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Abstract

Bayes-adaptive planning offers a principled solution to the exploration-
exploitation trade-off under model uncertainty. It finds the optimal policy in be-
lief space, which explicitly accounts for the expected effect on future rewards of
reductions in uncertainty. However, the Bayes-adaptive solution is typically in-
tractable in domains with large or continuous state spaces. We present a tractable
method for approximating the Bayes-adaptive solution by combining simulation-
based search with a novel value function approximation technique that generalises
appropriately over belief space. Our method outperforms prior approaches in both
discrete bandit tasks and simple continuous navigation and control tasks.

1 Introduction
A fundamental problem in sequential decision making is controlling an agent when the environmen-
tal dynamics are only partially known. In such circumstances, probabilistic models of the environ-
ment are used to capture the uncertainty of current knowledge given past data; they thus imply how
exploring the environment can be expected to lead to new, exploitable, information.

In the context of Bayesian model-based reinforcement learning (RL), Bayes-adaptive (BA) planning
[8] solves the resulting exploration-exploitation trade-off by directly optimizing future expected
discounted return in the joint space of states and beliefs about the environment (or, equivalently,
interaction histories). Performing such optimization even approximately is computationally highly
challenging; however, recent work has demonstrated that online planning by sample-based forward-
search can be effective [22, 1, 12]. These algorithms estimate the value of future interactions by
simulating trajectories while growing a search tree, taking model uncertainty into account. However,
one major limitation of Monte Carlo search algorithms in general is that, naı̈vely applied, they fail to
generalize values between related states. In the BA case, a separate value is stored for each distinct
path of possible interactions. Thus, the algorithms fail not only to generalize values between related
paths, but also to reflect the fact that different histories can correspond to the same belief about
the environment. As a result, the number of required simulations grows exponentially with search
depth. Worse yet, except in very restricted scenarios, the lack of generalization renders MC search
algorithms effectively inapplicable to BAMDPs with continuous state or action spaces.

In this paper, we propose a class of efficient simulation-based algorithms for Bayes-adaptive model-
based RL which use function approximation to estimate the value of interaction histories during
search. This enables generalization between different beliefs, states, and actions during planning,
and therefore also works for continuous state spaces. To our knowledge this is the first broadly
applicable MC search algorithm for continuous BAMDPs.

Our algorithm builds on the success of a recent tree-based algorithm for discrete BAMDPs (BAMCP,
[12]) and exploits value function approximation for generalization across interaction histories, as
has been proposed for simulation-based search in MDPs [19]. As a crucial step towards this end we
develop a suitable parametric form for the value function estimates that can generalize appropriately
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across histories, using the importance sampling weights of posterior samples to compress histories
into a finite-dimensional feature vector. As in BAMCP we take advantage of root sampling [18, 12] to
avoid expensive belief updates at every step of simulation, making the algorithm practical for a broad
range of priors over environment dynamics. We also provide an interpretation of root sampling as an
auxiliary variable sampling method. This leads to a new proof of its validity in general simulation-
based settings, including BAMDPs with continuous state and action spaces, and a large class of
algorithms that includes MC and TD upates.

Empirically, we show that our approach requires considerably fewer simulations to find good poli-
cies than BAMCP in a (discrete) bandit task and two continuous control tasks with a Gaussian process
prior over the dynamics [5, 6]. In the well-known pendulum swing-up task, our algorithm learns how
to balance after just a few seconds of interaction. Below, we first briefly review the Bayesian formu-
lation of optimal decision making under model uncertainty (section 2; please see [8] for additional
details). We then explain our algorithm (section 3) and present empirical evaluations in section 4.
We conclude with a discussion, including related work (sections 5 and 6).

2 Background
A Markov Decision Processes (MDP) is described as a tuple M = hS,A,P,R, �i with S the
set of states (which may be infinite), A the discrete set of actions, P : S ⇥ A ⇥ S ! R the
state transition probability kernel, R : S ⇥ A ! R the reward function, and � < 1 the discount
factor. The agent starts with a prior P (P) over the dynamics, and maintains a posterior distribution
bt(P) = P (P |ht) / P (ht| P)P (P), where ht denotes the history of states, actions, and rewards
up to time t.

