

I
I

A B

•C
D

E

I
J J

I

Reading conditional independence from DAGs is more complicated than in undirected graphs.

• A⊥⊥E | {B, C}: observed nodes block paths

• A 6⊥⊥B | C: observed node creates path by explaining away

• A 6⊥⊥E | C: created path extends to E via D

• A⊥⊥E | {C, D}: extra path blocked by observing D

So observing (i.e. conditioning on) nodes can both create and remove dependencies.

Conditional Independence in Bayes Nets

I

I

I

I

I
I

A B

•C
D

E

I
J J

I

I
J

I J
Reading conditional independence from DAGs is more complicated than in undirected graphs.

• A⊥⊥E | {B, C}: observed nodes block paths

• A 6⊥⊥B | C: observed node creates path by explaining away

• A 6⊥⊥E | C: created path extends to E via D

• A⊥⊥E | {C, D}: extra path blocked by observing D

So observing (i.e. conditioning on) nodes can both create and remove dependencies.

Conditional Independence in Bayes Nets

I

I

I

I

I
I

A B

• •C

D

E

I
J J

I

Reading conditional independence from DAGs is more complicated than in undirected graphs.

• A⊥⊥E | {B, C}: observed nodes block paths

• A 6⊥⊥B | C: observed node creates path by explaining away

• A 6⊥⊥E | C: created path extends to E via D

• A⊥⊥E | {C, D}: extra path blocked by observing D

So observing (i.e. conditioning on) nodes can both create and remove dependencies.

Conditional Independence in Bayes Nets

I

I

I

I

I
I

A B

C

D

E

Reading conditional independence from DAGs is more complicated than in undirected graphs.

• A⊥⊥E | {B, C}: observed nodes block paths

• A 6⊥⊥B | C: observed node creates path by explaining away

• A 6⊥⊥E | C: created path extends to E via D

• A⊥⊥E | {C, D}: extra path blocked by observing D

So observing (i.e. conditioning on) nodes can both create and remove dependencies.

D-separation

I

I

I

I

I
I

A B

C

D

E

Consider two nodes X , Y and a set of observed nodes V . When is X⊥⊥Y |V?

We consider every undirected path1 between X and Y .

• The path is blocked if there is a non-collider node W ∈ V on the path (→ W → or
← W →). This is similar to the undirected graph semantics.

• Alternatively, the path is blocked if there is a collider node W on the path (→ W ←)2

such that neither W nor any of its descendants are in V .

Thus, if V contains at least one non-collider node or no collider nodes (or their descendants)
along every path then X⊥⊥Y |V . We say V d-separates X from Y (d for directed).

Corollary: Markov Boundary for X : {parents(X) ∪ children(X) ∪ parents-of-children(X)}.
1A path in the DAG ignoring the direction of edges. This is different to paths in the equivalent undirected graph.
2Note that converging arrows along the path only refers to what happens on that path.

D-separation

I

I

I

I

I
I

A B

•C
D

E

I
J

I

J

Consider two nodes X , Y and a set of observed nodes V . When is X⊥⊥Y |V?

We consider every undirected path1 between X and Y .

• The path is blocked if there is a non-collider node W ∈ V on the path (→ W → or
← W →). This is similar to the undirected graph semantics.

• Alternatively, the path is blocked if there is a collider node W on the path (→ W ←)2

such that neither W nor any of its descendants are in V .

Thus, if V contains at least one non-collider node or no collider nodes (or their descendants)
along every path then X⊥⊥Y |V . We say V d-separates X from Y (d for directed).

Corollary: Markov Boundary for X : {parents(X) ∪ children(X) ∪ parents-of-children(X)}.
1A path in the DAG ignoring the direction of edges. This is different to paths in the equivalent undirected graph.
2Note that converging arrows along the path only refers to what happens on that path.

D-separation

I

I

I

I

I
I

A B

C

D

E

I
J J

I

Consider two nodes X , Y and a set of observed nodes V . When is X⊥⊥Y |V?

We consider every undirected path1 between X and Y .

• The path is blocked if there is a non-collider node W ∈ V on the path (→ W → or
← W →). This is similar to the undirected graph semantics.

