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Abstract. The Spectro-Temporal Receptive Field 
(STRF) of an auditory neuron has been introduced 
experimentally on the base of the average spectro- 
temporal structure of the acoustic stimuli which pre- 
cede the occurrence of action potentials (Aertsen et al., 
1980, 1981). In the present paper the STRF is con- 
sidered in the general framework of nonlinear system 
theory, especially in the form of the Volterra integral 
representation. The STRF is proposed to be formally 
identified with a linear functional of the second order 
Volterra kernel. The experimental determination of the 
STRF leads to a formulation in terms of the Wiener 
expansion where the kernels can be identified by 
evaluation of the system's input-output correlations. 
For a Gaussian stimulus ensemble and a nonlinear 
system with no even order contributions of order 
higher than two, it is shown that the second order cross 
correlation of stimulus and response, normalized with 
respect to the spectral contents of the stimulus en- 
semble, leads to the stimulus-invariant spectro- 
temporal receptive field. The investigation of stimulus- 
invariance of the STRF for more general nonlinear 
systems and for stimulus ensembles which can be 
generated by nonlinear transformations of Gaussian 
noise involve the evaluation of higher order stimulus- 
response correlation functions. 

1. Introduction 

One of the possible ways to study the sensory nervous 
system is the investigation of the input-output re- 
lationships of the constitutive elements, the single neu- 
rons. A commonly used experimental approach is the 
extra-cellular recording of single unit activity under a 
variety of stimulus conditions. Various procedures are 
used to establish a relation between the sensory sti- 
mulus and the trains of action potentials, generated by 

the neuron. The result of this approach is a functional 
description of the neuron as a signal transforming 
element, participating in the neural representation of 
sensory stimuli. This functional description can be 
given in closed form (e.g. a "transfer function" of some 
kind) or by means of a set of characteristic parameters 
(e.g. latency, receptive field properties for visual neu- 
rons, best frequency for auditory neurons, etc.). One of 
the most important issues in this approach is the 
question whether the functional description of a neu- 
ron can be given in a form, such that it comprises the 
stimulus-response properties for a variety of stimulus 
conditions. In other words: is it possible to infer the 
response to a particular type of stimuli from knowl- 
edge of the response to another type of stimuli? A 
long standing issue in auditory electrophysiology is the 
question whether the responses to "complex" stimuli, 
like natural sounds, and the responses to "simple" 
stimuli, like tones or clicks, can be reconciled into one 
satisfactory model (e.g. Worden and Galambos, 1972; 
Bullock, 1977). For this purpose it evidently is nec- 
essary that the functional description of the neuron can 
be formulated as a complete and stimulus-invariant 
neural characteristic: it should cover all relevant as- 
pects of the signal transformation in a form from which 
the stimulus properties have been eliminated, both 
explicitly and implicitly. 

An important contribution to the functional de- 
scription of sensory neurons has been the concept of 
the "receptive field", originally introduced by Adrian et 
al. (1931) and Hartline (1940) (quoted by Griisser and 
Griisser-Cornehls, 1973). Applied to the visual system, 
the receptive field of a neuron can be defined as "the 
area on the retina from which the discharges of that 
neuron can be influenced" (Kuffler and Nicholls, 1977). 
Clearly this original definition of the receptive field is 
expressed in terms of the receptor surface. Later 
investigators shifted the attention towards the neural 
preference for particular relations in the stimulus 
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Fig. 1. STRF of a unit determined for a Oaussian wideband stimulus 
ensemble by averaging the pre-event dynamic spectra and sub- 
traction of the a priori expected stimulus spectrogram. Positive 
regions are displayed darker than background, negative regions are 
lighter than background (from Hermes et al., 1981) 

