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Integrals in Statistical Modelling

• Parameter estimation

θ̂ = argmax
θ

∫
dY P (Y|θ)P (X|Y , θ)

(or using EM)

θnew = argmax
θ

∫
dY P (Y|X , θold) logP (X ,Y|θ)

• Prediction
p(x|D,m) =

∫
dθ p(θ|D,m)p(x|θ,D,m)

• Model selection or weighting (by marginal likelihood)

p(D|m) =

∫
dθ p(θ|m)p(D|θ,m)

These integrals are often intractable:

• Analytic intractability: integrals may not have closed form in non-linear, non-Gaussian
models⇒ numerical integration.

• Computational intractability: Numerical integral (or sum if Y or θ are discrete) may be
exponential in data or model size.



Examples of Intractability

• Bayesian marginal likelihood/model evidence for Mixture of Gaussians: exact computa-
tions are exponential in number of data points

p(x1, . . . , xN) =

∫
dθ p(θ)

N∏
i=1

∑
si

p(xi|si, θ)p(si|θ)

=
∑
s1

∑
s2

. . .
∑
sN

∫
dθ p(θ)

N∏
i=1

p(xi|si, θ)p(si|θ)

• Computing the conditional probability of a variable in a very large multiply connected
directed graphical model:

p(xi|Xj = a) =
∑

all settings of y\{i,j}

p(xi, y, Xj = a)/p(Xj = a)

• Computing the hidden state distribution in a general nonlinear dynamical system

p(yt|x1, . . . , xT ) ∝
∫
p(yt|yt−1)p(xt|yt)p(yt−1|x1, . . . , xt−1)p(xt+1, . . . , xt|yt)dyt−1



Distributed models
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In the FHMM, moralisation puts simultaneous states s(1)
t , s

(2)
t , s

(3)
t into a single clique.

•M state variables, K values⇒ sums over K2M terms.

• Factorial prior 6⇒ Factorial posterior (explaining away).

Variational methods approximate the posterior, often in a factored form. To see how they
work, we need to review the free-energy interpretation of EM.



The Free Energy for a Latent Variable Model

Observed data X = {xi}; Latent variables Y = {yi}; Parameters θ.

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ:

`(θ) = logP (X|θ) = log

∫
P (Y ,X|θ)dY ,

Any distribution, q(Y), over the hidden variables can be used to obtain a lower bound on the
log likelihood using Jensen’s inequality:

`(θ) = log

∫
q(Y)

P (Y ,X|θ)
q(Y)

dY ≥
∫
q(Y) log

P (Y ,X|θ)
q(Y)

dY def
= F(q, θ).

Now, ∫
q(Y) log

P (Y ,X|θ)
q(Y)

dY =

∫
q(Y) logP (Y ,X|θ) dY −

∫
q(Y) log q(Y) dY

=

∫
q(Y) logP (Y ,X|θ) dY + H[q],

where H[q] is the entropy of q(Y).
So:

F(q, θ) = 〈logP (Y ,X|θ)〉q(Y) + H[q]



The E and M steps of EM

The log likelihood is bounded below (Jensen) by:

F(q, θ) = 〈logP (Y ,X|θ)〉q(Y) + H[q],

EM alternates between:

E step: optimise F(q, θ) wrt distribution over hidden variables holding parameters fixed:

q(k)(Y) := argmax
q(Y)

F
(
q(Y), θ(k−1)

)
= P (Y|X , θ(k−1))

M step: maximise F(q, θ) wrt parametersholding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(Y), θ

)
= argmax

θ
〈logP (Y ,X|θ)〉q(k)(Y)



EM as Coordinate Ascent in F



EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

`
(
θ(k−1)

)
=

E step
F

(
q(k), θ(k−1)

)
≤

M step
F

(
q(k), θ(k)

)
≤

Jensen
`
(
θ(k)

)
,

• The E step brings the free energy to the likelihood.

• The M-step maximises the free energy wrt θ.

• F ≤ ` by Jensen – or, equivalently, from the non-negativity of KL

If the M-step is executed so that θ(k) 6= θ(k−1) iff F increases, then the overall EM iteration
will step to a new value of θ iff the likelihood increases.



Variational Approximations to the EM algorithm

What if finding expected sufficient stats under P (Y|X , θ) is computationally intractable?

In the generalised EM algorithm, we argued that intractable maximisations could be re-
placed by gradient M-steps. For the E-step we could:

• Parameterise q = qρ(Y) and take a gradient step in ρ.

• Assume some simplified form for q, usually factored: q =
∏

i qi(Yi) where Yi partition Y ,
and maximise within this form.