• Alternatively, the path is blocked if there is a collider node W on the path (→ W ←)2

such that neither W nor any of its descendants are in V .

Thus, if V contains at least one non-collider node or no collider nodes (or their descendants)
along every path then X⊥⊥Y |V . We say V d-separates X from Y (d for directed).

Corollary: Markov Boundary for X : {parents(X) ∪ children(X) ∪ parents-of-children(X)}.
1A path in the DAG ignoring the direction of edges. This is different to paths in the equivalent undirected graph.
2Note that converging arrows along the path only refers to what happens on that path.

D-separation

I

I

I

I

I
I

A B

C

D

E

Consider two nodes X , Y and a set of observed nodes V . When is X⊥⊥Y |V?

We consider every undirected path1 between X and Y .

• The path is blocked if there is a non-collider node W ∈ V on the path (→ W → or
← W →). This is similar to the undirected graph semantics.

• Alternatively, the path is blocked if there is a collider node W on the path (→ W ←)2

such that neither W nor any of its descendants are in V .

Thus, if V contains at least one non-collider node or no collider nodes (or their descendants)
along every path then X⊥⊥Y |V . We say V d-separates X from Y (d for directed).

Corollary: Markov Boundary for X : {parents(X) ∪ children(X) ∪ parents-of-children(X)}.
1A path in the DAG ignoring the direction of edges. This is different to paths in the equivalent undirected graph.
2Note that converging arrows along the path only refers to what happens on that path.

D-separation

I

I

I

I

I
I

A B

C

D

E

Consider two nodes X , Y and a set of observed nodes V . When is X⊥⊥Y |V?

We consider every undirected path1 between X and Y .

• The path is blocked if there is a non-collider node W ∈ V on the path (→ W → or
← W →). This is similar to the undirected graph semantics.

• Alternatively, the path is blocked if there is a collider node W on the path (→ W ←)2

such that neither W nor any of its descendants are in V .

Thus, if V contains at least one non-collider node or no collider nodes (or their descendants)
along every path then X⊥⊥Y |V . We say V d-separates X from Y (d for directed).

Corollary: Markov Boundary for X : {parents(X) ∪ children(X) ∪ parents-of-children(X)}.
1A path in the DAG ignoring the direction of edges. This is different to paths in the equivalent undirected graph.
2Note that converging arrows along the path only refers to what happens on that path.

The “Bayes-ball” algorithm

A B

C

D

E

I

I

I

I

I
I

Game: can you get a ball from X to Y without being blocked by V? If so, X 6⊥⊥Y |V

Rules: Depending on the direction the ball came from and the type of node, the ball can
pass through (from a parent to all children, from a child to all parents), bounce back (from
any parent to all parents, or from any child to all children), or be blocked.

• An unobserved (hidden) node (W /∈ V) passes balls through but also bounces back
balls from children.

• An observed (given) node (W ∈ V) bounces back balls from parents but blocks balls
from children.

From Directed Trees to Undirected Trees

1

2

3 4

5

6

7

p(x1, x2, . . . , x7) = p(x3)p(x1|x3)p(x2|x3)p(x4|x3)p(x5|x4)p(x6|x4)p(x7|x4)

=
p(x1, x3)p(x2, x3)p(x3, x4)p(x4, x5)p(x4, x6)p(x4, x7)

p(x3)p(x3)p(x4)p(x4)p(x4)

=
product of cliques

product of clique intersections

= g1(x1, x3)g2(x2, x3)g3(x3, x4)g4(x4, x5)g5(x4, x6)g6(x4, x7) =

=
∏

i

gi(Ci)

From DAGs to Factor (and Undirected) Graphs

A B

C

D

E

I

I

I

I

I
I

A B

C

D

E

I

I

I

I

I
I

P (ABCDE) = P (A)P (B)P (C|AB)︸ ︷︷ ︸P (D|BC)P (E|CD)

= g(ABC) P (D|BC)P (E|CD)

= g(ABC) g(DBC) P (E|CD)

= g(ABC) g(DBC) g(ECD)

From DAGs to Factor (and Undirected) Graphs

A B

C

D

E

I

I

I

I

I
I

A B

C

D

E

�
I

I

I
I

P (ABCDE) = P (A)P (B)P (C|AB)︸ ︷︷ ︸P (D|BC)P (E|CD)