domain. Lettvin et al. (1959), in their famous flog- 
paper, considered the output from the frog's retina as a 
set of different "operations on the visual image", where 
each of the operations was described in terms of "what 
common factors in a large variety of  stimuli cause 
response and what common factors have no effect". In 
this approach they followed earlier suggestions from 
Pitts and McCulloch (1947). This suggests that it may 
be sensible to generalize the receptive field concept to a 
more abstract formulation as "the collection of charac- 
teristics of stimuli which affect the neural firing be- 
haviour" (e.g. Sejnowski, 1976). In the auditory litera- 
ture the concept has been used with reference to the 
spatial properties of adequate acoustic stimuli 
(Wickelgren, 1971; Knudsen and Konishi, 1978). The 
present authors have coined the term "spectro- 
temporal receptive field" to describe the sensitivity of 
single auditory neurons with respect to the spectro- 
temporal intensity density of acoustic stimuli (Aertsen 
et al., 1980). A somewhat related, although implicit, use 
of this concept has been made by Webster and Aitkin 
(1975). 

The spectro-temporal receptive field (STRF) of a 
neuron has been investigated by averaging the spectro- 
temporal intensity density of the ensemble of stimuli, 
preceding the neural events, recorded from that neu- 
ron. This intensity density can be measured by means 
of a dynamic spectrum analyser (DSA; Aertsen and 
Johannesma, 1980) or by more abstract measures 
(Johannesma and Aertsen, 1979; Johannesma et al., 
1981). This statistical approach to the functional char- 
acterization of auditory neurons has been applied to 
extra-cellular single unit recordings from the auditory 
midbrain of the grassfrog, using such various stimulus 
ensembles as tones (Aertsen et al., 1980), a wide 
ensemble of natural sounds (Aertsen et al., 1981) and 
Gaussian wideband noise (Hermes et al., 1981). An 
example of this type of analysis of the neuron's 
stimulus-response relation is shown in Fig. 1: the 
spectro-temporal receptive field of an auditory neuron, 
obtained by measuring the average pre-event spectro- 

gram for a Gaussian wideband stimulus ensemble (cf. 
Hermes et al, 1981). 

In the present paper we aim to consider the general 
properties of the "spectro-temporal receptive field" - 
concept in the context of the more general theory of 
nonlinear systems as outlined by Volterra and Wiener 
(e.g. Marmarelis and Marmarelis, 1978; Schetzen, 
1980). The requirement of stimulus-invariance of the 
STRF-concept will be shown to lead in a natural way 
to a formulation in terms of the second order Volterra 
kernel of the system governing the transformation 
from acoustic stimulus to firing probability of the 
neuron. The experimental determination of this for- 
mally defined STRF, however, requires a formulation 
in terms of the Wiener kernels, which can be estimated 
by various order cross correlation functions of sti- 
mulus and neural activity. It will be shown that the 
"measurement problem" of the STRF imposes certain 
conditions on both the system and the stimulus en- 
semble. The conditions become more severe the lower 
the order of the stimulus-event correlation functions, 
used to estimate the receptive field. 

2. Functional Representation of Systems 

This section deals with the general question of 
stimulus-invariant system characteristics: the defi- 
nitions and possible conditions for their existence. The 
attention will be restricted to single input-single output 
systems. Furthermore the system is required to be 
time-invariant: the structure and parameters of the 
system do not vary as functions of time. 

What is meant by a stimulus-invariant system 
characteristic is best exemplified by the linear system 
which transforms the input x(t) into the output y(t) 
according to 

y(t) = ~ dz h('c) x ( t -  z). (1) 

In this familiar linear convolution integral the function 
h(z), known as "impulse response" acts as the kernel of 
an integral functional which transforms the input x(t) 
into the output y(t), irrespective of the form x(t) takes : 
h(z) is a stimulus-invariant system characteristic or, 
shortly, system characteristic. In this particular exam- 
ple of a linear system it furthermore is the only one of 
interest: it completely characterizes the system. An 
equivalent formulation can be given in the frequency 
domain by Fourier transformation of (1): 

~(o~) =/~(~o) 2(@ (2) 

where co = 2=f  denotes the angular frequency. In the 
spectral domain the role of system characteristic is 
played by the Fourier transform of the impulse re- 
sponse, h(m), or transfer function. If the linear system is 



causal this implies that h('c)= 0 for all z <0, which in 
turn implies certain conditions for/~(c0) (e.g. Papoulis, 
1962). 

