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Integrals in Statistical Modelling

e Parameter estimation

AN

0 = argmax/dy P(Y|0)P(X|Y,0)

0
(or using EM)

9" = argmax / dY P(Y|X,60°)log P(X,)|6)
0

e Prediction
p(aD,m) = / 40 p(6|D, m)p(z|9, D, m)

e Model selection or weighting (by marginal likelihood)
p(Dlm) = [ b (0] p(DIO,m)

These integrals are often intractable:

e Analytic intractability: integrals may not have closed form in non-linear, non-Gaussian
models = numerical integration.

e Computational intractability: Numerical integral (or sum if )) or 6 are discrete) may be
exponential in data or model size.



Examples of Intractability

e Bayesian marginal likelihood/model evidence for Mixture of Gaussians: exact computa-
tions are exponential in number of data points

p(X1, ..., Xy) = /d@p HZp X;|s;,0)p(s;|0)

=1 s;

-3y S‘/dep p(Xilsi, 0)p(si|0)

S1 52

e Computing the conditional probability of a variable in a very large multiply connected
directed graphical model:

p(.CUZ"Xj — CL) = Z (37@7an _ a)/p( CL)

all settings ofy\{%]}

e Computing the hidden state distribution in a general nonlinear dynamical system

p(yelxi, .. x7) X /p(Yt|yIf—1>p<xt|Yt>p<Yt—1|X17 coe s X)Xt 1 - Xe|Ye )Y



Distributed models
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In the FHMM, moralisation puts simultaneous states sgl), 3§2), sf’) into a single clique.

e ) state variables, K values = sums over K" terms.
e Factorial prior # Factorial posterior (explaining away).

Variational methods approximate the posterior, often in a factored form. To see how they
work, we need to review the free-energy interpretation of EM.



The Free Energy for a Latent Variable Model
Observed data X' = {x;}; Latent variables Y = {y; }; Parameters 6.

Goal: Maximize the log likelihood (i.e. ML learning) wrt 6:
((6) = log P(X16) = 1o | P(Y,X|6)dy

Any distribution, ¢()’), over the hidden variables can be used to obtain a lower bound on the
log likelihood using Jensen’s inequality:

_ Py, X10) 5 P, X|0) . def
((0) —1og/q(37) ) dy > /q(y)l 5 o) 4y < Flq,0).

/ ) log - %’(’;j’e) 1y — / 1) log P(Y, X19) dY / log ()

Now,

:/q(y)logP(y,X ) dY + Hlq|

where H|q| is the entropy of ¢())).
So:
F(gq,0) = (log P(¥, X10)) (3 + Hld]



The E and M steps of EM

The log likelihood is bounded below (Jensen) by:

F(q,0) = (log P(Y, X|0)) ,» + Hldl,

EM alternates between:
E step: optimise F(q, §) wrt distribution over hidden variables holding parameters fixed:

¢F(Y) = arg(m)ax F(q(),0" V) = PQ|x, 0" )
q(Y

M step: maximise F(q, /) wrt parametersholding hidden distribution fixed:

0" = argmax F(¢"()),0) = argmax (log P(Y, X0)) w3
0 0



EM as Coordinate Ascent in F

T (Q,e)

<

Q) (]



EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

e The E step brings the free energy to the likelihood.
e The M-step maximises the free energy wrt 6.
e F < [ by Jensen — or, equivalently, from the non-negativity of KL

If the M-step is executed so that (%) £ 9~ iff F increases, then the overall EM iteration
will step to a new value of # iff the likelihood increases.



Variational Approximations to the EM algorithm

What if finding expected sufficient stats under P()|X, 6) is computationally intractable?

In the generalised EM algorithm, we argued that intractable maximisations could be re-
placed by gradient M-steps. For the E-step we could:

e Parameterise ¢ = ¢,()) and take a gradient step in p.

e Assume some simplified form for ¢, usually factored: ¢ = [ [, ¢;()V;) where ); partition ),
and maximise within this form.

In both cases, we assume ¢ € O, and optimise within this class:

VE step: maximise F(q, 6) wrt restricted latent distribution given parameters:

¢ (Y) := argmax F(q(Y), 9“{'_1)).
q(Y)eQ

M step: unchanged

0" .= argmax F(¢'")(),0) = argmax / ¢ (V) logp(Y, X|6)dY,
0 0

This maximises a lower bound on the log likelihood.



What do we lose?

What does restricting g to Q cost us?

e Recall that the free-energy is bounded above by Jensen:
F(q,0) < €(6™)
Thus, as long as every step increases JF, convergence is still guaranteed.

e But, since P(YV| X, 0%%)) may not lie in Q, we no longer saturate the bound after the E-step.
Thus, the likelihood may not increase on each full EM step.

¢ (91 F(q™ o= < F(q™. oW < (W),
( ) Eﬁep ( ) M step ( ) Jensen (o)

e Thus, we may not converge to a maximum of £.

The hope is that by increasing a lower bound on ¢ we will find a decent solution.
[Note that if P(Y|X, M) € Q, then OM- is a fixed point of the variational algorithm.]