= g(ABC) P (D|BC)P (E|CD)

= g(ABC) g(DBC) P (E|CD)

= g(ABC) g(DBC) g(ECD)

From DAGs to Factor (and Undirected) Graphs

A B

C

D

E

I

I

I

I

I
I

A B

C

D

E

�

�

I
I

P (ABCDE) = P (A)P (B)P (C|AB)︸ ︷︷ ︸P (D|BC)P (E|CD)

= g(ABC) P (D|BC)P (E|CD)

= g(ABC) g(DBC) P (E|CD)

= g(ABC) g(DBC) g(ECD)

From DAGs to Factor (and Undirected) Graphs

A B

C

D

E

I

I

I

I

I
I

A B

C

D

E

�

�

�

P (ABCDE) = P (A)P (B)P (C|AB)︸ ︷︷ ︸P (D|BC)P (E|CD)

= g(ABC) P (D|BC)P (E|CD)

= g(ABC) g(DBC) P (E|CD)

= g(ABC) g(DBC) g(ECD)

Expressive Power of Directed and Undirected Graphs

A B

C

D

No Directed Graph (Bayes Net)
can represent these and only
these independencies

No matter how we direct the arrows there will always be two non-adjacent parents sharing a
common child =⇒ dependence in Directed Graph but independence in Undirected Graph.

A B

C
I

I

No Undirected Graph or Factor
Graph can represent these and
only these independencies

Message Passing

Thus far, we have used graphical models to encode the conditional independences of prob-
ability distributions visually. Can they do more?

We often need to compute a function of the distribution
on hidden nodes conditioned on some observed ones.

• marginals: P (A|DE),

• most likely values: argmax P (ABC|DE)

Message passing algorithms exploit conditional inde-
pendence relationships to make this computation effi-
cient. Applies to any distributive function.

• forward-backward

• Viterbi

••
A B

C

D

E

I
I

I

I

I
I

In the general case, these algorithms are defined by message-passing rules on the appro-
priate graph.

Learning

In combination with an appropriate message passing algorithm, the factored structure im-
plied by the graph also makes learning easy.

Consider data points comprising observations of a subset of variables. ML learning⇒ adjust
parameters to maximise:

L = P (obs|θ)

=

∫
P (obs, unobs|θ) d(unobs)

by EM, need to maximise

F =
〈

log P (obs, unobs|θ)
〉

P (unobs|obs)

=

〈∑
i

log g(Ci|θi)− log Z

〉
P (unobs|obs)

=
∑

i

〈
log g(Ci|θi)

〉
P (Ci\obs|obs)

− log Z

••
A B

C

D

E

I

I

I

I

I
I

So learning only requires clique-marginals (obtained by messaging passing) and updates
on cliques. C.f. the Baum-Welch procedure for HMMs.

Finding marginals by message passing

••
A B

C

D

E

I

I

I

I

I
I

We will discuss algorithms to compute single node marginals (as in the forward-backward
algorithm). The same scheme is easily adapted to clique-marginals or other functions.

Goal: For a node X and evidence e, compute p(X|e). 3

We will consider a number of cases in turn:

• Singly-connected DAGs

• Markov trees

• Arbitrary Markov (and Factor) graphs

• Arbitrary DAGs

3i.e. observed values for some nodes. This usage of “evidence” has nothing to do with the marginal likelihood.

Case I: Singly Connected DAGs

Message passing algorithms are convergent (and exact) when executed on trees (i.e. graphs
with no loops). Easy to avoid circular message paths.

A single-connected Bayesian network (SCBN) is a DAG where the graph of all undirected
paths forms a tree, i.e., there is only one undirected path between any two nodes. This does
not mean that the equivalent Markov graph is a tree.

A B

C

D

E

I

I

I

I

A B

C

D

E

I

I

I

I

I
I

SINGLY-CONNECTED LOOPY

Less restrictive than requiring that DAG be a tree (i.e. that all nodes have no more than 1
parent), but sufficient for message passing to converge.