This result for the linear system can be extended to 
the case of nonlinear systems y(t) = (Sx)(t). If the system 
S satisfies certain smoothness conditions it can be 
represented by the functional expansion 

S(x) = Y, K.(x) (3) 
n = 0  

for a bounded input space X, where the K, are 
bounded homogeneous polynomial functionals of de- 
gree n (Palm and Poggio, 1977a). Furthermore it has 
been shown that the functional K, can be written as 
Volterra-like integrals 

(V,x)(t)= S dzl ...S&,v,(~ 1 . . . . .  %) f i  x ( t -  ~,) (4) 
i=1 

provided that the integral kernels v, are allowed to be 
distributions (i.e. using the Dirac 6-function) to include 
the representation of e.g. algebraic nonlinearities. This 
representation of the system S by a functional power 
series according to Fr6chet and Volterra is analogous 
to the Taylor expansion of ordinary functions (e.g. 
Barrett, 1963; Palm and Poggio, 1977a; Hung and 
Stark, 1977). The Volterra-type power series expansion 
can be shown to be unique, provided that all the 
kernels v,(~l, ..., ~,) are made symmetrical with respect 
to the arrangement of the variables % which can 
always be accomplished by a summation over all 
permutations of the suffices (Barrett, 1963), leading to 

1 
the appearance of an additional factor ~ in the 

formulation used by some authors (e.g. Bedrosian and 
Rice, 1971). This type of symmetry in the temporal 
domain implies the same symmetry in the frequency 
domain. 

The n-th order Volterra functional (V,x)(t) com- 
pletely describes the contribution of the n-th order 
system nonlinearity to the output y(t). It is expressed as 
an n-fold convolution integral of the input x(t) and the 
integral kernel v,(zl,...,~,), the n-th order Volterra 
kernel. The kernel v, completely characterizes the n-th 
order nonlinearity in the system. Since it is fully 
determined by the system function S, irrespective of the 
input x(t), the Volterra kernel v,(~x,...,~,) can be 
considered as an n-th order stimulus invariant system 
characteristic. In the case of a linear system the 
expansion (3) reduces to the linear convolution (1), the 
first order Volterra kernel v~(T) then equals the impulse 
response h(z). In analogy to the linear case the higher 
order Volterra kernels are sometimes referred to as 
higher order impulse responses, their n-fold Fourier 
transforms as higher order transfer functions (e.g. 

135 

Alper and Poortvliet, 1964; Brillinger, 1970; Bedrosian 
and Rice, 1971). 

If the summation in (3) extends over only a finite 
number of terms, say N, the power series expansion 
reduces to a functional polynomial. In that case S is 
called a polynomial system of order N. The practical 
importance of the polynomial system is evident: if all 
(--N) Volterra kernels are known, the output to any 
input-signal is fully specified because of 1) the com- 
pleteness and 2) the stimulus-invariance of the Volterra 
representation. This is one of the reasons why poly- 
nomial systems are widely used for the representation 
and approximation of nonlinear systems (e.g. Palm, 
1978). 

