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A Generative Model for Generative Models

Gaussian

Factor Analysis
(PCA)

Mixture of 
Factor Analyzers

Mixture of 
Gaussians

(VQ)

Cooperative
Vector

Quantization

SBN,
Boltzmann
Machines

Factorial HMM

HMM


Mixture of

HMMs

Switching
State-space

Models

ICA
Linear

Dynamical
Systems (SSMs)

Mixture of
LDSs

Nonlinear
Dynamical
Systems

Nonlinear
Gaussian

Belief Nets

mix

mix

mix

switch

red-dim

red-dim

dyn

dyn

dyn

dyn

dyn

mix

distrib

hier

nonlinhier

nonlin

distrib

mix : mixture

red-dim : reduced 
            dimension
dyn : dynamics
distrib : distributed 
     representation

hier : hierarchical

nonlin : nonlinear

switch : switching

See Roweis & Ghahramani (1999). A Unifying Review of Linear Gaussian Models. Neural Comput. 11(2).



Non-linear/Non-Gaussian Models

Linear-Gaussian models are limited. . .
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. . . and discrete approximations are not always appropriate.



Hierarchical Models

Many generative processes can be naturally described at different levels of detail.

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

Biology seems to have developed hierarchical representations.



Distributed Representations
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Consider a hidden Markov model. To capture N bits of information about the history of the
sequence, an HMM requires K = 2N states!

In a distributed representation each data point is represented by a vector of (discrete or
continous) attibutes. Some attributes might be latent (i.e. hidden).

For example, you could cluster an electorate into Labour, Tory, Lib-Dem and Undecided, but this is

not a distributed representation since each person is described by a single 4-valued discrete vari-

able. A distributed representation might be: (Tory, Single, Black, Female, 18-35 years old,

City-dweller, Liberal, Procedural). We might use such a representation to model voting pref-

erences.

These attributes resemble factors, but may be discrete (and non-Gaussian), and may out-
number the observed dimensions (say voting preference). Any dynamics may be indepen-
dent (FHMM) or correlated (DBN).



Some more complex generative unsupervised learning methods

• Hierarchical clustering: clustering algorithms in which clusters are organised hierarchi-
cally

• Nonlinear dimensionality reduction methods: nonlinear generalizations of PCA and factor
analysis

• Factorial hidden Markov models and dynamic Bayesian networks: time series models
with distributed representations

• Nonlinear dynamical systems

• Independent components analysis (ICA): linear factor models with non-Gaussian factors

• Boltzmann machines: undirected model for binary data with binary latent variables

• Sigmoid Belief networks: directed (neural-netork-like) model for binary data



Hierarchical Clustering

(See Duda and Hart, 1973)

Data D = {x(1), . . . , x(n)}
Initialise number of clusters c = n
Initialise Di = {x(i)} for i = 1, . . . , c
while c > 1 do

Find nearest pair of clusters Di and Dj

Merge Di ← Di ∪ Dj, Delete Dj, c← c− 1
end while

Distance Measures:
dmin(Di,Dj) = minx∈Di,x′∈Dj

‖x− x′‖ nearest neighbour
dmax(Di,Dj) = maxx∈Di,x′∈Dj

‖x− x′‖ furthest neighbour
davg(Di,Dj) = 1

ninj

∑
x∈Di

∑
x′∈Dj

‖x− x′‖ average distance

dmean(Di,Dj) = ‖mi −mj‖ centre of mass

Hierarchical clustering is very widely used, e.g. in bioinformatics, because it is often nat-
ural to think of data points at multiple level of granularity, or as having been generated by
an evolutionary process



Nonlinear Dimensionality Reduction

There are many ways of generalising PCA and FA models to deal with data which lies on
a nonlinear manifold:

– Principal curves
– Autoencoders
– Generative topographic mappings (GTM) and Kohonen self-organising maps (SOM)
– Density networks
– Multi-dimensional scaling (MDS)
– Isomap
– Locally linear embedding (LLE)

Unfortunately, we don’t have time to cover these methods in the course...



Independent Components Analysis
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These distributions are gen-
erated by linearly combining
(or mixing) two non-Gaussian
sources.

• The ICA graphical model is identical to Factor Analysis:

xd =

K∑
k=1

Λdk yk + εd

with yk ∼ Py non-Gaussian.