Upstream and Downstream Evidence

In an SCBN:

• every node X divides the evidence into up-
stream e+

X and downstream e−X .

A •B
C •D•E

I

I

I

I

• every edge X → Y divides the evidence into
upstream e+

XY and downstream e−XY .

A •B
C •D•E

I

I

I

I

Belief Propagation

The algorithm to find marginal distributions in a SCBN is called belief propagation (BP). It
relies on three key ideas (c.f. the α and β messages from FB):

Idea 1: Beliefs about X can be found by combining upstream and downstream evidence:

p(X|e) =
p(X, e)

p(e)
=

p(X, e+
X, e−X)

p(e+
X, e−X)

∝ p(X|e+
X) × p(e−X|X, e+

X)︸ ︷︷ ︸
X d-separates e−X from e+

X

= p(X|e+
X)p(e−X|X) = π(X)λ(X)

If we think of X as a parameter, π(X) resembles its prior and λ(X) resembles a likelihood.

Idea 2: The upstream and downstream evidence can be computed recursively via a local
message passing algorithm between the nodes in the graph.

Idea 3: “Don’t send back to a node (any part of) the message it sent to you!”

Belief Propagation

X

Y

U U

Y

1

1

n

......

......

m

top-down causal support:
πX(Ui) = p(Ui|e+

UiX
)

bottom-up diagnostic support:
λYj

(X) = p(e−XYj
|X)

To update the belief about X :

BEL(X) =
1

Z
λ(X)π(X)

λ(X) =
∏

j

λYj
(X)

π(X) =
∑

U1···Un

p(X|U1, . . . , Un)
∏

i

πX(Ui)

Belief Propagation

X

Y

U U

Y

1

1

n

......

......

m

top-down causal support:
πX(Ui) = p(Ui|e+

UiX
)

bottom-up diagnostic support:
λYj

(X) = p(e−XYj
|X)

Bottom-up propagation, message X sends to Ui:

λX(Ui) =
∑
X

λ(X)
∑

Uk:k 6=i

p(X|U1, . . . , Un)
∏
k 6=i

πX(Uk)

Top-down propagation, message X sends to Yj:

πYj
(X) =

1

Z

[∏
k 6=j

λYk
(X)

] ∑
U1···Un

p(X|U1, . . . , Un)
∏

i

πX(Ui) =
1

Z

BEL(X)

λYj
(X)

Z is the normaliser ensuring
∑

X πYj
(X) = 1

Case II: Markov Trees
Any Markov tree can be turned into an SCBN by arbitrarily choosing a root node, and direct-
ing all edges away from it.

A B

C

D

E

A⊥⊥BDE | C
E⊥⊥BD | C
D⊥⊥C | B

A B

C

D

E

P (ABCDE)∝ g1(AC)g2(BC)g3(CE)g4(BD)

= P (C)P (A|C)P (BDE|C)

= P (C)P (A|C)P (E|C)P (BD|C)

= P (C)P (A|C)P (E|C)P (B|C)P (D|BXC)

This DAG will always be a tree (no colliders), and therefore encodes exactly the same con-
ditional independencies (and distribution) as the Markov tree.

Thus, belief propagation in the DAG will find the correct marginals for the undirected graph.

Case II: Markov Trees
Any Markov tree can be turned into an SCBN by arbitrarily choosing a root node, and direct-
ing all edges away from it.

A B

C

D

E

A⊥⊥BDE | C
E⊥⊥BD | C
D⊥⊥C | B

A B

C

D

E

J

P (ABCDE)

= P (C)P (A|C)P (BDE|C)

= P (C)P (A|C)P (E|C)P (BD|C)

= P (C)P (A|C)P (E|C)P (B|C)P (D|BXC)

This DAG will always be a tree (no colliders), and therefore encodes exactly the same con-
ditional independencies (and distribution) as the Markov tree.

Thus, belief propagation in the DAG will find the correct marginals for the undirected graph.

Case II: Markov Trees
Any Markov tree can be turned into an SCBN by arbitrarily choosing a root node, and direct-
ing all edges away from it.