3. Experimental Determination of the 
System Characteristics 

The functional (or "black-box") approach to the ana- 
lysis of unknown systems, technical or biological, aims 

t o  determine the system kernels, introduced in the 
foregoing section. If there is a priori evidence for 
linearity and time-invariance of the system, several 
methods are available to determine the system charac- 
teristic: direct measurement of the impulse response or 
determination of the transfer function by harmonic 
analysis. An attractive alternative is the cross cor- 
relation of the system's input and output for a wi- 
deband stationary input ensemble. In the frequency 
domain this results in 

(5) 

with /~xy(co) the cross power spectrum of input and 
output and /~(co) the input power spectrum (Lee, 
1960; Papoulis, 1965). From (5) it is obvious that 
/~x(CO) should not  equal zero, which implies that 
information about h(co) can only be gained for frequen- 
cies which are present in the stimulus ensemble. The 
cross correlation approach has quite fruitfully been 
applied to the peripheral auditory nervous system for 
Gaussian wideband noise as stimulus ensemble (De 
Boer and Kuyper, 1968; MMler, 1973; Grashuis, 1974; 
Van Gisbergen et al., 1975; De Boer and De Jongh, 
1978). First order cross correlation has been applied by 
the present authors to the neural activity from the 
grassfrog's auditory midbrain for a natural stimulus 
ensemble (Aertsen et al., 1981). The results in that case, 
however, were not very informative. 

Many 'biological systems, including ones encoun- 
tered in neurophysiology are not linear. This empha- 
sises the need for the experimental determination of 
higher order system characteristics. When a priori 
information about the structure of the system is avail- 
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able, methods to determine the system kernels have 
been developed (for a review see Hung and Stark, 
1977). For the case of a general unknown system, 
however, schemes for the experimental determination 
of the Volterra kernels have not been developed so far, 
which is connected to the lack of orthogonality of the 
Volterra functionals V,. Wiener (1958) succeeded in 
rearranging the Volterra functionals in the power 
series expansion of a time-invariant, finite-memory, 
analytic nonlinear system as given in (3) in such a way 
as to obtain a new expansion 

y(t)= ~ (W,x)(t) (6) 
n = 0  

where the new functionals, the Wiener funetionals W,, 
are orthogonal with respect to a Gaussian white input 
process, where orthogonality is defined in terms of the 
expected value : 

E{(W,x)(t).(Wmx)(t)}=O for all t;n=t=m (7) 

(e.g. Lee, 1964; Marmarelis and Marmarelis, 1978). 
The Wiener functionals W,, obtained by a Gram- 

Schmidt type orthogonalization procedure applied to 
a Gaussian white stimulus ensemble turn out to be 
inhomogeneous polynomial functionals : W, is a linear 
combination of the V,, V,_ 2 '  Vn-4 etc. Associated with 
the Wiener functionals are new integral kernels, the 
Wiener kernels w,(~a, ..., z,). Like the Volterra kernels 
the Wiener kernels are symmetrical with respect to the 
arrangement of their arguments. One of the basic 
advantages of the Wiener expansion is the possibility 
of experimental determination of the various kernels, 
thanks to the orthogonality of the functionals. Various 
identification schemes have been put forward, apart 
from the Laguerre expansion procedure proposed by 
Wiener himself. The most commonly applied ones are 
based on higher order cross correlation functions of 
the system's input and output signals (Lee and 
Schetzen, 1965; Schetzen, 1974) or, equivalently, cross 
spectra in the frequency domain (French and Butz, 
1973). 

The Wiener approach of orthogonalizing the func- 
tional expansion with respect to a Gaussian white 
noise input (in fact to the integrated process, the 
Brownian motion) has been adopted and applied to 
other types of stimulus ensembles as well, e.g. Gaussian 
pseudo-noise, based on maximum length pseudo- 
random sequences (e.g. Hewlet Packard 3722), quasi- 
white signals with a symmetric probability density 
function (Marmarelis, 1977), Poisson process impulse 
sequences (Krausz, 1975; Brillinger et al., 1976), 
Markov chain inputs (Kroeker, 1980) andsignal en- 
sembles, generated as the sum of incommensurate 
sinusoids (Victor and Knight, 1979). In all these cases 

an orthogonal functional series expansion can be 
derived, with Wiener-type kernels associated with the 
various functionals. For a review of deeper mathemati- 
cal problems, associated with various functional ex- 
pansions and the identification of the kernels (e.g. the 
domain of convergence) the reader is referred to Palm 
and Poggio (1977a, b) and Palm (1978). 

