Unsupervised Learning

Sampling Methods

Maneesh Sahani

maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College London

Term 1, Autumn 2006

Integrals in Statistical Modelling

• Parameter estimation

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \int d\mathcal{Y} \ P(\mathcal{Y}|\theta) P(\mathcal{X}|\mathcal{Y},\theta)$$

(or using EM)

$$\theta^{\mathsf{new}} = \operatorname*{argmax}_{\theta} \int d\mathcal{Y} \ P(\mathcal{Y}|\mathcal{X}, \theta^{\mathsf{old}}) \log P(\mathcal{X}, \mathcal{Y}|\theta)$$

Prediction

$$p(x|\mathcal{D},m) = \int d\theta \ p(\theta|\mathcal{D},m) p(x|\theta,\mathcal{D},m)$$

• Model selection or weighting (by marginal likelihood)

$$p(\mathcal{D}|m) = \int d\theta \ p(\theta|m) p(\mathcal{D}|\theta,m)$$

These integrals are often intractable:

- Analytic intractability: integrals may not have closed form in non-linear, non-Gaussian models ⇒ numerical integration.
- Computational intractability: Numerical integral (or sum if \mathcal{Y} or θ are discrete) may be exponential in data or model size.

Examples of Intractability

 Bayesian marginal likelihood/model evidence for Mixture of Gaussians: exact computations are exponential in number of data points

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N) = \int d\theta \ p(\theta) \prod_{i=1}^N \sum_{s_i} p(\mathbf{x}_i | s_i, \theta) p(s_i | \theta)$$
$$= \sum_{s_1} \sum_{s_2} \dots \sum_{s_N} \int d\theta \ p(\theta) \prod_{i=1}^N p(\mathbf{x}_i | s_i, \theta) p(s_i | \theta)$$

• Computing the conditional probability of a variable in a very large multiply connected directed graphical model:

$$p(x_i|X_j = a) = \sum_{\text{all settings of } \mathbf{y} \setminus \{i, j\}} p(x_i, \mathbf{y}, X_j = a) / p(X_j = a)$$

• Computing the hidden state distribution in a general nonlinear dynamical system

$$p(\mathbf{y}_t|\mathbf{x}_1,\ldots,\mathbf{x}_T) \propto \int p(\mathbf{y}_t|\mathbf{y}_{t-1}) p(\mathbf{x}_t|\mathbf{y}_t) p(\mathbf{y}_{t-1}|\mathbf{x}_1,\ldots,\mathbf{x}_{t-1}) p(\mathbf{x}_{t+1},\ldots,\mathbf{x}_t|\mathbf{y}_t) d\mathbf{y}_{t-1}$$

The integration problem

We commonly need to compute expected value integrals of the form:

$$\int F(x) \ p(x) dx,$$

where F(x) is some function of a random variable X which has probability density p(x).

Three typical difficulties:

left panel: full line is some complicated function, dashed is density; **right panel:** full line is some function and dashed is complicated density; **not shown:** non-analytic integral (or sum) in very many dimensions

Sampling Methods

The basic idea of sampling methods is to approximate an intractable integral or sum using samples from some distribution.

Monte Carlo Methods:

- Simple Monte Carlo Sampling
- Rejection Sampling
- Importance Sampling
- . . .

Sequential Monte Carlo Methods:

• Particle Filtering

• . . .

Markov Chain Monte Carlo Methods:

- Gibbs Sampling
- Metropolis Algorithm
- Hybrid Monte Carlo

• . . .

Simple Monte Carlo Sampling

Idea: Sample from p(x), average values of F(x).

Simple Monte Carlo:

$$\int F(x)p(x)dx \simeq \frac{1}{T}\sum_{t=1}^{T}F(x^{(t)}),$$

where $x^{(t)}$ are (independent) samples drawn from p(x). [For example: $x^{(t)} = G^{-1}(u^{(t)})$ with $u \sim \text{Uniform}[0, 1]$ and $G(x) = \int_{-\infty}^{x} p(x') dx'$]

Attractions:

- unbiased
- \bullet variance goes as 1/T, independent of dimension!

Problems:

- \bullet it may be difficult or impossible to obtain the samples directly from $p(\boldsymbol{x})$
- regions of high density p(x) may not correspond to regions where F(x) varies a lot (thus each evaluation might have very high variance).

Rejection Sampling

Idea: sample from an upper bound on p(x), rejecting some samples.