KL divergence

Recall that
F(q,0) = (log P(X, V|0)),) + Hlg|
= (log P(X10) + log P(V|X,0)) 3 — (logq(V)) )
= (log P<X‘9)>q(y) — KL[g|| P(Y]|X,0)].
Thus,

E step maximise F(q, ) wrt the distribution over latents, given parameters:

¢M(Y) = argmax F(q(¥),0" V).
q(Y)eQ

IS equivalent to:
E step minimise KL|¢q||p(Y|X, #)] wrt distribution over latents, given parameters:

q(Y)
VX, 0k-D)

q(k)(y) = argmin/q(y) logp( d)

q(Y)eQ

So, in each E step, the algorithm is trying to find the best approximation to P()|X) in Q.

This is related to ideas in information geometry.



Factored Variational E-step

The most common form of variational approximation partitions )/ into disjoint sets )/; with

Q={q|q¥) = H%(%)}

In this case the E-step is itself iterative:
(Factored VE step);: maximise F(q, 0) wrt ¢;()V;) given other ¢; and parameters:

) = srgmax Fla)[[a()), 0% ).
4 (Vi i

The ¢;s can be updated iteratively until convergence before moving on to the M-step. Al-
ternatively, we can make a single pass over all g; (starting from values at the last step) and
then perform an M-step. Each VE step increases JF, so convergence is still guaranteed.



Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

]__< H (V) 9(k—1)>: <log P(Xx, yw(k_l))>1‘[-qj(yj) +H [H %’(yj)}

_ a: (V) (k=1) . Hig.
[ 9. a3 (o P(x. vp >>Hj#qj(yj)+|-|[qz]+§ 4,

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of ¢;):

5
— [ F+ )\ /i—l)):lo PX,yH(k_l) —logq;(V;)) — 1+ A
5%( ( ] (e Pt -~ lora()

=0) = () ocexp (log P(X, V|0
(=0) ai(Ji) p< 5 P | )>Hj7éij(yj)

In general, this depends only on the expected sufficient statistics under ¢;. Thus, once again,
we don’t actually need the entire distributions, just the relevant expectations.



Mean-field Approximations

If V; = v, (i.e., g is factored over all variables) then the variational technique is often called a
“mean field” approximation.

Suppose P(X,)) is log-linear, e.g. the Boltzmann machine:

P(X,) ——exp(ZVV”S 5J+st)

with some s; € ) and others observed.

Expectations wrt a fully factored ¢ distribute over all s; € Y

(log P(X, Y))1y Zm] q<3j>qj+zbi<5>
(where ¢; for s; € X' is a delta function on observed value).

Thus, we can update each g; in turn given the means of the others. Each variable is seeing
the mean field imposed by its neighbours. We update these fields until they all agree.



Mean-field FHMM

g (") o< exp < log P(syy’, X1:T)>

- ~()
// i

I1

_‘(Tnlat/)

= exp <Z Zlog P(si"|s]" ) + Zlog P(XtIS%:M)>
m t t

X exp [<log P(s}) \st, )>

1

i)

q{”(st

m! + <1Og P(Sg—li—l’b?} )> m! + <lOgP(Xt/‘S%/:M)> [Tq™

qt’—

The mean-field approach to the FHMM with
51 T H q;"(s;")

yields a variant of the usual forward-backward
algorithm.  Coupling between the different
chains only takes place through the joint out-
put distribution. Each update depends only on
the immediate neighbours.

II 4"

—(m/ ')

/



Structured Variational Approximations

q()) need not be completely factorized.

For example, suppose you can partition )/ into sets )4 and ), such that computing the ex-
pected sufficient statistics under ¢();) and ¢()%) is tractable.
Then ¢()) = q(V1)q(d%s) is tractable.

If you have a graphical model, you may want to factorize ¢()’) into a product of trees, which
are tractable distributions.




Stuctured FHMM

(
exp<
3

ZZngP

The most natural structured approximation in
the FHMM is to factor each chain from the oth-

ers
= H q"(s1'r)
m

Updates within each chain are then found by
a forward-backward algorithm, with a modified
“likelihood” term.

G —I—ZlogP X, |s1 )>

[T qm
m/

X exp ZlogP ’St 1 ‘|‘Z 10gP Xt/|S >>qus?f]

:HP

’315 1 He

IOgP xt’|51 ]W)> mgm
ﬁrn[lq 5y



Variational Approximations and Graphical Models |

Let q(Y) = 11; ¢:(%)-
Variational approximation maximises F:

Flq) = / A(V) log p(V, X)dY — / 4(V) log ¢()dY

Focusing on one term, ¢;, we can write this as:

Flqj) = / ¢;(Y;) Qogp(Y, X)), () dV; + / q;(V;) log q;(Y;)dY; + const

Where (-)_ () denotes averaging w.r.t. ¢;(;) for all i # j

Optimum occurs when: |

q;(yj) = z exp (log p(Y, X>>ﬁqj(yj)



Variational Approximations and Graphical Models Il

Optimum occurs when:

1

q;(Y;) = - P (log p(V, X)) g )

Assume graphical model: p(Y, X) = Hip(Xz'|pa¢)

log ¢;(V;) = <Zlogp(X@-|paz->>ﬁq‘ oy TGOSt
i J\]

— <1ogp(yj|paj)>ﬁqj(yj) + Z <1ogp(Xk\pak)>ﬁqj(yj) + const

This defines messages that get passed between nodes in the graph. Each node receives
messages from its Markov boundary: parents, children and parents of children.