Although related in origin there appear to be 
remarkable differences between the Volterra repre- 
sentation and the Wiener-type representations. Where 
the n-th order Volterra functional V n completely de- 
scribes the n-th order nonlinearity in the system, the 
inhomogeneity of the Wiener functionals causes this 
nonlinearity to be distributed over the various func- 
tionals W,, W,+ 2, W,+ 4, ..., or, conversely, the n-th 
order Wiener-type functional W, does not represent 
completely the n-th order non-linearity in the system. 
Another distinction can be found when studying sys- 
tems which can be considered to be built from more 
elementary systems such as cascade systems, systems 
with feedback etc. It has been possible to derive explicit 
and relatively simple expressions for the Volterra 
kernels of the compound system in terms of the 
Volterra kernels of the constitutive elements : algebraic 
expressions in the frequency domain versions of the 
system kernels (Barrett, 1963). The inhomogeneity of 
the Wiener functionals forms an obstacle in deriving 
similar expressions for the Wiener kernels. Marmarelis 
and Marmarelis (1978) in fact describe an application 
of the Volterra formalism to the Wiener kernels of a 
neuron model, which in that case was only allowed 
because the nonlinearities in that system were sup- 
posed to be not higher than second order, causing the 
Volterra and Wiener kernels to be identical. In a more 
general model this interchange of Volterra kernels and 
Wiener kernels, however, is no longer allowed. 
Another important distinction in the present context is 
that, while the Volterra kernels are independent of 
input properties, the Wiener-type kernels are in- 
herently coupled to the input ensemble : orthogonality 
is only guaranteed for the test input process used, with 
its specific mean and variance. Obviously the particu- 
lar definition of orthogonality which was adopted also 
influences the outcome of the Gram-Schmidt pro- 
cedure. This input-coupling is reflected in the "specific 
input problem": the Wiener-type representation is 
valid and shows the strongest convergence of all 
possible representations for the class of input signals 
the system was tested with, however no a priori 
guarantees can be given regarding the behaviour of the 
expansion, especially of truncated versions of it, when 
any other specific input signal is used (Palm and 
Poggio, 1977b; Johnson, 1980). 

The foregoing considerations suggest that for the 
investigation of neural responses to such various sti- 
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muli as noise, tones and natural sounds a system 
representation in terms of the stimulus-invariant 
Volterra formalism offers more possibilities of recon- 
ciling the various experimental results than the 
Wiener-type representations do. The Volterra kernels, 
however, are not directly accessible for experimental 
determination. A possible way out of the dilemma 
might be, to use the Volterra expansion for repre- 
sentation of  the system, while using the Wiener kernels 
and especially the cross correlation or cross spectrum 
techniques, for identification. This compound ap- 
proach then should be combined with an algorithm to 
extract the Volterra system kernels from the experi- 
mentally determined Wiener kernels. 

4. Spectro-Temporal Receptive Field 
and System Characteristics 

If the necessary convergence criteria for the V- and W- 
series are fulfilled, it is possible to give an explicit 
algebraic expression of the Wiener kernels w, in terms 
of the Volterra kernels v n, v,+ 2, v,+.4 . . . .  and, con- 
versely, of the Volterra kernels v, in terms of the 
Wiener kernels w,, w,+ 2, w,+ 4, ... (Yasui, 1979). The 
Volterra kernels are a function of the Wiener kernels as 
expressed in (8): 

v,(~l . . . . .  ~,)= (-1)~ n!v! 
v = 0  

�9 . . . . .  . . . . .  ( 8 )  

where P denotes the power spectral density of the 
Gaussian white noise for which the Wiener functionals 
have been orthogonalized. The reciprocal relation is 
obtained by interchanging v and w and omitting the 
alternating factor ( - 1 )  ~. 