The uncertainty about the dynamics of the model can be transformed into certainty about the current
state inside an augmented state space S

+
= H ⇥ S, where H is the set of possible histories (the

current state also being the suffix of the current history). The dynamics and rewards associated with
this augmented state space are described by

P+
(h, s, a, has

0
, s

0
) =

Z

P
P(s, a, s

0
)P (P|h) dP, R+

(h, s, a) = R(s, a). (1)

Together, the 5-tuple M

+
= hS+

, A,P+
,R+

, �i forms the Bayes-Adaptive MDP (BAMDP) for the
MDP problem M . Since the dynamics of the BAMDP are known, it can in principle be solved to
obtain the optimal value function associated with each action:

Q
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where ⇡̃ : S

+⇥A ! [0, 1] is a policy over the augmented state space, from which the optimal action
for each belief-state ⇡̃

⇤
(ht, st) can readily be derived. Optimal actions in the BAMDP are executed

greedily in the real MDP M , and constitute the best course of action (i.e., integrating exploration and
exploitation) for a Bayesian agent with respect to its prior belief over P .

3 Bayes-Adaptive simulation-based search
Our simulation-based search algorithm for the Bayes-adaptive setup combines efficient MC search
via root-sampling with value function approximation. We first explain its underlying idea, assuming
a suitable function approximator exists, and provide a novel proof justifying the use of root sampling
that also applies in continuous state-action BAMDPs. Finally, we explain how to model Q-values as
a function of interaction histories.

3.1 Algorithm

As in other forward-search planning algorithms for Bayesian model-based RL [22, 17, 1, 12], at
each step t, which is associated with the current history ht (or belief) and state st, we plan online to
find ⇡̃

⇤
(ht, st) by constructing an action-value function Q(h, s, a). Such methods use simulation to

build a search tree of belief states, each of whose nodes corresponds to a single (future) history, and
estimate optimal values for these nodes. However, existing algorithms only update the nodes that
are directly traversed in each simulation. This is inefficient, as it fails to generalize across multiple
histories corresponding either to exactly the same, or similar, beliefs. Instead, each such history
must be traversed and updated separately.
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Here, we use a more general simulation-based search that relies on function approximation, rather
than a tree, to represent the values for possible simulated histories and states. This approach was
originally suggested in the context of planning in large MDPs[19]; we extend it to the case of
Bayes-Adaptive planning. The Q-value of a particular history, state, and action is represented
as Q(h, s, a;w), where w is a vector of learnable parameters. Fixed-length simulations are run
from the current belief-state ht, st, and the parameter w is updated online, during search, based on
experience accumulated along these trajectories, using an incremental RL control algorithm (e.g.,
Monte-Carlo control, Q-learning). If the parametric form and features induce generalization be-
tween histories, then each forward simulation can affect the values of histories that are not directly
experienced. This can considerably speed up planning, and enables continuous-state problems to
be tackled. Note that a search tree would be a special case of the function approximation approach
when the representation of states and histories is tabular.

Algorithm 1: Bayes-Adaptive simulation-based
search with root sampling
procedure Search( ht, st )

repeat
P ⇠ P (P |ht)

Simulate(ht, st,P, 0)
until Timeout()
return argmaxa Q(ht, st, a;w)

end procedure
procedure Simulate( h, s,P, t)

if t > T then return 0

a ⇡̃✏�greedy(Q(h, s, ·;w))

s0 ⇠ P(s, a, ·), r  R(s, a)
R r + � Simulate(has0, s0,P, t+1)

w w�↵ (Q(h, s, a;w)�R)rwQ(h, s, a;w)

return R
end procedure

In the context of Bayes-Adaptive plan-
ning, simulation-based search works
by simulating a future trajectory
ht+T = statrtst+1 . . . at+T�1rt+T�1st+T of
T transitions (the planning horizon) starting
from the current belief-state ht, st. Actions
are selected by following a fixed policy ⇡̃,
which is itself a function of the history,
a ⇠ ⇡̃(h, ·). State transitions can be sam-
pled according to the BAMDP dynamics,
st0 ⇠ P+

(ht0�1, st0�1, at0 , ht0�1at0 ·, ·). How-
ever, this can be computationally expensive
since belief updates must be applied at every
step of the simulation. As an alternative, we
use root sampling [18], which only samples the
dynamics Pk ⇠ P (P |ht) once at the root for
each simulation k and then samples transitions
according to st0 ⇠ Pk

(st0�1, at0�1, ·); we provide justification for this approach in Section 3.2.1
After the trajectory hT has been simulated on a step, the Q-value is modified by updating w based
on the data in ht+T . Any incremental algorithm could be used, including SARSA, Q-learning, or
gradient TD [20]; we use a simple scheme to minimize an appropriately weighted squared loss
E[(Q(ht0 , st0 , at0 ;w)�Rt0)

2
]:

|�w | = ↵ (Q(ht0 , st0 , at0 ;w)�Rt0)rwQ(ht0 , st0 , at0 ;w), (3)

where ↵ is the learning rate and Rt0 denotes the discounted return obtained from history ht0 .2 Al-
gorithm 1 provides pseudo-code for this scheme; here we suggest using as the fixed policy for a
simulation the ✏�greedy ⇡̃✏�greedy based on some given Q value. Other policies could be considered
(e.g., the UCT policy for search trees), but are not the main focus of this paper.

