
Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search
Arthur Guez∗, David Silver†, and Peter Dayan∗
∗ Gatsby Computational Neuroscience Unit, UCL † Dept. of Computer Science, UCL

Introduction

We introduce a tractable, sample-based method for approximate Bayes-optimal planning which exploits
Monte-Carlo tree search. Our approach avoids expensive applications of Bayes rule within the search
tree by lazily sampling models from the current beliefs at the root. It outperfoms existing approaches
on standard benchmark problems and it can deal with large state spaces with structured priors.

Reminder: Model-based Bayesian Exploration

Typical MDP description M = 〈S,A,P ,R, γ〉, but here P is a latent variable distributed according
to a prior P (P).
Goal: Find exploration policy π : S×H→A that maximizes

∫
P P (P)E

π
M(P)[

∑∞
t=0 γ

trt|s0=s, h0=s];
the resulting policy trades off exploration and exploitation. (H ≡ Set of all possible histories)

Equivalent to solving augmented MDP M+ in belief space: Bayes-Adaptive MDP (BAMDP)
where P+(〈s, h〉, a, 〈s′, h′〉) = 1h′=has′

∫
P P(s, a, s

′)P (P|h).
Major obstacle: Computationally intractable to solve exactly even for tiny state spaces.

Our approach

Problem Formulation: We want to find a tractable approximation to BAMDP’s optimal policy
compatible with a large class of priors.
Proposed solutions:

BA-UCT
Tackle the BAMDP, a particular MDP, with Monte-Carlo Tree Search/UCT.
Solves BAMDP online approximately for the current state; UCT focuses search
effort where it matters; converges to Bayes-optimal policy.
Issue: Expensive belief updates at every tree node, not practical for most priors.

BA-UCT + Root sampling:
Restrict posterior sampling to the root node (as in Silver’s & Veness’ POMCP alg.).
Only need to perform 1 belief update and generate posterior samples at tree root.
Issue: Generating full samples P not feasible in large MDPs.

BA-UCT + Root sampling + Lazy sampling:
Use factorization of the posterior to minimize sampling for each simulation.

BA-UCT + Root Sampling + Lazy Sampling + Rollout Learning ≡ BAMCP algorithm
(Bayes-Adaptive Monte-Carlo Planning).

Theoretical Properties

BAMCP converges to the Bayes-optimal policy.
V (〈st, ht〉)

p→ V ∗ε (〈st, ht〉)
Rate of convergence at the nodes as in UCT.

Bias decreases as log(N(〈s, h〉))/N(〈s, h〉).

Why can we get away with root sampling (Silver &

Veness 2010)? Compare distribution of P at the tree
nodes using BA-UCT (posterior) versus using
BAMCP (P̃), assume equivalent up to node h, then:

P (P |has′) ∝ P (P |h)P(s, a, s′) = P̃h(P)P(s, a, s′)
= P̃ha(P)P(s, a, s′) ∝ P̃has′(P)

Example on Dearden’s Maze

10
−1

10
0

0

100

200

300

400

500

600

700

800

900

1000

1100

Average Time per Step (s)

BA−UCT + RS + LS + RL (BAMCP)

BA−UCT + RS + LS

BA−UCT + RS + RL

BA−UCT + RS

10
−1

10
0

0

100

200

300

400

500

600

700

800

900

1000

1100

Average Time per Step (s)

BA−UCT + RS + LS + RL (BAMCP)

BA−UCT + RL

BA−UCT

Sum of rewards after 20K steps. RS=Root Sampling, LS=Lazy Sampling, RL=Rollout Learning.

Even in small state spaces (264 states) and relatively simple prior
(Sparse Dir-Mult), BAMCP benefits from root sampling, lazy
sampling, and rollout learning.

BAMCP

Root Sampling

Search

Environment

D
at

a

Actions

Belief
update

Sampler provides (lazy) posterior

MDP samples P (P |h) for current

history h.

Search treats sampler as black

box, uses MDP samples to run

UCT.

Posterior sampling of

Monte-Carlo BackupSimulation trajectory
 for

Action node Chance node

Legend

? UCT selects actions
(independently of !)

Generate succ. states
according to

Time-step t, -th simulation

Sample tree trajectory until leaf is reached

Run rollout policy and extend tree at leaf node

Update value at each traversed tree node using MC Backup

Update visit count at each traversed node

Initialize empty search tree

see below

Past
Planning

Belief Update

Tree policy

Rollout
 policy

1st simulation (UCT sim. with)

2nd simulation 3rd simulation

Example BAMCP run

How are tree trajectories generated?