- Find a distribution q(x) and a constant c such that $\forall x, \ p(x) \leq cq(x)$
- \bullet Sample x^* from q(x) and accept x^* with probability $p(x^*)/(cq(x^*)).$
- Use accepted points as in simple Monte Carlo: $\sum_{t=1}^{T} F(x^{(t)})$

If $y \sim \text{Uniform}[0, cq(x^*)]$, we accept x^* if $y \leq p(x^*)$. Thus the probability of a point falling in the box = q(x)dx * p(x)/cq(x) = p(x)/c.

Problem: it may be difficult to find a q(x) with a small c which is easy to sample from \Rightarrow lots of wasted area.

Examples:

• Compute $P(X_i = b | X_j = a)$ in a directed graphical model: sample from P(X), reject if $X_j \neq a$, averaging the indicator function $I(X_i = b)$

• Compute
$$E(x^2|x>4)$$
 for $x \sim \mathcal{N}(0,1)$

Importance Sampling

Idea: Sample from a different distribution q(x) and weight those samples by p(x)/q(x)Sample $x^{(t)}$ from q(x):

$$\int F(x)p(x)dx = \int F(x)\frac{p(x)}{q(x)}q(x)dx \simeq \frac{1}{T}\sum_{t=1}^{T}F(x^{(t)})\frac{p(x^{(t)})}{q(x^{(t)})},$$

where q(x) is non-zero wherever p(x) is; weights $w^{(t)} \equiv p(x^{(t)})/q(x^{(t)})$

Attraction: unbiased; no need for upper bound (cf rejection sampling).

Problems: it may be difficult to find a suitable q(x). Monte Carlo average may be dominated by few samples (high variance); or none of the high weight samples may be found!

Analysis of Importance Sampling

Weights:

$$w^{(t)} \equiv \frac{p(x^{(t)})}{q(x^{(t)})}$$

Define a weighting function w(x) = p(x)/q(x).

Importance sample is unbiased:

$$\begin{split} \mathsf{E}_q\left[w(x)F(x)\right] &= \int q(x)w(x)F(x)dx = \int p(x)F(x)dx \\ \mathsf{E}_q\left[w(x)\right] &= \int q(x)w(x)dx = 1 \end{split}$$

The weights have variance $Var[w(x)] = E_q[w(x)^2] - 1$, with:

$$\mathsf{E}_q\left[(w(x)^2)\right] = \int \frac{p(x)^2}{q(x)^2} q(x) dx = \int \frac{p(x)^2}{q(x)} dx$$

- How does variance effect the estimated integral?
- How does it relate to the *effective number of samples*?
- \bullet What happens if $p(x) = \mathcal{N}(0,\sigma_p^2)$ and $q(x) = \mathcal{N}(0,\sigma_q^2)$?

Sampling - Importance Resampling (SIR)

Another (approximate) approach is to resample from the importance-weighted samples:

- Sample $\xi^{(s)} \sim q(x)$, and calculate importance weights $w^{(s)} = p(\xi^{(s)})/q(\xi^{(s)})$.
- Define $\tilde{q}(x) = \sum_{s=1}^{S} w^{(s)} \delta(x \xi^{(s)}) \Big/ \sum_{s=1}^{S} w^{(s)}$.
- Resample $x^{(t)} \sim \tilde{q}(x)$.

Then,

$$E_{x}[F(x)] = \int dx \ F(x)\tilde{q}(x)$$

= $\int dx \ F(x)\frac{\sum_{s=1}^{S} w^{(s)}\delta(x-\xi^{(s)})}{\sum_{s=1}^{S} w^{(s)}}$
= $\frac{\sum_{s=1}^{S} w^{(s)}F(\xi^{(s)})}{\sum_{s=1}^{S} w^{(s)}}$

but the expected value of this expression with respect to $\xi \sim q$ is only correct as $S \to \infty$.

By itself, SIR looks unattractive relative to IS due to this bias. But we sometimes really do need *samples* (*i.e.* a picture of the distribution) rather than just expectations. E.g., if propagating beliefs.