3.2 Analysis

In order to exploit general results on the convergence of classical RL algorithms for our simulation-
based search, it is necessary to show that starting from the current history, root sampling produces
the appropriate distribution of rollouts. For the purpose of this section, a simulation-based search
algorithm includes Algorithm 1 (with Monte-Carlo backups) but also incremental variants, as dis-
cussed above, or BAMCP.

Let D⇡̃
t be the rollout distribution function of forward-simulations that explicitly updates the belief

at each step (i.e., using P+): D⇡̃
t (ht+T ) is the probability density that history ht+T is generated

when running that simulation from ht, st, with T the horizon of the simulation, and ⇡̃ an arbitrary
history policy. Similarly define the quantity ˜Dt

⇡̃
(ht+T ) as the probability density that history ht+T

is generated when running forward-simulations with root sampling, as in Algorithm 1. The following
lemma shows that these two rollout distributions are the same.

1For comparison, a version of the algorithm without root sampling is listed in the supplementary material.
2The loss is weighted according to the distr. of belief-states visited from the current state by executing ⇡̃.
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Lemma 1. D⇡̃
t (ht+T ) =

˜D⇡̃
t (ht+T ) for all policies ⇡̃ : H ⇥ A ! [0, 1] and for all ht+T 2 H of

length t+ T .
Proof. A similar result has been obtained for discrete state-action spaces as Lemma 1 in [12] using
an induction step on the history length. Here we provide a more intuitive interpretation of root sam-
pling as an auxiliary variable sampling scheme which also applies directly to continuous spaces. We
show the equivalence by rewriting the distribution of rollouts. The usual way of sampling histories
in simulation-based search, with belief updates, is justified by factoring the density as follows:

p(ht+T |ht, ⇡̃) = p(atst+1at+1st+2 . . . st+T |ht, ⇡̃) (4)
= p(at|ht, ⇡̃)p(st+1|ht, ⇡̃, at)p(at+1|ht+1, ⇡̃) . . . p(st+T |ht+T�1, at+T , ⇡̃) (5)

=

Y

tt0<t+T

⇡̃(ht0 , at0)

Y

t<t0t+T

p(st0 |ht0�1, ⇡̃, at0�1) (6)

=

Y

tt0<t+T

⇡̃(ht0 , at0)

Y

t<t0t+T

Z

P
P (P |ht0�1)P(st0�1, at0�1, st0) dP, (7)

which makes clear how each simulation step involves a belief update in order to compute (or sample)
the integrals. Instead, one may write the history density as the marginalization of the joint over
history and the dynamics P , and then notice that an history is generated in a Markovian way if
conditioned on the dynamics:

p(ht+T |ht, ⇡̃) =

Z

P
p(ht+T | P, ht, ⇡̃)p(P |ht, ⇡̃) dP =

Z

P
p(ht+T | P, ⇡̃)p(P |ht) dP (8)

=

Z

P

Y

tt0<t+T

⇡̃(ht0 , at0)

Y

t<t0t+T

P(st0�1, at0�1, st0) p(P |ht) dP, (9)

where eq. (9) makes use of the Markov assumption in the MDP. This makes clear the validity of
sampling only from p(P |ht), as in root sampling. From these derivations, it is immediately clear
that D⇡̃

t (ht+T ) =
˜D⇡̃
t (ht+T ).

The result in Lemma 1 does not depend on the way we update the value Q, or on its representation,
since the policy is fixed for a given simulation.3Furthermore, the result guarantees that simulation-
based searches will be identical in distribution with and without root sampling. Thus, we have:
Corollary 1. Define a Bayes-adaptive simulation-based planning algorithm as a procedure that
repeatedly samples future trajectories ht+T ⇠ D⇡̃

t from the current history ht (simulation phase),
and updates the Q value after each simulation based on the experience ht+T (special cases are
Algorithm 1 and BAMCP). Then such a simulation-based algorithm has the same distribution of
parameter updates with or without root sampling. This also implies that the two variants share the
same fixed-points, since the updates match in distribution.

For example, for a discrete environment we can choose a tabular representation of the value function
in history space. Applying the MC updates in eq. (3) results in a MC control algorithm applied to the
sub-BAMDP from the root state. This is exactly the (BA version of the) MC tree search algorithm
[12]. The same principle can also be applied to MC control with function approximation with
convergence results under appropriate conditions [2]. Finally, more general updates such as gradient
Q-learning could be applied with corresponding convergence guarantees [14].