• Alternatively, we can consider Gaussian factors passed
through a non-linearity before mixing, i.e., yk = g(zk).

y1

I I

I

u u u yK

III

x1 x2 u u u xD

BUT:

•Well-posed even with K ≥ D (e.g., K = D = 2 above).

•With non-zero noise, MAP inference is non-linear, and the full posterior is non-Gaussian.

• This makes making exact learning difficult for most Py.



Infomax ICA

• The special case of K = D, and zero observation noise has been studied extensively
(standard infomax ICA, c.f. PCA):

x = Λy which implies y = Wx where W = Λ−1

where y are the independent components (factors), x are the observations, and W is the
unmixing matrix.

• The likelihood can be written in terms of W :

P (x|W ) = |W |
∏
k

Py([Wx]k︸ ︷︷ ︸
yk

)

where py is marginal probability distribution of factors.

• Equivalently, consider z = cdf(y) = g(y); then Pz is uniform. Maximising P (z) is then
equivalent to making z as uniformly distributed as possible

⇒ max H[z]⇒ max H[z]− H[z|x]⇒ max I[z; x].
Thus infomax.

• Learning by gradient ascent:

∆W ∝ W−T − g(y)xT or natural gradient ∆W = (I − g(y)yT)W

See: http://www.cnl.salk.edu/∼tony/ica.html (a bit out-of-date).



Transforming densities

Consider y ∈ Y and x ∈ X with F : Y
1−1→ X . If y ∼ py, what is the density px(x)?

∫
Ω

dx px(x) =

∫
F−1(Ω)

dy py(y)
[
x ∈ Ω⇔ y ∈ F−1(Ω)

]
=

∫
F (F−1(Ω))

dx py(F
−1(x))

∣∣∣∣dydx
∣∣∣∣ [

change of variables y→ x
]

where
∣∣∣dy
dx

∣∣∣ is the Jacobian (determinant of matrix of partial derivatives).

Since this is true for any region Ω we must have

px(x) = py(F
−1(x))

∣∣∣∣dydx
∣∣∣∣

A special case: X ⊆ IR; Y = [0, 1]; py(y) = 1

px(x) = py(F
−1(x)) · (F−1)′(x) = 1 · (F−1)′(x)

⇒ F−1 =

∫ x

−∞
dx′ px(x

′) = cdf(x)

(Boundary conditions set by range of F−1.)



ICA – Blind Source Separation

?

• Often used interchangeably with ICA, but the BSS problem involves time-series.

• Even if temporal dependence is not modelling, independence of non-simultaneous mea-
surements on different channels can be exploited.

• Many algorithms: DCA, SOBI, JADE, . . .



Kurtosis
The kurtosis (or excess kurtosis) measures how “peaky” or “heavy-tailed” a distribution is.

K =
E((x− µ)4)

E((x− µ)2)2
− 3

where µ = E(x) is the mean of x.
Gaussian distributions have zero kurtosis.

Heavy tailed distributions have positive kur-
tosis (leptokurtic).

Light tailed distributions have negative kur-
tosis (platykurtic).

Some ICA algorithms are essentially kurtosis pursuit approaches. Possibly fewer assump-
tions about generating distributions.



Natural Scenes and Sounds
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Natural Scenes

Olshausen & Field (1996). Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images.

Nature 381:607-609.



ICA and BSS

Applications:

• Separating auditory sources

• Analysis of EEG data

• Analysis of functional MRI data

• Natural scene analysis

• . . .

Extensions:

• Non-zero output noise – approximate posteriors and learning.

• Undercomplete (K < D) or overcomplete (K > D).

• Learning prior distributions (on y).

• Dynamical hidden models (on y).

• Learning number of sources.

• Time-varying mixing matrix.

• . . .



How ICA Relates to Factor Analysis and Other Models
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• Factor Analysis (FA): Assumes the fac-
tors are Gaussian.

• Principal Components Analysis (PCA):
Assumes no noise on the observations:
Ψ = limε→0 εI

• Independent Components Analysis
(ICA): Assumes the factors are non-
Gaussian (and no noise).

• Mixture of Gaussians: A single discrete-
valued “factor”: yk = 1 and yj = 0 for all
j 6= k.

• Mixture of Factor Analysers: Assumes
the data has several clusters, each of
which is modeled by a single factor anal-
yser.

• Linear Dynamical Systems: Time series
model in which the factor at time t depends
linearly on the factor at time t − 1, with
Gaussian noise.



Distributed representations: FHMMs and DBNs
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• These are hidden Markov models with many state variables (i.e. a distributed represen-
tation of the state).