Relation (8) in principle offers the possibility to 
obtain the system kernels by appropriate combination 
of the Wiener kernels which can be measured by cross 
correlation techniques. This result, however, is not 
very useful in practice because the summation in (8) 
extends to infinite order Wiener kernels. For  a con- 
tinuous system S it will always be possible to obtain a 
satisfactory approximation of the system function by a 
polynomial nonlinearity of some finite order N 
(Weierstrass' theorem); in that case v, = Wn = 0  for all 
n > N. This result, in combination with (8) leads to an 
algorithm for the calculation of the system kernels v, : 

- the even order system kernels v2, can be obtain- 
ed from the even order cross correlation functions o f  
order 2n, 2n + 2 . . . .  ,2M, where M = entier (N/2). 

- t h e  odd order system kernels v2,+1 can be 
obtained from the odd order cross correlation function 
of order 2n+ 1, 2n+3,  . . . , 2 M +  1. The immediate 
practical use of this algorithm for the moment is 

limited to fairly low order nonlinearities because of the 
rather elaborate computations involved. 

An immediate result of (8) is that for a system of 
order N it holds that v~ = w N and v N_ 1 = wN- 1, as was 
already noted for the special case of a second order 
system. Another, although related, result from (8) and 
its reciprocal version is that the contribution to the 
even resp. odd order system kernels only comes from 
the higher even resp. odd order cross correlation 
functions. For instance, no matter how large the order 
N, be it 3 or 27, as long as the highest even order 
nonlinearity in the system is of order 2, the second 
order system kernel can simply be measured by evalua- 
tion of only the second order cross correlation func- 
tion. The representation of the system in that case is 
evidently not complete, so output predictions will 
surely fail, nevertheless a stimulus invariant system 
characteristic has been derived relatively easily and 
can be evaluated independently from the system char- 
acteristics that remain to be identified. 

Summarizing 

- The first order stimulus-invariant system kernel v 1 
of a finite order nonlinear system S can be determined 
from the various odd order (1, 3, 5, ...) cross correlation 
measurements of a single Gaussian noise experiment. 
It can be determined by a single first order cross 
correlation function for systems of order up to 2, with 
possible additional higher even order nonlinearities 
(4, 6, 8,...). 

- The second order stimulus-invariant system ker- 
nel v 2 of a finite order nonlinear system S can be 
determined from the various even order (2,4, 6, ...) 
cross correlation measurements of a single Gaussian 
noise experiment. It can be determined by a single 
second order cross correlation function for systems of 
order up to 3, with possible additional higher odd 
order nonlinearities (5, 7, 9,...). 

These results can immediately be extended to the 
general case of the n-th order system kernels. 

Having discussed the existence and possible de- 
termination of general stimulus-invariant system char- 
acteristics we now return to the original question 
regarding the concept of the spectro-temporal receptive 
field (STRF). By the choice of the dimensions of 
frequency and time the STRF clearly is a second order 
system characteristic. In view of what has been said 
about stimulus-dependence we propose to let the 
second order Volterra kernel V 2 ( ' g l , T 2 )  , o r  rather its 
single Fourier transform b2(co, z) be the source of the 
STRF. This choice implies that a stimulus-invariant 
STRF of a neuron can be defined, i.e. it exists, 
provided that the neural system function meets the 
conditions of a convergent Volterra series expansion�9 
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x(t) ~ y(t) = 

b T 
r = . . . . . . . . . . . . . . . . . . . . . .  

u(t) x(t) y(t) 

L. . . . . . . . . . . . . . . . . . . . . .  -J 

Fig. 2a and b. Schematic diagram of neural system's analysis, a The 
transformation of acoustic st imulus x(t) into neural response y(t). 
b The cascade system T formed by the tandem connection of 
st imulus machine M and neuron system S. Further  explanation in 
the text 