3.3 History Features and Parametric Form for the Q-value

The quality of a history policy obtained using simulation-based search with a parametric represen-
tation Q(h, s, a;w) crucially depends on the features associated with the arguments of Q, i.e., the
history, state and action. These features should arrange for histories that lead to the same, or simi-
lar, beliefs have the same, or similar, representations, to enable appropriate generalization. This is
challenging since beliefs can be infinite-dimensional objects with non-compact sufficient statistics
that are therefore hard to express or manipulate. Learning good representations from histories is also
tough, for instance because of hidden symmetries (e.g., the irrelevance of the order of the experience
tuples that lead to a particular belief).

3Note that, in Algorithm 1, Q is only updated after the simulation is complete.
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We propose a parametric representation of the belief at a particular planning step based on sampling.
That is, we draw a set of M independent MDP samples or particles U = {P1,P2, . . . ,PM} from
the current belief bt = P (P |ht), and associate each with a weight zUm(h), such that the vector
z

U
(h) is a finite-dimensional approximate representation of the belief based on the set U . We will

also refer to z

U as a function z

U
: H ! RM that maps histories to a feature vector.

There are various ways one could design the z

U function. It is computationally convenient to com-
pute z

U
(h) recursively as importance weights, just as in a sequential importance sampling parti-

cle filter [11]; this only assumes we have access to the likelihood of the observations (i.e., state
transitions). In other words, the weights are initialized as z

U
m(ht) =

1
M 8m and are then up-

dated recursively using the likelihood of the dynamics model for that particle of observations as
z

U
m(has

0
) / z

U
m(h)P (s

0|a, s,Pm) = z

U
m(h)Pm(s, a, s

0
).

One advantage of this definition is that it enforces a correspondence between the history and belief
representations in the finite-dimensional space, in the sense that zU (h0

) = zU (h) if belief(h) =

belief(h0
). That is, we can work in history space during planning, alleviating the need for complete

belief updates, but via a finite and well-behaved representation of the actual belief — since different
histories corresponding to the same belief are mapped to the same representation.

This feature vector can be combined with any function approximator. In our experiments, we com-
bine it with features of the current state and action, �(s, a), in a simple bilinear form:

Q(h, s, a;W) = zU (h)
T W �(s, a), (10)

where W is the matrix of learnable parameters adjusted during the search (eq. 3). Here �(s, a)

is a domain-dependent state-action feature vector as is standard in fully observable settings with
function approximation. Special cases include tabular representations or forms of tile coding. We
discuss the relation of this parametric form to the true value function in the Supp. material.

In the next section, we investigate empirically in three varied domains the combination of this para-
metric form, simulation-based search and Monte-Carlo backups, collectively known as BAFA (for
Bayes Adaptive planning with Function Approximation).

4 Experimental results
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Figure 1: a) The weights m↵,� b) Av-
eraged (weighted) decision errors for the
different methods as a function of the
number of simulations.

The discrete Bernoulli bandit domain (section 4.1) demon-
strates dramatic efficiency gains due to generalization with
convergence to a near Bayes-optimal solution. The nav-
igation task (section 4.2) and the pendulum (section 4.3)
demonstrate the ability of BAFA to handle non-trivial plan-
ning horizons for large BAMDPs with continuous states.
We provide comparisons to a state of the art BA tree-search
algorithm (BAMCP, [12]), choosing a suitable discretization
of the state space for the continuous problems. For the pen-
dulum we also compare to two Bayesian, but not Bayes
adaptive, approaches.

4.1 Bernoulli Bandit

Bandits have simple dynamics, yet they are still challenging
for a generic Bayes-Adaptive planner. Importantly, ground
truth is sometimes available [10], so we can evaluate how
far the approximations are from Bayes-optimality.

We consider a 2-armed Bernoulli bandit problem. We op-
pose an uncertain arm with prior success probability p1 ⇠
Beta(↵,�) against an arm with known success probability
p0. We consider the scenario � = 0.99, p0 = 0.2 for which
the optimal decision, and the posterior mean decision frequently differ. Decision errors for differ-
ent values of ↵,� do not have the same consequence, so we weight each scenario according to the
difference between their associated Gittins indices. Define the weight as m↵,� = |g↵,� � p0| where
g↵,� is the Gittins index for ↵,�; this is an upper-bound (up to a scaling factor) on the difference
between the value of the arms. The weights are shown in Figure 1-a.

5



We compute the weighted errors over 20 runs for a particular method as E↵,� = m↵,� ·
P (Wrong decision for (↵,�)), and report the sum of these terms across the range 1  ↵  10

and 1  �  19 in Figure 1-b as a function of the number of simulations.

Though this is a discrete problem, these results show that the value function approximation ap-
proach, even with a limited number of particles (M ) for the history features, learns considerably
more quickly than BAMCP . This is because BAFA generalizes between similar beliefs.