• The state can capture many more bits of information about the sequence (linear in the
number of state variables).

• E step is usally intractable (due to coupling of parents).



Distributed representations: Boltzmann Machines

Undirected graphical model (i.e. a Markov network) over a
vector of binary variables si ∈ {0, 1}. Some variables may be
hidden, some may be visible (observed).

P (s|W,b) =
1

Z
exp

∑
ij

Wijsisj −
∑

i

bisi


where Z is the normalization constant (partition function).

Learning algorithm: a gradient version of EM

• E step involves computing averages w.r.t. P (sH|sV , W,b) (“clamped phase”). This could
be done via a propagation algorithm or (more usually) an approximate method such as
Gibbs sampling.

• The M step requires gradients w.r.t. Z, which can be computed by averages w.r.t. P (s|W,b)
(“unclamped phase”).

∆Wij = η[〈sisj〉c − 〈sisj〉u]



Learning in Boltzmann Machines

log P (sV sH|W,b) =
∑
ij

Wijsisj −
∑

i

bisi − log Z

with Z =
∑

s e
∑

ij Wijsisj−
∑

i bisi

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
log P (sV sH|W,b)

〉
P (sH |sV )

Write 〈〉c (clamped) for expectations under P (s|sV ) (with delta function P (sV |sV )). Then

∆Wij ∝
∂

∂Wij

[∑
ij Wij 〈sisj〉c −

∑
i bi 〈si〉c − log Z

]
= 〈sisj〉c −

∂

∂Wij
log Z

= 〈sisj〉c −
1

Z

∂

∂Wij

∑
s

e
∑

ij Wijsisj−
∑

i bisi

= 〈sisj〉c −
∑

s

1

Z
e
∑

ij Wijsisj−
∑

i bisisisj

= 〈sisj〉c −
∑

s

P (s|W,b)sisj = 〈sisj〉c − 〈sisj〉u

with 〈〉u (unclamped) an expectation under the current joint distribution.



Sigmoid Belief Networks

Directed graphical model (i.e. a Bayesian network) over a
vector of binary variables si ∈ {0, 1}.

P (s|W,b) =
∏

i

P (si|{sj}j<i, W,b)

P (si = 1|{sj}j<i, W,b) =
1

1 + exp{−
∑

j<i Wijsj − bi}

A probabilistic version of sigmoid multilayer perceptrons
(“neural networks”).

Learning algorithm: a gradient version of EM

• E step involves computing averages w.r.t. P (sH|sV , W,b). This could be done via the Be-
lief Propagation algorithm (if singly connected) or (more usually) an approximate method
such as Gibbs sampling or mean field (see later lectures).

• Unlike Boltzmann machines, there is no partition function, so no need for an unclamped
phase in the M step.



Intractability

For many probabilistic models of interest, exact inference is not computationally feasible.
This occurs for two (main) reasons:

• distributions may have complicated forms (non-linearities in generative model)

• “explaining away” causes coupling from observations
observing the value of a child induces dependencies amongst its parents (high order
interactions)

y1
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y2

I

u u u yK

I
x

We can still work with such models by using approximate inference techniques to estimate
the latent variables.



Approximate Inference

• Sampling: Approximate posterior distribution over hidden variables by a set of random
samples. We often need Markov chain Monte carlo methods to sample from difficult
distributions.

• Linearisation: Approximate nonlinearities by Taylor series expansion about a point (e.g.
the approximate mean of the hidden variable distribution). Linear approximations are
particularly useful since Gaussian distributions are closed under linear transformations
e.g., EKF.

• Recognition Models: Approximate the hidden variable posterior distribution using an
explicit bottom-up recognition model/network.

• Variational Methods: Approximate the hidden variable posterior p(H) with a tractable
form q(H), such that KL[q‖p] is minimised. This gives a lower bound on the likelihood
that can be maximised with respect to the parameters of q(H).

• Other Deterministic Methods: Approximate the hidden variable posterior p(H) with a
tractable form q(H) by other means (moment-matching, Laplace . . . ). Still gives a lower
bound (by Jensen), but we may not be increasing this lower bound.



Recognition Models

• a model is trained in a supervised way to recover the hidden causes (latent variables)
from the observations

• this may take the form of explicit recognition network (e.g. Helmholtz machine) which
mirrors the generative network (tractability at the cost of restricted approximating distri-
bution)

• inference is done in a single bottom-up pass (no iteration required)
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