Sequential Monte Carlo

Suppose we want to compute $p(\mathbf{y}_t | \mathbf{x}_1 \dots \mathbf{x}_t)$ in a non-linear ssm. We have

$$p(\mathbf{y}_t | \mathbf{x}_1 \dots \mathbf{x}_t) \propto \int d\mathbf{y}_{t-1} \ p(\mathbf{y}_t \mathbf{y}_{t-1} \mathbf{x}_t | \mathbf{x}_1 \dots \mathbf{x}_{t-1})$$

=
$$\int d\mathbf{y}_{t-1} \ p(\mathbf{x}_t | \mathbf{y}_t) p(\mathbf{y}_t | \mathbf{y}_{t-1}) p(\mathbf{y}_{t-1} | \mathbf{x}_1 \dots \mathbf{x}_{t-1})$$

If we have samples $\mathbf{y}_{t-1}^{(s)} \sim p(\mathbf{y}_{t-1} | \mathbf{x}_1 \dots \mathbf{x}_{t-1})$ we can recurse (approximately):

- draw $\mathbf{y}_t^{(s)} \sim p(\mathbf{y}_t | \mathbf{y}_{t-1}^{(s)})$
- calculate (unnormalised) weights $w_t^{(s)} = p(\mathbf{x}_t | \mathbf{y}_t^{(s)})$.
- resample $\mathbf{y}_t^{(s')} \sim \sum_{s=1}^S w_t^{(s)} \delta(\mathbf{y} \mathbf{y}_t^{(s)}) \Big/ \sum_{s=1}^S w_t^{(s)}$

This is called Particle Filtering (this version, with $q = p(\mathbf{y}_t | \mathbf{y}_{t-1}^{(s)})$ is also called a "bootstrap filter" or "condensation" algorithm).

Particle Filtering

- Could avoid resampling by propagating weights. However variance in weights accumulates. Resampling helps eliminate unlikely particles.
- Can trigger resamples conditioned on variance "stratified resampling".
- Can use better proposal (q) distributions (including $p(\mathbf{y}_t|\mathbf{x}_t\mathbf{y}_{t-1}^{(s)})$ if available).
- Particle *smoothing* is possible, but often inaccurate. Difficult to create a good proposal.
- EM learning is not easy because of smoothing problems and also obtaining joint on $(\mathbf{y}_{t-1}, \mathbf{y}_t)$. Often use dual formulation.
- Widely used in engineering tracking applications, where filtering is most appropriate.
- Many variants ...

Learning in Boltzmann Machines

$$\log P(\mathbf{s}^{V}\mathbf{s}^{H}|W,\mathbf{b}) = \sum_{ij} W_{ij}s_{i}s_{j} - \sum_{i} b_{i}s_{i} - \log Z$$

with $Z = \sum_{\mathbf{s}} e^{\sum_{ij} W_{ij} s_i s_j - \sum_i b_i s_i}$

Generalised (gradient M-step) EM requires parameter step

$$\Delta W_{ij} \propto \frac{\partial}{\partial W_{ij}} \left\langle \log P(\mathbf{s}^V \mathbf{s}^H | W, \mathbf{b}) \right\rangle_{P(\mathbf{s}^H | \mathbf{s}^V)}$$

Write $\langle \rangle_c$ (clamped) for expectations under $P(\mathbf{s}|\mathbf{s}^V)$ (with delta function $P(\mathbf{s}^V|\mathbf{s}^V)$). Then

$$\begin{split} \Delta W_{ij} \propto \frac{\partial}{\partial W_{ij}} \left[\sum_{ij} W_{ij} \langle s_i s_j \rangle_c - \sum_i b_i \langle s_i \rangle_c - \log Z \right] \\ &= \langle s_i s_j \rangle_c - \frac{\partial}{\partial W_{ij}} \log Z \\ &= \langle s_i s_j \rangle_c - \frac{1}{Z} \frac{\partial}{\partial W_{ij}} \sum_{\mathbf{s}} e^{\sum_{ij} W_{ij} s_i s_j - \sum_i b_i s_i} \\ &= \langle s_i s_j \rangle_c - \sum_{\mathbf{s}} \frac{1}{Z} e^{\sum_{ij} W_{ij} s_i s_j - \sum_i b_i s_i} s_i s_j \\ &= \langle s_i s_j \rangle_c - \sum_{\mathbf{s}} P(\mathbf{s} | W, \mathbf{b}) s_i s_j = \langle s_i s_j \rangle_c - \langle s_i s_j \rangle_u \end{split}$$

with $\langle \rangle_u$ (unclamped) an expectation under the current joint distribution.

Learning in Boltzmann Machines

How do we find the required expectations?

- Junction tree is generally intractable in all but the sparsest nets (triangulation of loops makes cliques grow very large).
- Loopy belief propagation fails in nets with strong correlations.
- **Rejection and Importance sampling** require proposal distributions, which are difficult to come by.
- Mean-field methods are possible, but approximate.