4.2 Height map navigation

We next consider a 2-D navigation problem on an unknown continuous height map. The agent’s
state is (x, y, z, ✓), it moves on a bounded region of the (x, y) 2 8⇥ 8m plane according to
(known) noisy dynamics. The agent chooses between 5 different actions, the dynamics for (x, y)
are (xt+1, yt+1) = (xt, yt) + l(cos(✓a), sin(✓a)) + ✏

✏

✏, where ✓a corresponds to the action from this
set ✓a 2 ✓ + {�⇡

3 ,�⇡
6 , 0,

⇡
6 ,

⇡
3 }, ✏✏✏ is small isotropic Gaussian noise (� = 0.05), and l =

1
3m is

the step size. Within the bounded region, the reward function is the value of a latent height map
z = f(x, y) which is only observed at a single point by the agent. The height map is a draw from
a Gaussian process (GP), f ⇠ GP (0,K), using a multi-scale squared exponential kernel for the
covariance matrix and zero mean. In order to test long-horizon planning, we downplay situations
where the agents can simply follow the expected gradient locally to reach high reward regions by
starting the agent on a small local maximum. To achieve this we simply condition the GP draw on a
few pseudo-observations with small negative z around the agent and a small positive z at the starting
position, which creates a small bump (on average). The domain is illustrated in Figure 2-a with an
example map.

We compare BAMCP against BAFA on this domain, planning over 75 steps with a discount of 0.98.
Since BAMCP works with discrete state, we uniformly discretize the height observations. For the
state-features in BAFA, we use a regular tile coding of the space; an RBF network leads to similar
results. We use a common set of a 100 ground truth maps drawn from the prior for each algo-
rithm/setting, and we average the discounted return over 200 runs (2 runs/map) and report that result
in Figure 2-b as a function of the planning horizon (T ). This result illustrates the ability of BAFA
to cope with non-trivial planning horizons in belief space. Despite the discretization, BAMCP is
very efficient with short planning horizons, but has trouble optimizing the history policy with long
horizons because of the huge tree induced by the discretization of the observations.
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(b)
Figure 2: (a) Example map showing with the height color-coded from white (negative reward z) to black
(positive reward z). The black dots denote the location of the initial pseudo-observations used to obtain the
ground truth map. The white squares show the past trajectory of the agent, starting at the cross and ending
at the current position in green. The green trajectory is one particular forward simulation of BAFA from that
position. (b) Averaged discounted return (higher is better) in the navigation domain for discretized BAMCP and
BAFA as a function of the number of simulations (K), and as function of the planning horizon (x-axis).

4.3 Under-actuated Pendulum Swing-up

Finally, we consider the classic RL problem in which an agent must swing a pendulum from hanging
vertically down to balancing vertically up, but given only limited torque. This requires the agent to
build up momentum by swinging, before being able to balance. Note that although a wide variety
of methods can successfully learn this task given enough experience, it is a challenging domain for
Bayes-adaptive algorithms, which have duly not been tried.
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We use conventional parameter settings for the pendulum [5], a mass of 1kg, a length of 1m, a
maximum torque of 5Nm, and coefficient of friction of 0.05 kg m2 / s. The state of the pendulum
is s = (✓,

˙

✓). Each time-step corresponds to 0.05s, � = 0.98, and the reward function is R(s) =

cos(✓). In the initial state, the pendulum is pointing down with no velocity, s0 = (⇡, 0). Three
actions are available to the agent, to apply a torque of either {�5, 0, 5}Nm. The agent does not
initially know the dynamics of the pendulum. As in [5], we assume it employs independent Gaussian
processes to capture the state change in each dimension for a given action. That is, sit+1 � s

i
t ⇠

GP (m

i
a,Ki

a) for each state dimension i and each action a (where Ki
a are Squared Exponential

kernels). Since there are 2 dimensions and 3 actions, we maintain 6 Gaussian processes, and plan
in the joint space of (✓, ˙✓) together with the possible future GP posteriors to decide which action to
take at any given step.