This imposes a priori assumptions about the system: it 
is required to be time-invariant, have finite memory 
and should be sufficiently smooth in the stimulus- 
domain of interest. These requirements in general are 
not trivially met: for instance threshold-like system 
functions are clearly excluded (Palm and Poggio, 
1977b). When considering the "smoothness" of the 
neuron's response function it should be noted that this 
applies to the probability of firing, or event density, 
and not to the actual firings themselves. The experi- 
mental identification of the STRF requires additional 
conditions on the system function. For a finite order 
nonlinearity the STRF in principle can be determined 
from the Wiener kernels by cross correlation analysis 
of a Gaussian noise experiment. The present-day avail- 
able computational technology necessitates even fur- 
ther restrictions: the STRF can be measured from a 
single second order cross correlation function for 
neurons with at most a second order even nonlinearity 
in the system function. It should be realized, however, 
that the additional conditions mentioned here have to 
be imposed because of a "measurement problem". In the 
sense of abstract existence of the STRF there is no 
inherent necessity of them whatsoever. 

5. Stimulus Normalization of the STRF 

The possibility of experimental determinatibn of the 
Volterra-type STRF by means of cross correlation 
analysis of the system's in- and output has been 
discussed in Sect. 4, mainly in connection with a 
Gaussian white process as stimulus ensemble. In the 
present section we will consider the question whether 
the Volterra-type STRF can be considered as a 
stimulus-invariant neural characteristic, or, for which 
classes of stimuli can the spectro-temporal receptive 
field, disposed of obvious stimulus properties, be con- 
sidered as a single model of neural signal 
representation. 

The effect of the characteristics of the stimulus 
ensemble on the outcome of cross correlation of the 
system's in- and output can be separated into two 
components: (1) the direct effect that the probability 
density function of various spectro-temporal intensity 
patterns varies for the different stimulus ensembles, 
which directly influences the result of cross correlation 
analysis, and (2) the indirect effect that the overall 
characteristics of the stimulus ensemble ~ y  force the 
neuron into a specific state of responsiveness: the 
neuron's system function is not stimulus-invariant. In 
order to investigate the effect (2) the result of cross 
correlation should be normalized with respect to the 
direct stimulus influence (1). Only then it is possible to 
make reliable statements regarding the stimulus- 
dependence of neural characteristics like the spectro- 
temporal sensitivity. 

The experimental situation is schematically de- 
picted in Fig. 2a. The system S indicates the total 
transformation which takes place from the acoustic 
waveform x(t) into the neural response y(t). The acous- 
tic stimulus x(t) may belong to any type of stimulus 
ensemble SE, e.g. noise, tonal, natural etc. In order to 
establish a relation with the formal theory we make the 
following assumption: for each particular stimulus 
ensemble SE it is possible to define a machine M, such 
that M is able to generate the SE from Gaussian white 
noise. Furthermore it is required that M, like S, 
satisfies the conditions necessary to apply the Volterra 
representation of nonlinear systems (Sect. 2). This ex- 
tension of the actual experiment is depicted in Fig. 2b, 
where now the composite system T=  S M  is investi- 
gated with a Gaussian white stimulus ensemble. This 
approach is inspired by the procedure used by Lee and 
Schetzen (1965). 

It has been shown that the Volterra kernels of a 
cascade system can be expressed in terms of the 
Volterra kernels of the constitutive elements (Barrett, 
1963). For the first and second order kernels we have in 
the frequency domain: 

b~(co) = fi~(~o). 13s(~) (9) 

v) = v)+ + (10) 

It has been assumed here that v~ = v~ = 0 (zero input 
gives zero output). The first order cascade kernel thus 
equals the linear S-kernel weighed with the linear 
M-kernel. The second order cascade kernel is com- 
posed of two terms: the quadratic S-kernel, doubly 
weighed with the linear M-kernel plus the linear 
S-kernel, weighed with the quadratic M-kernel. This 
result can be extended to the higher order Volterra 
kernels. 