In both cases, we assume q ∈ Q, and optimise within this class:

VE step: maximise F(q, θ) wrt restricted latent distribution given parameters:

q(k)(Y) := argmax
q(Y)∈Q

F
(
q(Y), θ(k−1)

)
.

M step: unchanged

θ(k) := argmax
θ

F
(
q(k)(Y), θ

)
= argmax

θ

∫
q(k)(Y) log p(Y ,X|θ)dY ,

This maximises a lower bound on the log likelihood.



What do we lose?

What does restricting q to Q cost us?

• Recall that the free-energy is bounded above by Jensen:

F(q, θ) ≤ `(θML)

Thus, as long as every step increases F , convergence is still guaranteed.

• But, since P (Y|X , θ(k)) may not lie inQ, we no longer saturate the bound after the E-step.
Thus, the likelihood may not increase on each full EM step.

`
(
θ(k−1)

) /∖
=

E step
F

(
q(k), θ(k−1)

)
≤

M step
F

(
q(k), θ(k)

)
≤

Jensen
`
(
θ(k)

)
,

• Thus, we may not converge to a maximum of `.

The hope is that by increasing a lower bound on ` we will find a decent solution.
[Note that if P (Y|X , θML) ∈ Q, then θML is a fixed point of the variational algorithm.]



KL divergence

Recall that

F(q, θ) = 〈logP (X ,Y|θ)〉q(Y) + H[q]

= 〈logP (X|θ) + logP (Y|X , θ)〉q(Y) − 〈log q(Y)〉q(Y)

= 〈logP (X|θ)〉q(Y) − KL[q‖P (Y|X , θ)].

Thus,

E step maximise F(q, θ) wrt the distribution over latents, given parameters:

q(k)(Y) := argmax
q(Y)∈Q

F
(
q(Y), θ(k−1)

)
.

is equivalent to:

E step minimise KL[q‖p(Y|X , θ)] wrt distribution over latents, given parameters:

q(k)(Y) := argmin
q(Y)∈Q

∫
q(Y) log

q(Y)

p(Y|X , θ(k−1))
dY

So, in each E step, the algorithm is trying to find the best approximation to P (Y|X ) in Q.

This is related to ideas in information geometry.



Factored Variational E-step

The most common form of variational approximation partitions Y into disjoint sets Yi with

Q =
{
q

∣∣ q(Y) =
∏
i

qi(Yi)
}
.

In this case the E-step is itself iterative:

(Factored VE step)i: maximise F(q, θ) wrt qi(Yi) given other qj and parameters:

q
(k)
i (Yi) := argmax

qi(Yi)
F

(
qi(Yi)

∏
j 6=i

qj(Yj), θ(k−1)
)
.

The qis can be updated iteratively until convergence before moving on to the M-step. Al-
ternatively, we can make a single pass over all qi (starting from values at the last step) and
then perform an M-step. Each VE step increases F , so convergence is still guaranteed.



Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

F
( ∏

j

qj(Yj), θ(k−1)
)
=

〈
logP (X ,Y|θ(k−1))

〉∏
j qj(Yj)

+ H
[∏

j

qj(Yj)
]

=

∫
dYi qi(Yi)

〈
logP (X ,Y|θ(k−1))

〉∏
j 6=i qj(Yj)

+ H[qi] +
∑
j 6=i

H[qj]

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of qi):

δ

δqi

(
F + λ

(∫
qi − 1

))
=

〈
logP (X ,Y|θ(k−1))

〉∏
j 6=i qj(Yj)

− log qi(Yi)− 1 + λ

(= 0) ⇒ qi(Yi) ∝ exp
〈

logP (X ,Y|θ(k−1))
〉∏

j 6=i qj(Yj)

In general, this depends only on the expected sufficient statistics under qj. Thus, once again,
we don’t actually need the entire distributions, just the relevant expectations.



Mean-field Approximations

If Yi = yi (i.e., q is factored over all variables) then the variational technique is often called a
“mean field” approximation.

Suppose P (X ,Y) is log-linear, e.g. the Boltzmann machine:

P (X ,Y) =
1

Z
exp

( ∑
ij

Wijsisj +
∑
i

bisi

)
with some si ∈ Y and others observed.

Expectations wrt a fully factored q distribute over all si ∈ Y

〈logP (X ,Y)〉∏ qi
=

∑
ij

Wij 〈si〉qi 〈sj〉qj +
∑
i

bi 〈si〉qi

(where qi for si ∈ X is a delta function on observed value).

Thus, we can update each qi in turn given the means of the others. Each variable is seeing
the mean field imposed by its neighbours. We update these fields until they all agree.