What is easy is conditional sampling. Given settings of all nodes in the Markov blanket of s_i can easily sample s_i . This suggests an iterative sampling algorithm:

- Choose variable settings randomly, perhaps from best available importance-like distribution. (Set any clamped nodes to clamped values).
- Cycle through (unclamped) s_i , choosing $s_i \sim P(s_i | \mathbf{s}_{\setminus i})$.

After enough samples, we might expect to reach the correct distribution.

This is an example of Gibbs Sampling.

Markov chain Monte Carlo (MCMC) methods

Assume we are interested in drawing samples from some desired distribution $p^*(x)$.

We define a Markov chain:

$$x_0 \to x_1 \to x_2 \to x_3 \to x_4 \to x_5 \dots$$

where $x_0 \sim p_0(x)$, $x_1 \sim p_1(x)$, etc, with the property that:

$$p_t(x') = \sum_x p_{t-1}(x)T(x \to x')$$

where $T(x \rightarrow x') = p(X_t = x' | X_{t-1} = x)$ is the Markov chain transition probability from x to x'.

We say that $p^*(x)$ is an **invariant (or stationary) distribution** of the Markov chain defined by *T* iff:

$$p^*(x') = \sum_x p^*(x)T(x \to x') \qquad \forall x'$$

Markov chain Monte Carlo (MCMC) methods

We have a Markov chain $x_0 \to x_1 \to x_2 \to x_3 \to \ldots$ where $x_0 \sim p_0(x)$, $x_1 \sim p_1(x)$, etc, with the property that:

$$p_t(x') = \sum_x p_{t-1}(x)T(x \to x')$$

where $T(x \rightarrow x')$ is the Markov chain transition probability from x to x'.

A useful condition that implies invariance of $p^*(x)$ is **detailed balance**:

$$p^*(x')T(x' \to x) = p^*(x)T(x \to x')$$

We wish to find **ergodic** Markov chains, which converge to a unique stationary distribution (also called an *equilibrium distribution*) regardless of the initial conditions $p_0(x)$:

$$\lim_{t \to \infty} p_t(x) = p^*(x)$$

A sufficient condition for the Markov chain to be ergodic is that

$$T^k(x \rightarrow x') > 0$$
 for all x and x' where $p^*(x') > 0$.

That is, if the equilibrium distribution gives non-zero probability to state x', then the Markov chain should be able to reach x' from any x after some finite number of steps, k.

Gibbs Sampling

A method for sampling from a multivariate distribution, $p(\mathbf{x})$

Idea: sample from the conditional of each variable given the settings of the other variables.

Repeatedly:

1) pick i (either at random or in turn)

2) replace x_i by a sample from the conditional distribution

$$p(x_i|\mathbf{x}_{\setminus i}) = p(x_i|x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$$

Gibbs sampling is feasible if it is easy to sample from the conditional probabilities.

This creates a Markov chain

$$\mathbf{x}^{(1)} \to \mathbf{x}^{(2)} \to \mathbf{x}^{(3)} \to \dots$$

Example: 20 (half-) iterations of Gibbs sampling on a bivariate Gaussian

Under some (mild) conditions, the **equilibium distribution**, i.e. $p(\mathbf{x}^{(\infty)})$, of this Markov chain is $p(\mathbf{x})$.

Detailed balance for Gibbs sampling

We can show that Gibbs sampling has the right stationary distribution $p(\mathbf{x})$ by showing that the detailed balance condition is met.

The transition probabilities are given by:

$$T(\mathbf{x} \to \mathbf{x}') = \pi_i p(x'_i | \mathbf{x}_{\backslash i})$$

where π_i is the probability of choosing to update the *i*th variable (to handle rotation updates instead of random ones, we need to consider transitions due to one full sweep).

Then we have:

$$p(\mathbf{x})T(\mathbf{x} \to \mathbf{x}') = \pi_i p(x'_i | \mathbf{x}_{\backslash i}) \underbrace{p(x_i | \mathbf{x}_{\backslash i}) p(\mathbf{x}_{\backslash i})}_{p(\mathbf{x})}$$

and

$$p(\mathbf{x}')T(\mathbf{x}' \to \mathbf{x}) = \pi_i p(x_i | \mathbf{x}'_{\setminus i}) \underbrace{p(x'_i | \mathbf{x}'_{\setminus i}) p(\mathbf{x}'_{\setminus i})}_{p(\mathbf{x}')}$$

But $\mathbf{x}'_{\setminus i} = \mathbf{x}_{\setminus i}$ so detailed balance holds.