Variational Message Passing (Winn and Bishop, 2004)



Variational Approximations to Bayesian Learning

log p(X) = og/ p(X,V|0)p(@) dY do

p(X,).0)
> 91 d) d6
_//q(y, 08 q(V,0) Y

Constrain g € 9 s.t. ¢(V,0) = q(V)q(0).
This results in the variational Bayesian EM algorithm.

More about this later (when we study model selection).



The Other KL

Variational methods find ¢ = argmin KL|[q||p(y|x)]:
e guaranteed convergence;
e maximising lower bound may help ¢ increase;

e (factored approximation) distributes for message-passing.

What about the ‘other’ KL (¢ = argmin KL|p(y|x)||q])?

Crucially, for a factored approximation the (clique) marginals are correct:

argmin KL P [T as1%)] - argmin — / 4y P|2)10g [ ] 4,(10)

4;

—argmin~ 3 [ Y PYI) loz ;3 |)
J

= argmin —/dyz- P(Y;|X) log q;(Vi| X)
qi

= P(Vi|X)

and the marginals are what we need for learning.

But (perversely) this means finding the best q for this KL is intractrable!



Expectation Propagation (EP)

The distribution we need to approximate is often a (normalised) product of factors:

POIY) = 3 = 7 [T Plooatsn) [ £

where the )); are not necessarily disjoint.

We wish to approximate this by a product of simpler terms: q()) o H ()
1=1
N

min KL [H £(0) H )] (intractable)
min KL fi(yi) fi( 7;)} (simple, non-iterative, inaccurate)
fi(Yi) -
min KL| ;)| [ 0|50 ] ] fj(yy;)} (simple, iterative, accurate) «— EP
fi(Yi) - wy y

Wkl jFi



Expectation Propagation Il

Input f1(D1) ... [n(In) )
Initialize f1()4) = fi(Qh), fi(V) =1fori>1,q(Y) =[], fi()))
repeat
foro=1... N do
Deletion: ¢_;()) < £i()
V) f, y, LI )
Projection: f™*"()) « arf%f}j)ln KL fi( V) q-i( D) f(Vi)g—i(V)]
Inclusion: ¢() < (V) q-;(V)
end for
until convergence

e KL minimisation (projection) only depends on ¢-;()/) marginalised to ).

° f;(y) in exponential family — projection step is moment matching.

e Update order need not be sequential.

e Minimizes the opposite KL to variational methods.

e Loopy belief propagation and assumed density filtering are special cases.
e No convergence guarantee (although convergent forms can be developed).
e The names (deletion, projection, inclusion) are not the same as in (Minka, 2001).



EP for a NLSSM

p(Ye|Yi—1) = ou(ys, Yi-1) e.g. exp(—|ly: — hs(Yt—l)HQ/QUQ)
p(xelys) = ti(ye) e.g. exp(—||x; — ho(ys)||?/207)

Then fi(y,,yi1) = ¢u(ye, yi-1)Ui(y:). As ¢ and v are non-linear, EP is not generally
tractable. Assume f;(y;, y; 1) is Gaussian. Then,

q-t(¥t, yi-1) Z Hff’ Yis Yi'—1 Z Hft’ Yi's Yi'—1 Z Hfz" yis Yi'—1

Y1---Yt—2 /£t LYo t'<t Y17 t'>t
Ytiri---YT 7 ~ ~—

ar—1(yt-1) Br(yt)

with both v and 3 Gaussian.

ﬁ(ytv Yio1) = arfgeT/in KL[&:(ye, Yi1)0e(Ye) e 1(Ye—1) Be(yo) || f (Wes Y1) —1(ye—1) Bi(ye)]



Moment Matching

Recall that for exponential family g () = 5;e3:
in KL = argmin KL L S0
argmin KL[p(x)||q(x)] = argmin KL|p(z)|| ——<e>""]
q 0 Z(0)
1
_ re d 1 S(x)-0
argemln / x p(x)log Z<9)e
= argmin — / dx p(x)S(x) - 0 + log Z(0)
0
9 __ 1L 9 ()6
50 /dazp(:z:)S(:C)JrZ(H)aH/dxe
. 1 S(x)-0
— <S<ZL‘>>p—|——Z(9> /d:l: e S(x)
= —(S(z)), + (S(z)),

So minimum is found by matching sufficient stats. This is usually moment matching.

How do we calculate (S(:z:)>p? Low dimensional integral — Quadrature, Laplace approx ...
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