A B

C

D

E

A⊥⊥BDE | C
E⊥⊥BD | C
D⊥⊥C | B

A B

C

D

E

J

I

P (ABCDE)

= P (C)P (A|C)P (BDE|C)

= P (C)P (A|C)P (E|C)P (BD|C)

= P (C)P (A|C)P (E|C)P (B|C)P (D|BXC)

This DAG will always be a tree (no colliders), and therefore encodes exactly the same con-
ditional independencies (and distribution) as the Markov tree.

Thus, belief propagation in the DAG will find the correct marginals for the undirected graph.

Case II: Markov Trees
Any Markov tree can be turned into an SCBN by arbitrarily choosing a root node, and direct-
ing all edges away from it.

A B

C

D

E

A⊥⊥BDE | C
E⊥⊥BD | C
D⊥⊥C | B

A B

C

D

E

J J

I

I

P (ABCDE)

= P (C)P (A|C)P (BDE|C)

= P (C)P (A|C)P (E|C)P (BD|C)

= P (C)P (A|C)P (E|C)P (B|C)P (D|BXC)

This DAG will always be a tree (no colliders), and therefore encodes exactly the same con-
ditional independencies (and distribution) as the Markov tree.

Thus, belief propagation in the DAG will find the correct marginals for the undirected graph.

Case II: Markov Trees
Any Markov tree can be turned into an SCBN by arbitrarily choosing a root node, and direct-
ing all edges away from it.

A B

C

D

E

A⊥⊥BDE | C
E⊥⊥BD | C
D⊥⊥C | B

A B

C

D

E

J J

I

I

P (ABCDE)

= P (C)P (A|C)P (BDE|C)

= P (C)P (A|C)P (E|C)P (BD|C)

= P (C)P (A|C)P (E|C)P (B|C)P (D|BXC)

This DAG will always be a tree (no colliders), and therefore encodes exactly the same con-
ditional independencies (and distribution) as the Markov tree.

Thus, belief propagation in the DAG will find the correct marginals for the undirected graph.

Case III: Markov Networks

A B

C

D

E

In a general Markov network (undirected graph), loops may prevent BP from converging.

Instead, construct the join or junction tree from the (maximal) cliques of the graph. Here
AC⊥⊥CDE | BCD because A⊥⊥E | {BCD} and C and D are fixed by conditioning.

Now, carry out belief propagation in the join tree. Messages turn out to be distributions over
nodes shared by cliques (called separators). This is the Junction-tree algorithm

This yields the clique-marginals, which might be what we actually want (e.g. for learning).
Otherwise, marginalise to obtain distributions on single nodes.

Case III: Markov Networks

A B

C

D

E

AC

BCD

CDE

In a general Markov network (undirected graph), loops may prevent BP from converging.

Instead, construct the join or junction tree from the (maximal) cliques of the graph. Here
AC⊥⊥CDE | BCD because A⊥⊥E | {BCD} and C and D are fixed by conditioning.

Now, carry out belief propagation in the join tree. Messages turn out to be distributions over
nodes shared by cliques (called separators). This is the Junction-tree algorithm

This yields the clique-marginals, which might be what we actually want (e.g. for learning).
Otherwise, marginalise to obtain distributions on single nodes.

Case III: Markov Networks

A B

C

D

E

AC

BCD

CDE

In a general Markov network (undirected graph), loops may prevent BP from converging.

Instead, construct the join or junction tree from the (maximal) cliques of the graph. Here
AC⊥⊥CDE | BCD because A⊥⊥E | {BCD} and C and D are fixed by conditioning.

Now, carry out belief propagation in the join tree. Messages turn out to be distributions over
nodes shared by cliques (called separators). This is the Junction-tree algorithm

This yields the clique-marginals, which might be what we actually want (e.g. for learning).
Otherwise, marginalise to obtain distributions on single nodes.

Case III: Markov Networks

A B

C

D

E

AC

BCD

CDE

In a general Markov network (undirected graph), loops may prevent BP from converging.

Instead, construct the join or junction tree from the (maximal) cliques of the graph. Here
AC⊥⊥CDE | BCD because A⊥⊥E | {BCD} and C and D are fixed by conditioning.

Now, carry out belief propagation in the join tree. Messages turn out to be distributions over
nodes shared by cliques (called separators). This is the Junction-tree algorithm

This yields the clique-marginals, which might be what we actually want (e.g. for learning).
Otherwise, marginalise to obtain distributions on single nodes.