We compare four approaches on this problem to understand the contributions of both generalization
and Bayes-Adaptive planning to the performance of the agent. BAFA includes both; we also consider
two non-Bayes-adaptive variants using the same simulation-based approach with value generaliza-
tion. In a Thompson Sampling variant (THOMP), we only consider a single posterior sample of the
dynamics at each step and greedily solve using simulation-based search. In an exploit-only variant
(FA), we run a simulation-based search that optimizes a state-only policy over the uncertainty in the
dynamics, this is achieved by running BAFA with no history feature.4 For BAFA, FA, and THOMP,
we use the same RBF network for the state-action features, consisting of 900 nodes. In addition,
we also consider the BAMCP planner with an uniform discretization of the ✓,

˙

✓ space that worked
best in a coarse initial search; this method performs Bayes-adaptive planning but with no value
generalization.
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Figure 3: Histogram of delay until the agent reaches its first balance state (|✓| < ⇡
4 for � 3s) for different

methods in the pendulum domain. (a) A standard version of the pendulum problem with a cosine cost function.
(b) A more difficult version of the problem with uncertain cost for balancing (see text). There is a 20s time limit,
so all runs which do not achieve balancing within that time window are reported in the red bar. The histogram
is computed with 100 runs with (a) K = 10000, or (b) K = 15000, simulations for each algorithm, horizon
T = 50 and (for BAFA) M = 50 particles. The black dashed line represents the median of the distribution.

We allow each algorithm a maximum of 20s of interaction with the pendulum, and consider as up-
state any configuration of the pendulum for which |✓|  ⇡

4 and we consider the pendulum balanced
if it stays in an up-state for more than 3s. We report in Figure 3-a the time it takes for each method to
reach for the first time a balanced state. We observe that Bayes-adaptive planning (BAFA or BAMCP)
outperforms more heuristic exploration methods, with most runs balancing before 8.5s. In the Suppl.
material, Figure S1 shows traces of example runs. With the same parametrization of the pendulum,
Deisenroth et al. reported balancing the pole after between 15 and 60 seconds of interaction when
assuming access to a restart distribution [5]. More recently, Moldovan et al. reported balancing after
12-18s of interaction using a method tailored for locally linear dynamics [15].

However, the pendulum problem also illustrates that BA planning for this particular task is not
hugely advantageous compared to more myopic approaches to exploration. We speculate that this

4The approximate value function for FA and THOMP thus takes the form Q(s, a) = wT �(s, a).
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is due to a lack of structure in the problem and test this with a more challenging, albeit artificial,
version of the pendulum problem that requires non-myopic planning over longer horizons. In this
modified version, balancing the pendulum (i.e., being in the region |✓| < ⇡

4 ) is either rewarding
(R(s) = 1) with probability 0.5, or costly (R(s) = �1) with probability 0.5; all other states have an
associated reward of 0. This can be modeled formally by introducing another binary latent variable
in the model. These latent dynamics are observed with certainty if the pendulum reaches any state
where |✓| � 3⇡

4 . The rest of the problem is the same. To approximate correctly the Bayes-optimal
solution in this setting, the planning algorithm must optimize the belief-state policy after it simulates
observing whether balancing is rewarding or not. We run this version of the problem with the same
algorithms as above and report the results in Figure 3-b. This hard planning problem highlights more
clearly the benefits of Bayes-adaptive planning and value generalization. Our approach manages to
balance the pendulum more 80% of the time, compared to about 35% for BAMCP, while THOMP
and FA fail to balance for almost all runs. In the Suppl. material, Figure S2 illustrates the influence
of the number of particles M on the performance of BAFA.
5 Related Work
Simulation-based search with value function approximation has been investigated in large and also
continuous MDPs, in combination with TD-learning [19] or Monte-Carlo control [3]. However, this
has not been in a Bayes-adaptive setting. By contrast, existing online Bayes-Adaptive algorithms
[22, 17, 1, 12, 9] rely on a tree structure to build a map from histories to value. This cannot benefit
from generalization in a straightforward manner, leading to the inefficiencies demonstrated above
and hindering their application to the continuous case. Continuous Bayes-Adaptive (PO)MDPs have
been considered using an online Monte-Carlo algorithm [4]; however this tree-based planning algo-
rithm expands nodes uniformly, and does not admit generalization between beliefs. This severely
limits the possible depth of tree search ([4] use a depth of 3).

In the POMDP literature, a key idea to represent beliefs is to sample a finite set of (possibly approx-
imate) belief points [21, 16] from the set of possible beliefs in order to obtain a small number of
(belief-)states for which to backup values offline or via forward search [13]. In contrast, our sam-
pling approach to belief representation does not restrict the number of (approximate) belief points
since our belief features (z(h)) can take an infinite number of values, but it instead restricts their
dimension, thus avoiding infinite-dimensional belief spaces. Wang et al.[23] also use importance
sampling to compute the weights of a finite set of particles. However, they use these particles to
discretize the model space and thus create an approximate, discrete POMDP. They solve this of-
fline with no (further) generalization between beliefs, and thus no opportunity to re-adjust the belief
representation based on past experience. A function approximation scheme in the context of BA
planning has been considered by Duff [7], in an offline actor-critic paradigm. However, this was in
a discrete setting where counts could be used as features for the belief.
6 Discussion
We have introduced a tractable approach to Bayes-adaptive planning in large or continuous state
spaces. Our method is quite general, subsuming Monte Carlo tree search methods, while allowing
for arbitrary generalizations over interaction histories using value function approximation. Each
simulation is no longer an isolated path in an exponentially growing tree, but instead value backups
can impact many non-visited beliefs and states. We proposed a particular parametric form for the
action-value function based on a Monte-Carlo approximation of the belief. To reduce the compu-
tational complexity of each simulation, we adopt a root sampling method which avoids expensive
belief updates during a simulation and hence poses very few restrictions on the possible form of the
prior over environment dynamics.

