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Introduction

We propose a normative model of the behaviour of human subjects playing a
dynamic foraging game containing a time-stochastic threat. The game is intended
to capture the essence of the conflict between approach and avoidance. The
realistic nature of the task makes planning challenging; we therefore rely on recent
innovations in model-based methods to approximate the optimal policy, and on
Approximate Bayesian Computation to fit our models.

The Task

Transform an animal paradigm to study approach-avoidance issues in humans.

(a)n = 0 (b)n = 3 (c)n = 3

•Human player is foraging for tokens ( ) on a 24x16 landscape grid,

•Tokens move randomly to different locations at regular intervals.

•Captured tokens are valuable at the end of the game (approach motivation).

• Sleeping robber wakes up at random & chases player (avoidance motivation).

•Player can only escape the robber at the safe place. Loses all tokens if caught.
• 3 threat level conditions (low,med,high) correspond to prob. of robber waking up.

Subjects: Group1: 25 participants (12 male, 13 female, 23±5yrs); Group 2: 12 controls (7 male, 5 female, 44±7 yrs),

12 hippocampus sclerosis patients (6 male, 6 female, 43±12 yrs).

Methodology: Modeling

Computational Level
•Discrete episodic MDP. Each time-step corresponds to 200ms, episode ≤ 15s.

•State: position of agent/robber, positions of tokens, wake-up state of robber,
token tally, time. Assume transition model known.

•Reward function: 1 for each token, −tally−β for getting caught.

Algorithmic Level
•Huge combinatorial state space and stochastic transitions.

•Optimal policy not computationally tractable =⇒ look for approximations.

•Many approximations perform well, but they are not all good match for the data!

•Consider heuristic planning and variants of model-based, forward-search, planning
algorithms:

Greedy Heuristic
Go to nearest token. If t ≥ τ ,
return to safe place, for some
threshold param τ .

To safe
 place

Monte-Carlo Tree Search
(MCTS)
Plan using an adaptive
forward-search tree at the
primitive action level. Converges
to optimal solution but expensive.
At leaf nodes, estimate value using
Greedy Heuristic
(MCTS+GreedyRollouts) or value
estimate using function
approximation (MCTS+VFA).

Methodology: Modeling (Cont.)

Monte-Carlo Tree Search with
macro steps (MCTS-MS)
Plan using MCTS using macro
actions. One macro action to go to
each of the token and a macro action
to return to safe place. A macro action
is interrupted if robber wakes up or if
target token disappears.

1MS+VFA
Planning 1 macro step ahead
followed by a value estimate.

Values are learned using TD(0)
in a linear architecture. Features
include distances (to robber, safe
place, tokens) and timing
information.

Methodology: Fitting

With a complex model and task, we cannot directly compute P (data|model). Instead we
rely on a likelihood-free method for model estimation:

Approximate Bayesian Computation (ABC)

•Use form of approximate rejection sampling.

•Define m :=model, θ :=params,D :=data.

•Want posterior P (m, θ| D).

•Use features φ = f (D) as summary for
data.

ABC rejection sampling alg.

1. Sample from prior m, θ ∼ P (m, θ)

2. Simulate with m, θ to obtain D̂.

3. Compute features from simulation:
φ̂ = f (D̂).

4. Accept sample if ε = ||φ− φ̂|| < ε̄.

Features (summary statistics)
Commonly used features in animal
literature on risk approach-avoidance
plus feature revealing about planning
mechanism (see right figure).

Greediness: went for nearest token /
collected tokens.

Right: We fit separately the model/parameter

for each threat condition (Best model for Low

Threat: MCTS+GR, Mid Threat:

MCTS-MS+GR, High Threat:

MCTS-MS+GR). Data from Group1.

Sanity check

Testing explanatory power of the features.

1. Generate data D from model
2 (MCTS-
MS+GreedyRollouts)

2. Run ABC with six different
models.

3. Recover model 2 as most
likely in resulting posterior.
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Risk and Behavior

Risk affects behavior in different ways. Multiple
systems at play:

•Modify/bias loss function (e.g. be sensitive to
variance).

•Pavlovian responding, pre-encoded behaviors
(PAG).

•Hippocampal lesions in rodents have some
anxiolytic characteristics. Associated with threat
level in this task.

Columnar organisation of

Periaqueductal gray (PAG).

Brain area

associated with

threat level.

Preliminary Results

Different planning models/parameters supported by data for the different
group/threat levels.

Left: Control group Right: Hipp. lesion group
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Acceptance Region

(m=1) MCTS+GreedyRollouts

(m=2) MCTS−MS+GreedyRollouts

(m=3) MCTS−MS+VFA

(m=4) MCTS+VFA

(m=5) 1MS+VFA

(m=6) Greedy Heuristic
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ABC posterior over planning models. (x-axis: error ε)
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ABC posterior over param β (Added cost) for model MCTS-MS (m=2).
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ABC posterior over param K (# sims) for model MCTS-MS (m=2).

Conclusion

• Study behavior models for risk approach-avoidance in humans.

•Complex task can be more revealing about subject’s planning mechanisms,

•But also requires more intricate modeling and fitting.

•Preliminary results suggests possible causes for discrepancies between control
and patient behavior.
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