Triangulation

A B

C

D

E

AC

BC

BD

DE

CE

If the graph contains loops of more than 3 nodes, the cliques will not form a tree. (Why is
the loop length here 5, not 4?)

To obtain a tree we need to introduce an additional edge to the original loop. This is called
triangulation — place chords within each (>3)-loop so as to reduce them all to triangles. We
give up some knowledge (of conditional independence) in exchange for a tractable algorithm.

There are many ways to do this. In this case either CD or BE would have worked equally
well. In general, though, finding the best triangulation of a graph (smallest cliques, most
efficient BP) is NP-hard.

Triangulation

A B

C

D

E

AC

BCD

CDE

If the graph contains loops of more than 3 nodes, the cliques will not form a tree. (Why is
the loop length here 5, not 4?)

To obtain a tree we need to introduce an additional edge to the original loop. This is called
triangulation — place chords within each (>3)-loop so as to reduce them all to triangles. We
give up some knowledge (of conditional independence) in exchange for a tractable algorithm.

There are many ways to do this. In this case either CD or BE would have worked equally
well. In general, though, finding the best triangulation of a graph (smallest cliques, most
efficient BP) is NP-hard.

Triangulation

A B

C

D

E

AC

BCD

CDE

If the graph contains loops of more than 3 nodes, the cliques will not form a tree. (Why is
the loop length here 5, not 4?)

To obtain a tree we need to introduce an additional edge to the original loop. This is called
triangulation — place chords within each (>3)-loop so as to reduce them all to triangles. We
give up some knowledge (of conditional independence) in exchange for a tractable algorithm.

There are many ways to do this. In this case either CD or BE would have worked equally
well. In general, though, finding the best triangulation of a graph (smallest cliques, most
efficient BP) is NP-hard.

Factor Graphs

One way to see how message passing on a Junction tree works is to consider the corre-
sponding Factor graph of cliques. To implement BP in the factor graph setting, we consider
messages that pass between variables and the factors.

A B

C

D

E

�
�

�

Consider a vector of variables x = (x1, . . . , xn), such that

p(x) = p(x1, . . . , xn) =
1

Z

∏
j

fj(xCj
)

Cj denotes the subset of {1, . . . , n} which participate in factor fj and xCj
= {xi : i ∈ Cj}.

(We will assume our factor graph is a tree. If not, it may need triangulation.)

Propagation in Factor Graphs
We can compute probabilities in a factor graph by propagating messages from variable
nodes to function nodes and vice versa.

ne(xi)
def
= {fj : x ∈ Cj} ne(fj)

def
= {xi : xi ∈ Cj}

variable x→ factor f : µx→f(x) =
∏

h∈ne(x)\{f}

µh→x(x)

factor f → variable x:

µf→x(x) =
∑
x\x

f (x)
∏

y∈ne(f)\{x}

µy→f(y)

If a variable has only one factor as a neighbor, it can initiate message propagation.

Once a variable has received all messages from its neighboring function nodes we can
compute the probability of that variable by multiplying all the messages and renormalising:

p(x) ∝
∏

h∈ne(x)

µh→x(x)

Propagation in Factor Graphs
We can compute probabilities in a factor graph by propagating messages from variable
nodes to function nodes and vice versa.

ne(xi)
def
= {fj : x ∈ Cj} ne(fj)

def
= {xi : xi ∈ Cj}

variable x→ factor f : µx→f(x) =
∏

h∈ne(x)\{f}

µh→x(x)

factor f → variable x:

µf→x(x) =
∑
x\x

f (x)
∏

y∈ne(f)\{x}

µy→f(y)

If a variable has only one factor as a neighbor, it can initiate message propagation.