Our experiments demonstrated that the BA solution can be effectively approximated, and that the
resulting generalization can lead to substantial gains in efficiency in discrete tasks with large trees.
We also showed that our approach can be used to solve continuous BA problems with non-trivial
planning horizons without discretization, something which had not previously been possible. Using
a widely used GP framework to model continuous system dynamics (for the case of a swing-up
pendulum task), we achieved state-of the art performance.

Our general framework can be applied with more powerful methods for learning the parameters of
the value function approximation, and it can also be adapted to be used with continuous actions. We
expect that further gains will be possible, e.g. from the use of bootstrapping in the weight updates,
alternative rollout policies, and reusing values and policies between (real) steps.
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Supplementary Material

Bayes-Adaptive Simulation-based Search with Value Function Approximation
Arthur Guez, Nicolas Heess, David Silver, Peter Dayan

1 BAFA without root sampling

Algorithm 2: Bayes-Adaptive simulation-based search (no root sampling)
1: procedure Search( ht, st )
2: repeat

3: Simulate(ht, st, 0)
4: until Timeout()

5: return argmaxa Q(ht, st, a;w)

6: end procedure

7: procedure Simulate( h, s, t)
8: if t > T then return 0

9: a ⇡̃✏�greedy(Q(h, s, ·;w))

10: s0 ⇠ P+
(h, s, a, ha·, ·)

11: r  R(s, a)
12: R r + � Simulate(has0, s0, t+1)

13: w w�↵ (Q(h, s, a;w)�R)rwQ(h, s, a;w)

14: return R
15: end procedure

Algorithm 2 illustrates the vanilla version of online Sample-Based Planning using Monte-Carlo
control without root sampling. Line 10 requires sampling from P+, a transition in the augmented
space which integrates over the dynamics in the posterior distribution. We avoid these expensive
operations at every step of the simulation with the root sampling formulation.

2 Representing the Value Function

It is known that the value function for the BAMDP is convex as a function of the belief for a par-
ticular state [1, 3] (it is piecewise linear if the horizon is finite and the state and action spaces are
discrete). Suppose, for simplicity, that states and beliefs are represented exactly (i.e., for example
assuming discrete states and z

U

(h) = b(h)), then the bilinear form we introduced in Section 3.3
to represent the value function approximates the true convex value function (for a given state as a
function of the belief) with a single linear function: Q(h, s, a; {w

s

}) = hb(h),w
s

i. In general,
this is not enough to represent exactly the true value function, but our experiments suggest that it is
enough to reason approximately about the consequences of future beliefs.

We have also experimented with an alternative parametric form, an approximately piecewise linear
form that combines multiple hyperplanes via a softmax:

Q(h, s, a; {W
i

}) = k

vuut
IX

i

(z

U

(h)

T W
i

�(s, a))

k

, (1)

inspired by the work of Parr and Russell in the contex of POMDPs [2]. The constants k and I are
fixed parameters that trade-off computation and accuracy against the number of learnable parameters
(the bilinear form is recovered from the soft-max form using k = I = 1). Given sufficient compo-
nents, this form should be able to represesent the true value function arbitrarily closely. However, in
our experiments with this more general form, this advantage was outweighed by its computational
complexity, and it performed poorly in practice.
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3 BAFA implementation details

3.1 Learning Rate Schedule

The learning rate schedule we employed for all experiment is ↵(n) = a0
(n0+1)
(n0+n) , where n is the

number of weight updates, a0 is the initial learning rate, and n0 influences the speed of decay.
We did not try to heavily optimize n0 and a0 for each domain, we only hand-tuned them to avoid
divergence or too slow learning - we used the same values for the navigation and the pendulum task
(detailed below).

3.2 Reusing Particles and Learned Weights

To avoid restarting learning from scratch at every step, we try to reuse the particles U from the
previous step and warm-start weight learning from the corresponding learned values in the previous
step.

To know whether the set of particles U

t�1 can still be useful for the current planning step t (i.e.,
whether the particle set is not degenerate), we compute an estimate of the effective number of parti-
cles:

Neff =
1

P
m

z

Ut�1
m

(h

t

)

2
. (2)

If Neff <
M

3 , then we resample new particles for U
t

and reinitialize the weights. Otherwise, we set
U

t

= U

t�1 and start learning from the previously learned W.