Gibbs Sampling in Graphical Models

Initialize all variables to some settings.

Sample each variable conditional on other variables.

The BUGS software implements this algorithm for a variety of graphical models.

The Metropolis-Hastings algorithm

Gibbs sampling can be slow ($p(x_i)$ may be well determined by $\mathbf{x}_{\setminus i}$). Gobal transition might be better. (Also conditionals might be difficult for parameter integrals.)

Idea: Propose a change to current state; accept or reject. (A kind of rejection sampling)

Each step: Starting from the current state x,

- 1. Propose a new state ${\bf x}'$ using a proposal distribution $S({\bf x}'|{\bf x})=S({\bf x}\to{\bf x}').$
- 2. Accept the new state with probability: $\min (1, p(\mathbf{x}')S(\mathbf{x}' \to \mathbf{x})/p(\mathbf{x})S(\mathbf{x} \to \mathbf{x}'));$
- 3. Otherwise retain the old state (or try again).

Example: 20 iterations of global metropolis sampling from bivariate Gaussian; rejected proposals are dotted.

- Metropolis algorithm was symmetric $S(\mathbf{x'}|\mathbf{x}) = S(\mathbf{x}|\mathbf{x'})$. Hastings generalised.
- Local (changing one x_i) vs global (changing all x) proposal distributions.
- Efficiency dictated by rejection rate (and step size).
- \bullet May adapt $S(\mathbf{x} \to \mathbf{x'})$ to balance these, but stationarity only holds once S is fixed.
- Note, we need only to compute ratios of probabilities (no normalizing constants).

Detailed balance for Metropolis-Hastings

Analyse the case where we don't move on rejection:

$$T(\mathbf{x} \to \mathbf{x'}) = S(\mathbf{x} \to \mathbf{x'}) \min\left(1, \frac{p(\mathbf{x'})S(\mathbf{x'} \to \mathbf{x})}{p(\mathbf{x})S(\mathbf{x} \to \mathbf{x'})}\right)$$

with $T(\mathbf{x} \rightarrow \mathbf{x})$ the expected rejection probability.

Without loss of generality we assume $p({\bf x'})S({\bf x'} \to {\bf x}) \leq p({\bf x})S({\bf x} \to {\bf x'}).$ Then

$$\begin{split} p(\mathbf{x})T(\mathbf{x} \to \mathbf{x'}) &= p(\mathbf{x})S(\mathbf{x} \to \mathbf{x'}) \cdot \frac{p(\mathbf{x'})S(\mathbf{x'} \to \mathbf{x})}{p(\mathbf{x})S(\mathbf{x} \to \mathbf{x'})} \\ &= p(\mathbf{x'})S(\mathbf{x'} \to \mathbf{x}) \end{split}$$

and

$$\begin{split} p(\mathbf{x}')T(\mathbf{x}' \to \mathbf{x}) &= p(\mathbf{x}')S(\mathbf{x}' \to \mathbf{x}) \cdot 1 \\ &= p(\mathbf{x}')S(\mathbf{x}' \to \mathbf{x}) \end{split}$$

Gibbs distributions, temperature and annealing

Very often, need to sample from unnormalised distribution:

$$p(\mathbf{x}) = \frac{1}{Z}e^{-E(x)}$$

MCMC sampling works well in this setting (for Gibbs sampling, usually possible to normalise conditional), but may mix slowly.

Often useful to introduce temperature $1/\beta$:

$$p_{\beta}(\mathbf{x}) = \frac{1}{Z} e^{-\beta E(x)}$$

When $\beta \to 0$ (temperature $\to \infty$) all states are equally likely: easy to sample and mix. As $\beta \to 1$, $p_\beta \to p$.

Idea: start chain with β small and gradually increase to 1. Simulated annealing (can be used for optimisation by taking $\beta \to \infty$).

For sampling, note that stationarity only holds once β is fixed, so need to run long enough to mix.

Hybrid Monte Carlo: overview

The typical distance traveled by a random walk in n steps is proportional to \sqrt{n} . We want to seek regions of high probability while avoiding random walk behavior.

Assume that we wish to sample from $p(\mathbf{x})$ while avoiding random walk behaviour. If we can compute derivatives of $p(\mathbf{x})$ with respect to \mathbf{x} , this is *useful information* and we should be able to use it to draw samples better.

Hybrid Monte Carlo: We think of a fictitious physical system with a particle which has position x and momentum v. We will design a sampler which avoids random walks in x by simulating a dynamical system.