Once a variable has received all messages from its neighboring function nodes we can
compute the probability of that variable by multiplying all the messages and renormalising:

p(x) ∝
∏

h∈ne(x)

µh→x(x)

Propagation in Factor Graphs
We can compute probabilities in a factor graph by propagating messages from variable
nodes to function nodes and vice versa.

ne(xi)
def
= {fj : x ∈ Cj} ne(fj)

def
= {xi : xi ∈ Cj}

variable x→ factor f : µx→f(x) =
∏

h∈ne(x)\{f}

µh→x(x)

factor f → variable x:

µf→x(x) =
∑
x\x

f (x)
∏

y∈ne(f)\{x}

µy→f(y)

If a variable has only one factor as a neighbor, it can initiate message propagation.

Once a variable has received all messages from its neighboring function nodes we can
compute the probability of that variable by multiplying all the messages and renormalising:

p(x) ∝
∏

h∈ne(x)

µh→x(x)

Propagation in Factor Graphs
We can compute probabilities in a factor graph by propagating messages from variable
nodes to function nodes and vice versa.

ne(xi)
def
= {fj : x ∈ Cj} ne(fj)

def
= {xi : xi ∈ Cj}

variable x→ factor f : µx→f(x) =
∏

h∈ne(x)\{f}

µh→x(x)

factor f → variable x:

µf→x(x) =
∑
x\x

f (x)
∏

y∈ne(f)\{x}

µy→f(y)

If a variable has only one factor as a neighbor, it can initiate message propagation.

Once a variable has received all messages from its neighboring function nodes we can
compute the probability of that variable by multiplying all the messages and renormalising:

p(x) ∝
∏

h∈ne(x)

µh→x(x)

Propagation in Factor Graphs
We can compute probabilities in a factor graph by propagating messages from variable
nodes to function nodes and vice versa.

ne(xi)
def
= {fj : x ∈ Cj} ne(fj)

def
= {xi : xi ∈ Cj}

variable x→ factor f : µx→f(x) =
∏

h∈ne(x)\{f}

µh→x(x)

factor f → variable x:

µf→x(x) =
∑
x\x

f (x)
∏

y∈ne(f)\{x}

µy→f(y)

If a variable has only one factor as a neighbor, it can initiate message propagation.

Once a variable has received all messages from its neighboring function nodes we can
compute the probability of that variable by multiplying all the messages and renormalising:

p(x) ∝
∏

h∈ne(x)

µh→x(x)

Propagation in Factor Graphs
We can compute probabilities in a factor graph by propagating messages from variable
nodes to function nodes and vice versa.

ne(xi)
def
= {fj : x ∈ Cj} ne(fj)

def
= {xi : xi ∈ Cj}

variable x→ factor f : µx→f(x) =
∏

h∈ne(x)\{f}

µh→x(x)

factor f → variable x:

µf→x(x) =
∑
x\x

f (x)
∏

y∈ne(f)\{x}

µy→f(y)

If a variable has only one factor as a neighbor, it can initiate message propagation.

Once a variable has received all messages from its neighboring function nodes we can
compute the probability of that variable by multiplying all the messages and renormalising:

p(x) ∝
∏

h∈ne(x)

µh→x(x)

Propagation in Factor Graphs

x3

x1

x2
x4

f1

f2

f3

initialise all messages to be 1

an example schedule of messages resulting in computing p(x4):

message direction message value
x1 → f1 1(x1)
x3 → f2 1(x3)
f1 → x2

∑
x1

f1(x1, x2)1(x1)

f2 → x2

∑
x3

f2(x3, x2)1(x3)

x2 → f3

(∑
x1

f1(x1, x2)
) (∑

x3
f2(x3, x2)

)
f3 → x4

∑
x2

f3(x2, x4)
(∑

x1
f1(x1, x2)

) (∑
x3

f2(x3, x2)
)

Elimination Rules for Factor Graphs

• eliminating observed variables
If a variable xi is observed, i.e. its value is given, then it is a constant in all functions that
include xi.

We can eliminate xi from the graph by removing the corresponding node and modifying
all neighboring functions to treat it as a constant.

Elimination Rules for Factor Graphs

• eliminating hidden variables
If a variable xi is hidden and we are not interested in it we can eliminate it from the graph
by summing over all its values.

∑
xi

p(x) =
1

Z

∑
xi

∏
j

fj(xCj
)

=
1

Z

∏
j /∈n(xi)

fj(xCj
)

∑
xi

∏
k∈n(xi)

fk(xCk
)

=

1

Z

∏
j /∈n(xi)

fj(xCj
) fnew(xCnew)

where fnew(xCnew) =
∑

xi

∏
k∈n(xi)

fk(xCk
) and Cnew =

⋃
k∈n(xi)

Ck \ {i}.