BAMCP Algorithm

Repeat:

(lazily)

Root sampling of posterior dynamics

Results: Standard Domains

Double-loop Grid5 Grid10 Dearden Maze

BAMCP 387.6 ± 1.5 72.9 ± 3 32.7 ± 3 965.2 ± 73
BFS3 382.2 ± 1.5 66 ± 5 10.4 ± 2 240.9 ± 46

SBOSS 371.5 ± 3 59.3 ± 4 21.8 ± 2 671.3 ± 126

BEB 386 ± 0 67.5 ± 3 10 ± 1 184.6 ± 35

Bayesian DP* 377 ± 1 - - -

Bayes VPI+MIX* 326 ± 31 - - 817.6 ± 29

IEQL+* 264 ± 1 - - 269.4 ± 1

QL Boltzmann* 186 ± 1 - - 195.2 ± 20

Table : Cumulative sum of reward (Double-loop,Grid5: after 1K steps, Grid10: after 2K steps,
Maze 264: after 20K steps), γ = 0.95. (*) Reported results from Strens 2000. Bayes−optimal BAMCP Posterior Mean

55

60

65

70

75

80

D
is

co
un

te
d

su
m

of
re

w
ar

ds

BANDIT

10−3 10−2 10−1 100
10

20

30

40

50

60

70

80

90

Average Time per Step (s)

S
um

of
R
ew

ar
ds

af
te
r1

00
0
st
ep
s

BAMCPGRID 5
BEB

BFS3

SBOSS

10−1 100
0

200

400

600

800

1000

Average Time per Step (s)

S
um

of
re

w
ar

ds
af

te
r2

00
00

st
ep

s MAZE

Infinite 2D Grid Task

Infinite combinatorial state space,

Correlated reward locations:
Latent ith column parameters: pi ∼ Beta(α1, β1)
Latent jth row parameters: qj ∼ Beta(α2, β2)
Pr(Reward(grid cell ji) = 1) = piqj

Rewards can only be consumed once.

Posterior inference needs approx.
(Metropolis-Hastings).

...

· · · · · ·

Figure : Example section of a grid with
α1 = 1, β1 = 2, α2 = 2, β1 = 1. Circles represent the pi and
qj parameters.

Intractable task for existing methods (huge state space + expensive belief updates).
With BAMCP:

Root sampling avoids expensive MCMC at every tree node,

Lazy sampling only samples small finite set of parameters for each sim,

Forward-search/UCT can deal with large state space.

10
−2

10
0

10

20

30

40

50

60

70

80

90

Planning time (s)

U
n
d
is

c
o
u
n
te

d
 s

u
m

 o
f
re

w
a
rd

s
 a

ft
e
r

2
0
0
 s

te
p
s

10
−2

10
0

3

4

5

6

7

8

9

10

11

12

13

Planning time (s)

D
is

c
o
u
n
te

d
 s

u
m

 o
f
re

w
a
rd

s
 a

ft
e
r

2
0
0
 s

te
p
s

BAMCP

BAMCP Wrong prior

Random

Figure : Performance for the first 200 steps in the environment, averaged over 50
sampled environments (γ = 0.97). In this example, grids are generated with Beta
parameters α1 = 1, β1 = 2, α2 = 2, β2 = 1.

Guez, Silver, and Dayan

0 50 100 150 200
0.05

0

0.05

Dwell Time (Horizontal)

F
re

q
u
e
n
c
y

0 50 100 150 200
0.05

0

0.05

Dwell Time (Horizontal)

F
re

q
u

e
n

c
y

0 50 100 150 200
0.05

0

0.05

Dwell Time (Vertical)

F
re

q
u

e
n

c
y

10
−2

10
−1

10
0

10
1

20

30

40

50

60

70

80

90

100

Planning time (s)

U
n

d
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

10
−2

10
−1

10
0

10
1

4

5

6

7

8

9

10

11

12

13

14

Planning time (s)

D
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

10
−2

10
−1

10
0

10
1

10

15

20

25

30

35

40

45

50

Planning time (s)

U
n

d
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

10
−2

10
−1

10
0

10
1

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Planning time (s)

D
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

10
−2

10
−1

10
0

10
1

10

20

30

40

50

60

70

80

90

Planning time (s)

U
n

d
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

10
−2

10
−1

10
0

10
1

3

4

5

6

7

8

9

10

11

12

13

Planning time (s)