Mean-field FHMM
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The mean-field approach to the FHMM with

q(s1:M
1:T ) =

∏
m,t

qmt (smt )

yields a variant of the usual forward-backward
algorithm. Coupling between the different
chains only takes place through the joint out-
put distribution. Each update depends only on
the immediate neighbours.

qm
′

t′ (sm
′

t′ ) ∝ exp

〈
logP (s1:M

1:T , x1:T )

〉
∏

¬(m′,t′)
qmt (smt )

= exp

〈∑
m

∑
t

logP (smt |smt−1) +
∑
t

logP (xt|s1:M
t )

〉
∏

¬(m′,t′)
qmt

∝ exp

[〈
logP (sm

′
t′ |sm

′
t′−1)

〉
qm
′

t′−1

+
〈

logP (sm
′

t+1′|sm
′

t′ )
〉
qm
′

t′+1

+
〈
logP (xt′|s1:M

t′ )
〉∏
¬m

qm
t′

]



Structured Variational Approximations

q(Y) need not be completely factorized.

For example, suppose you can partition Y into sets Y1 and Y2 such that computing the ex-
pected sufficient statistics under q(Y1) and q(Y2) is tractable.
Then q(Y) = q(Y1)q(Y2) is tractable.

If you have a graphical model, you may want to factorize q(Y) into a product of trees, which
are tractable distributions.
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Stuctured FHMM
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The most natural structured approximation in
the FHMM is to factor each chain from the oth-
ers

q(s1:M
1:T ) =

∏
m

qm(sm1:T )

Updates within each chain are then found by
a forward-backward algorithm, with a modified
“likelihood” term.

qm
′
(sm

′
1:T ) ∝ exp

〈
logP (s1:M

1:T , x1:T )

〉
∏
¬m′

qm(sm1:T )

= exp

〈∑
m

∑
t

logP (smt |smt−1) +
∑
t

logP (xt|s1:M
t )

〉
∏
¬m′

qm

∝ exp

[∑
t

logP (sm
′

t |sm
′

t−1) +
∑
t

〈
logP (xt′|s1:M

t′ )
〉∏
¬m

qmsm
t′

]
=

∏
t

P (sm
′

t |sm
′

t−1)
∏
t

e
〈logP (xt′|s

1:M
t′ )〉 ∏

¬m
qmsm

t′



Variational Approximations and Graphical Models I

Let q(Y) =
∏

i qi(Yi).

Variational approximation maximises F :

F(q) =

∫
q(Y) log p(Y ,X )dY −

∫
q(Y) log q(Y)dY

Focusing on one term, qj, we can write this as:

F(qj) =

∫
qj(Yj) 〈log p(Y ,X )〉¬qj(Yj) dYj +

∫
qj(Yj) log qj(Yj)dYj + const

Where 〈·〉¬qj(Yj) denotes averaging w.r.t. qi(Yi) for all i 6= j

Optimum occurs when:

q∗j (Yj) =
1

Z
exp 〈log p(Y ,X )〉¬qj(Yj)



Variational Approximations and Graphical Models II

Optimum occurs when:

q∗j (Yj) =
1

Z
exp 〈log p(Y ,X )〉¬qj(Yj)

Assume graphical model: p(Y ,X ) =
∏

i p(Xi|pai)

x1

x2

x3

x4

x5

log q∗j (Yj) =
〈 ∑

i

log p(Xi|pai)
〉
¬qj(Yj)

+ const

=
〈
log p(Yj|paj)

〉
¬qj(Yj)

+
∑
k∈chj

〈log p(Xk|pak)〉¬qj(Yj) + const

This defines messages that get passed between nodes in the graph. Each node receives
messages from its Markov boundary: parents, children and parents of children.

Variational Message Passing (Winn and Bishop, 2004)



Variational Approximations to Bayesian Learning

log p(X ) = log

∫ ∫
p(X ,Y|θ)p(θ) dY dθ

≥
∫ ∫

q(Y ,θ) log
p(X ,Y ,θ)

q(Y ,θ)
dY dθ

Constrain q ∈ Q s.t. q(Y ,θ) = q(Y)q(θ).

This results in the variational Bayesian EM algorithm.

More about this later (when we study model selection).



The Other KL

Variational methods find q = argmin KL[q‖p(y|x)]:

• guaranteed convergence;

• maximising lower bound may help ` increase;

• (factored approximation) distributes for message-passing.

What about the ‘other’ KL (q = argmin KL[p(y|x)‖q])?