This causes all its neighboring function nodes to merge into one new function node.

Case IV: DAGs

A B

C

D

E

I

I
I

I

I

I

To reduce a multiply-connected DAG to a tree, we need to convert to the equivalent undi-
rected graph. Again, we give up some knowledge of conditional independence structure in
exchange for tractability.

To do this, replace each directed edge by an undirected edge, and . . .

“Moralise” by marrying unconnected co-parents.

The resulting undirected graph may then need to be triangulated to form the junction tree.

Case IV: DAGs

A B

C

D

E

I

I
I

I

I

I

A B

C

D

E

To reduce a multiply-connected DAG to a tree, we need to convert to the equivalent undi-
rected graph. Again, we give up some knowledge of conditional independence structure in
exchange for tractability.

To do this, replace each directed edge by an undirected edge, and . . .

“Moralise” by marrying unconnected co-parents.

The resulting undirected graph may then need to be triangulated to form the junction tree.

Case IV: DAGs

A B

C

D

E

I

I
I

I

I

I

A B

C

D

E

To reduce a multiply-connected DAG to a tree, we need to convert to the equivalent undi-
rected graph. Again, we give up some knowledge of conditional independence structure in
exchange for tractability.

To do this, replace each directed edge by an undirected edge, and . . .

“Moralise” by marrying unconnected co-parents.

The resulting undirected graph may then need to be triangulated to form the junction tree.

Case IV: DAGs

A B

C

D

E

I

I
I

I

I

I

A B

C

D

E

To reduce a multiply-connected DAG to a tree, we need to convert to the equivalent undi-
rected graph. Again, we give up some knowledge of conditional independence structure in
exchange for tractability.

To do this, replace each directed edge by an undirected edge, and . . .

“Moralise” by marrying unconnected co-parents.

The resulting undirected graph may then need to be triangulated to form the junction tree.

Other approaches for multiply connected Bayes Nets

In some cases, the knowledge of conditional independence thrown away in the Junction Tree
algorithm makes the problem too difficult. Cliques in the eventual tree become too large (in-
deed, the eventual Markov Net might be full connected). Fortunately, other schemes are
available:

Cutset Conditioning: or “reasoning by assumptions”. Find a small set of variables which, if
they were given (i.e. known) would render the remaining graph singly connected. For each
value of these variables run belief propagation on the singly connected network. Average
the resulting beliefs with the appropriate weights.

Loopy Belief Propagation: just use BP although there are loops. In this case the terms
“upstream” and “downstream” are not clearly defined. No guarantee of convergence, but
often works well in practice. Some (weak) guarantees about the nature of the answer if the
message passing does converge.

	Some Examples
	Three kinds of graphical models
	Why do we need graphical models?
	Conditional Independence
	Factor Graphs
	Undirected Graphical Models
	Undirected Graphical Models
	Examples of Undirected Graphical Models
	Clique Potentials and Undirected Graphs
	Hammersley--Clifford Theorem (1971)
	Comparing Undirected Graphs and Factor Graphs
	Problems with Undirected Graphs and Factor Graphs
	Directed Acyclic Graphical Models (Bayes Net)
	Conditional Independence in Bayes Nets
	D-separation
	The ``Bayes-ball'' algorithm
	From Directed Trees to Undirected Trees
	From DAGs to Factor (and Undirected) Graphs
	Expressive Power of Directed and Undirected Graphs
	Message Passing
	Learning
	Finding marginals by message passing
	Case I: Singly Connected DAGs
	Upstream and Downstream Evidence
	Belief Propagation
	Belief Propagation
	Belief Propagation
	Case II: Markov Trees
	Case III: Markov Networks
	Triangulation
	Factor Graphs
	Propagation in Factor Graphs
	Propagation in Factor Graphs
	Elimination Rules for Factor Graphs
	Elimination Rules for Factor Graphs
	Case IV: DAGs
	Other approaches for multiply connected Bayes Nets