We simulate the dynamical system in such a way that the marginal distribution of positions, $p(\mathbf{x})$, ignoring the momentum variables corresponds to the desired distribution.

Hybrid Monte Carlo: the dynamical system

In the physical system, positions x corresponding to random variables of interest are augmented by momentum variables v:

$$p(\mathbf{x}, \mathbf{v}) \propto \exp(-H(\mathbf{x}, \mathbf{v})) \qquad H(\mathbf{x}, \mathbf{v}) = E(\mathbf{x}) + K(\mathbf{v})$$
$$E(\mathbf{x}) = -\log p(\mathbf{x}) \qquad K(\mathbf{v}) = \frac{1}{2} \sum_{i} v_i^2$$

Importantly, note that $\int p(\mathbf{x}, \mathbf{v}) d\mathbf{v} = p(\mathbf{x})$, the desired distribution and $p(\mathbf{v}) = N(0, I)$. We think of $E(\mathbf{x})$ as the potential energy of being in state \mathbf{x} , and $K(\mathbf{v})$ as the kinetic energy associated with momentum \mathbf{v} . We assume "mass" = 1, so momentum = velocity.

The physical system evolves at constant total energy H according to Hamiltonian dynamics:

$$\frac{dx_i}{dt} = \frac{\partial H}{\partial v_i} = v_i \qquad \qquad \frac{dv_i}{dt} = -\frac{\partial H}{\partial x_i} = -\frac{\partial E}{\partial x_i}.$$

The first equation says derivative of position is velocity. The second equation says that the system accelerates in the direction that decreases potential energy.

Think of a ball rolling on a frictionless hilly surface.

Hybrid Monte Carlo: how to simulate the dynamical system

We can simulate the above differential equations by discretising time and running some difference equations on a computer. This introduces small (we hope) errors. (The errors we care about are errors which change the total energy—we will correct for these by occasionally rejecting moves that change the energy.)

A good way to simulate this is using leapfrog simulation. We take *L* discrete steps of size ϵ to simulate the system evolving for $L\epsilon$ time:

$$\hat{v}_i(t + \frac{\epsilon}{2}) = \hat{v}_i(t) - \frac{\epsilon}{2} \frac{\partial E(\hat{x}(t))}{\partial x_i}$$
$$\hat{x}_i(t + \epsilon) = \hat{x}_i(t) + \epsilon \frac{\hat{v}_i(t + \frac{\epsilon}{2})}{m_i}$$
$$\hat{v}_i(t + \epsilon) = \hat{v}_i(t + \frac{\epsilon}{2}) - \frac{\epsilon}{2} \frac{\partial E(\hat{x}(t + \epsilon))}{\partial x_i}$$

Hybrid Monte Carlo: properties of the dynamical system

Hamiltonian dynamics has the following important properties:

- 1) preserves total energy, H,
- 2) is reversible in time
- 3) preserves phase space volumes (Liouville's theorem)

The leapfrog discretisation only approximately preserves the total energy H, and

- 1) is reversible in time
- 2) preserves phase space volume

The dynamical system is simulated using the leapfrog discretisation and the new state is used as a proposal in the Metropolis algorithm to eliminate the bias caused by the leapfrog approximation

Hybrid Monte Carlo Algorithm

1) A new state is proposed by deterministically simulating a trajectory with *L* discrete steps from (\mathbf{x}, \mathbf{v}) to $(\mathbf{x}^*, \mathbf{v}^*)$. The new state $(\mathbf{x}^*, \mathbf{v}^*)$ is accepted with probability:

$$\min(1, \exp(-(H(\mathbf{v}^*, \mathbf{x}^*) - H(\mathbf{v}, \mathbf{x})))),$$

otherwise the state remains the same.

2) Stochastically update the momenta using Gibbs sampling

$$\mathbf{v} \sim p(\mathbf{v}|\mathbf{x}) = p(\mathbf{v}) = N(0, I)$$

Other Ideas

• MCMC importance sampling.

- Start from known distribution (**x** $_0 \sim p_0$).
- Run MCMC n (fixed) steps and compute p_n .
- Importance sample $w_i = p(\mathbf{x}_i^{(n)})/p_n(\mathbf{x}_i^{(n)})$.

Annealed importance sampling uses annealed MCMC.

- Coupling from the past yields **exact** samples, by explicitly checking for mixing wrt a fixed set of random numbers (inputs to transitions).
 - Applies to specific systems, where transitions can be written to agglommerate.
- Slice sampling.
- Nested sampling.
- . . .