Crucially, for a factored approximation the (clique) marginals are correct:

argmin
qi

KL
[
P (Y|X )

∥∥∥∏
qj(Yj|X )

]
= argmin

qi

−
∫
dY P (Y|X ) log

∏
j

qj(Yj|X )

= argmin
qi

−
∑
j

∫
dY P (Y|X ) log qj(Yj|X )

= argmin
qi

−
∫
dYi P (Yi|X ) log qi(Yi|X )

= P (Yi|X )

and the marginals are what we need for learning.

But (perversely) this means finding the best q for this KL is intractrable!



Expectation Propagation (EP)

The distribution we need to approximate is often a (normalised) product of factors:

P (Y|X ) =
P (Y ,X )

P (X )
=

1

Z

∏
i

P (si|pa(si)) ∝
N∏
i=1

fi(Yi)

where the Yi are not necessarily disjoint.

We wish to approximate this by a product of simpler terms: q(Y)
def
=

N∏
i=1

f̃i(Yi)

min
q(Yi)

KL
[ N∏
i=1

fi(Yi)
∥∥∥ N∏
i=1

f̃i(Yi)
]

(intractable)

min
f̃i(Yi)

KL
[
fi(Yi)

∥∥∥f̃i(Yi)] (simple, non-iterative, inaccurate)

min
f̃i(Yi)

KL
[
fi(Yi)

∏
j 6=i

f̃j(Yi)
∥∥∥f̃i(Yi) ∏

j 6=i

f̃j(Yi)
]

(simple, iterative, accurate)← EP



Expectation Propagation II

Input f1(Y1) . . . fN(YN)
Initialize f̃1(Y1) = f1(Y1), f̃i(Yi) = 1 for i > 1, q(Y) =

∏
i f̃i(Yi)

repeat
for i = 1 . . . N do

Deletion: q¬i(Y)← q(Y)

f̃i(Yi)
=

∏
j 6=i

f̃j(Yj)

Projection: f̃new
i (Y)← argmin

f(Yi)
KL[fi(Yi)q¬i(Y)‖f (Yi)q¬i(Y)]

Inclusion: q(Y)← f̃new
i (Yi) q¬i(Y)

end for
until convergence

• KL minimisation (projection) only depends on q¬i(Y) marginalised to Yi.
• f̃i(Y) in exponential family→ projection step is moment matching.
• Update order need not be sequential.
• Minimizes the opposite KL to variational methods.
• Loopy belief propagation and assumed density filtering are special cases.
• No convergence guarantee (although convergent forms can be developed).
• The names (deletion, projection, inclusion) are not the same as in (Minka, 2001).



EP for a NLSSM

y1 I

I

y2 I

I

y3 I

I

u u u I yT

I
x1 x2 x3 xT

p(yt|yt−1) = φt(yt, yt−1) e.g. exp(−‖yt − hs(yt−1)‖2/2σ2)

p(xt|yt) = ψt(yt) e.g. exp(−‖xt − ho(yt)‖2/2σ2)

Then ft(yt, yt−1) = φt(yt, yt−1)ψt(yt). As φt and ψt are non-linear, EP is not generally
tractable. Assume f̃t(yt, yt−1) is Gaussian. Then,

q¬t(yt, yt−1) =
∑

y1...yt−2
yt+1...yT

∏
t′ 6=t

f̃t′(yt′, yt′−1) =
∑

y1...yt−2

∏
t′<t

f̃t′(yt′, yt′−1)︸ ︷︷ ︸
αt−1(yt−1)

∑
yt+1...yT

∏
t′>t

f̃t′(yt′, yt′−1)︸ ︷︷ ︸
βt(yt)

with both α and β Gaussian.

f̃t(yt, yt−1) = argmin
f∈N

KL[φt(yt, yt−1)ψt(yt)αt−1(yt−1)βt(yt)‖f (yt, yt−1)αt−1(yt−1)βt(yt)]



Moment Matching

Recall that for exponential family q(x) = 1
Z(θ)e

S(x)·θ:

argmin
q

KL[p(x)‖q(x)] = argmin
θ

KL[p(x)‖ 1

Z(θ)
eS(x)·θ]

= argmin
θ
−

∫
dx p(x) log

1

Z(θ)
eS(x)·θ

= argmin
θ
−

∫
dx p(x)S(x) · θ + logZ(θ)

∂

∂θ
= −

∫
dx p(x)S(x) +

1

Z(θ)

∂

∂θ

∫
dx eS(x)·θ

= −〈S(x)〉p +
1

Z(θ)

∫
dx eS(x)·θS(x)

= −〈S(x)〉p + 〈S(x)〉q

So minimum is found by matching sufficient stats. This is usually moment matching.

How do we calculate 〈S(x)〉p? Low dimensional integral→ Quadrature, Laplace approx . . .
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