D
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

BAMCP

BAMCP Wrong prior

Random

BAMCP

BAMCP Wrong prior

Figure 9: Performance of BAMCP as a function of planning time on the Infinite 2D grid task, for γ = 0.97,
where each row corresponds to a different set of parameters generating the grid. The performance
during the first 200 steps in the environment is averaged over 50 sampled environments (5 runs
for each sample) and is reported both in terms of undiscounted (left) and discounted (center) sum
of rewards. BAMCP is run either with the correct generative model as prior (solid green) or with
an incorrect prior (dotted green). The performance of a uniform random policy is also reported
(blue). A small sample portion of a grid generated with these parameters is displayed on each
row, presented as in Figure 8. The frequency histogram of dwell times — the number of con-
secutive steps the agent tays on a column or on a row before switching — is reported for each
scenario. The grids are generated with Beta parameters a) α1=0.5,β1=0.5,α2=0.5,β2=0.5,
b) α1=0.5,β1=0.5,α2=1,β2=3, and c) α1=1,β1=2,α2=2,β2=1. For the case of wrong pri-
ors (dot-dashed lines), BAMCP is given the parameters a) α1=4,β1=1,α2=0.5,β2=0.5, b)
α1=1,β1=3,α2=0.5,β2=0.5, and c) α1=2,β1=1,α2=1,β2=2.

26

Guez, Silver, and Dayan

0 50 100 150 200
0.05

0

0.05

Dwell Time (Horizontal)

F
re

q
u

e
n

c
y

0 50 100 150 200
0.05

0

0.05

Dwell Time (Horizontal)

F
re

q
u

e
n

c
y

0 50 100 150 200
0.05

0

0.05

Dwell Time (Vertical)

F
re

q
u

e
n

c
y

10
−2

10
−1

10
0

10
1

20

30

40

50

60

70

80

90

100

Planning time (s)

U
n

d
is

c
o

u
n

te
d

s
u

m
o
f

re
w

a
rd

s
a

ft
e

r
2

0
0

s
te

p
s

10
−2

10
−1

10
0

10
1

4

5

6

7

8

9

10

11

12

13

14

Planning time (s)

D
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

10
−2

10
−1

10
0

10
1

10

15

20

25

30

35

40

45

50

Planning time (s)

U
n

d
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

10
−2

10
−1

10
0

10
1

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Planning time (s)

D
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

10
−2

10
−1

10
0

10
1

10

20

30

40

50

60

70

80

90

Planning time (s)

U
n

d
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

10
−2

10
−1

10
0

10
1

3

4

5

6

7

8

9

10

11

12

13

Planning time (s)

D
is

c
o

u
n

te
d

s
u

m
o

f
re

w
a

rd
s

a
ft

e
r

2
0

0
s
te

p
s

BAMCP

BAMCP Wrong prior

Random

BAMCP

BAMCP Wrong prior

Figure 9: Performance of BAMCP as a function of planning time on the Infinite 2D grid task, for γ = 0.97,
where each row corresponds to a different set of parameters generating the grid. The performance
during the first 200 steps in the environment is averaged over 50 sampled environments (5 runs
for each sample) and is reported both in terms of undiscounted (left) and discounted (center) sum
of rewards. BAMCP is run either with the correct generative model as prior (solid green) or with
an incorrect prior (dotted green). The performance of a uniform random policy is also reported
(blue). A small sample portion of a grid generated with these parameters is displayed on each
row, presented as in Figure 8. The frequency histogram of dwell times — the number of con-
secutive steps the agent tays on a column or on a row before switching — is reported for each
scenario. The grids are generated with Beta parameters a) α1=0.5,β1=0.5,α2=0.5,β2=0.5,
b) α1=0.5,β1=0.5,α2=1,β2=3, and c) α1=1,β1=2,α2=2,β2=1. For the case of wrong pri-
ors (dot-dashed lines), BAMCP is given the parameters a) α1=4,β1=1,α2=0.5,β2=0.5, b)
α1=1,β1=3,α2=0.5,β2=0.5, and c) α1=2,β1=1,α2=1,β2=2.

26

Figure : For two different prior scenarios, the distribution of behavior in terms of
row or column dwell times across many trials.

Summary

Introduce tractable sample-based algorithm for Bayesian RL,

State-of-the-art performance results on standard domains,

Scales to large tasks,

Can exploit structured priors.

This work was funded by the Gatsby Charitable Foundation and the Natural Sciences and Engineering Research Council of Canada. Contact: aguez@gatsby.ucl.ac.uk