4 Experimental Details

4.1 Bandit Domain

In the bandit domain, we set a0 = 2.5 · 10�3
, n0 = 2 · 105 for the learning rate schedule. For

the exploration parameter for Monte-Carlo control, we set ✏ = 2 · 10�2 to obtain convergence to
a near-optimal policy, but different values obtain similar results and mostly affect the distance to
optimality after convergence.

Note that there are not state features for this domain, and no discretization is needed for BAMCP
since the observations are discrete.

4.2 Navigation Domain

The multi-scale kernel K is a sum of two Squared Exponential kernels (k
�

(x, x

0
) = exp(

||x�x

0||2
2�2 ))

with different length scales: K(x, x

0
) = k

�1(x, x
0
) + k

�2(x, x
0
), where �1 = 0.75 and �2 = 1.5.

In addition, some independent Gaussian observation noise is present, with zero mean and standard
deviation �

n

= 0.2.

Since we cannot store exact samples from a Gaussian Process (it is infinite dimensional), we com-
pute the posterior mean and covariance for the height according to standard formula for a set of
256 points evenly distributed in the 2-D position space. These are then used as an approximation to
generate MDP dynamics for this map sample.

The state features �(s) is a one-hot vector, obtained by binning the pose space (x, y, ✓) into D =

1024 bins (16 ⇥ 16 ⇥ 4, uniformly for each dimension). The state-action feature vector �(s, a) is
then a vector composed of A+1 D�dimensional subvectors. Each is set to 0 except for the a-th
subvector and the last subvector, which are both set to �(s) (the last, action-independent, subvector
is there to allow generalization across actions). As we also noted in the text, an RBF network can
also be used here for similar results.

The discretization for BAMCP is made more efficient by only branching on a one-dimensional
quantity: the observed reward z. This avoids branching on the agent’s pose, something which is
already approximately captured by the exact encoding of the history in BAMCP. We uniformly
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segment heights with 0.5 increments between �15 and 15; this seemed to be what worked best for
the number of simulations we are using in this domain.

We set a0 = 5 · 10�2
, n0 = 3 · 105 for the learning rate schedule. We used a more aggressive

exploration rate ✏ = 2 · 10�1 since we were more concerned about not exploring enough during
search than fine-tuning a near-optimal policy.
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Figure S1: Histogram of delay until the agent reaches its first balance state (|✓| < ⇡
4 for � 3s). The algorithm

is BAFA, for different values of the number of particles in the belief representation (M ), in the modified version
of the pendulum problem with hidden costs. All the other parameters are as in Figure 3-b in the main text. We
observe that at least around 20 particles are needed to obtain some reasonable performance in this domain.
Increasing the number of particles past a certain point provides a diminishing return, since it requires more
parameter to learn.

4.3 Pendulum Domain

We set the GP kernels to a Squared Exponential kernel K = l · k
�

, with � = 1. In our experiments,
the kernel for the velocity dimension ( ˙✓) is scaled by a factor of l = 0.75 and the one for the angle
(✓) is scaled by a factor of l = 0.25. Some independent Gaussian observation noise is present,
with zero mean and standard deviation �

n

= 0.01. As in all the other domains, all the compared
algorithms shared the same parameters for the prior distribution.

We store the GP samples as in the navigation domain above. We also use the same parameters as
above for a0 and n0.

The state features �(s) (for BAFA, FA, and THOMP) is obtained from 900 Radial Basis Functions.
The centers of these units are uniformly arranged in the state space. Each unit outputs a similarity
measure to a (✓,

˙

✓) vector according to:

exp

 
(⇡ � ||✓ � µ

✓

|� ⇡|)2 + (

˙

✓ � µ

✓̇

)

2

0.1

!
, (3)

where (µ

✓

, µ

✓̇

) are the unit’s center coordinates. If the similarity is smaller than some small thresh-
old, we set the corresponding entry to 0 in the feature vector in order to rely on sparse vector
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computations. The state-action feature vector �(s, a) is then obtained from �(s) just like described
in the section above.

For BAMCP, we discretized the state space uniformly into 900 bins (30⇥30). That was multiplied by
two in the hidden cost version of the pendulum to account for the additional binary state component.
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Figure S2: Two runs of BAFA on the pendulum domain, in each run this is the first few seconds of interaction
of the agent with the domain. The runs are selected to illustrate a typical good run (a) and a typical slower run
(b). Top row shows the absolute value of the pendulum angle ✓. Bottom row shows the action selection. Dotted
line marks the ⇡

4 region for up-states.
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