In the present context the main interest is in 
�9 determining v s which forms the basis of the spectro- 2~ 



temporal receptive field concept. The combination of 
(9) and (10) leads to 

~(~o, v) = 
C(~)~f(v) 

~M v~ (o~, v) ~ ( ~  + v) 
- ~(~o)  ~M(v) bM(co + v) (11) 

provided that the denominators do not equal zero. 
Depending on the experimental context, several ways 
to proceed are conceivable. 

1) Suppose the machine M is a real one, especially 
designed to generate, from Gaussian white noise, a 
stimulus ensemble which has properties that are at- 
tractive from the experimenter's point of viewl That 
might, for instance, be a neuro-ethological interest: 
noise is transformed into quasi-natural sounds. 
Furthermore, we assume, the machine has been de- 
signed as a polynomial system, with the system kernels 
v u known. Since in this case both the noise input u(t) 
and the neural response y(t) are observable it is 
possible, in principle, to calculate the various order 
cross correlation functions R ..... y. This enables the 
determination of the various Wiener kernels of the 
cascade w r, which, by application of (8) leads to the 
Volterra kernels v r. Substitution into the equations (9), 
(10) and their higher order equivalents thus offers the 
opportunity to determine all the S-kernels, with v s in 
particular from (11). Obviously in practice the order of 
both M and S should be as low as possible (with only 
M liable to direct influence) to avoid an enormous 
amount of computer work on the correlation func- 
tions. Although perhaps unfeasible at the moment, this 
approach in principle offers the possibility to reconcile 
the use of e.g. neuro-ethologically "relevant" signals 
with a formal, system theoretical type of analysis of the 
stimulus-response relation. The "No-acoustical dimen- 
sions" of sound (Scheich, 1977) thus might be explored, 
still retaining the connection with formal theory. 

2) Another approach starts from the stimulus en- 
semble as such. Suppose that closer inspection of the 
ensemble of interest, e.g. a wide ensemble of natural 
sounds, indicates that the ensemble can be imagined to 
be generated by a probability density function which is 
symmetrical with respect to the stimulus waveform: 
f(x) = f ( -  x), with x the vector representation in signal 
space of the acoustic stimulus x(t) with a duration 
which is long as compared to the time constants in S. 
This symmetry property, we assert (without proof}, is 
equivalent to a machine M with only odd order system 
kernels: v M = v~ t = . . . =  0. In that case the relation (11) 
reduces to 

b~(~, v)- ~(~, v) 
bM(a))b~(v ) . (12) 
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If now 1) either v~ is known or it can be determined 
from observation of u(t) and x(t) and the analysis of the 
odd order functions R, ...... and furthermore 2) v2 r can 
be determined from the observation of u(t) and y(t) and 
the analysis of the even order cross correlation func- 
tions R ..... y, then the second order system kernel v s 
can be calculated from (12). The principal advantage in 
this case as compared to the general relation (11) is 
that for the determination of v s now only the even 
order cascade correlation functions are needed. A 
similar advantage in this. case holds for v s (only odd 
order cascade correlations), it does not hold for the 
higher order S-kernels, although also there the amount 
of contributing terms is strongly reduced. 

3) A very rigorous simplification can be obtained, 
finally, if we replace the Volterra kernels in the right- 
hand side of (12) by their corresponding Wiener ker- 
nels, to give 

~(~o, v)- ~2~(~o, v) 
~t (co)~(v  ) . (13) 

The aim of this replacement is to restrict the number of 
cross correlation functions, necessary for the identifi- 
cation of the noise-stimulated systems in Fig. 2b (i.e. M 
and T) to the extreme limit of one: a single first order 
correlation R,~ for M and a single second order 
correlation R,,y for T. This simplification indeed is a 
very severe one, since some combinatorics, using the 
algebra for the Volterra kernels of cascade systems 
(Barrett, 1963) shows that the transition from (12) to 
(13) implies that: 

1) the machine M should be linear: v~ = 0 for all n 
other than 1, and 

2) S and (as a consequence) T should not contain 
even order nonlinearities of order higher than 2: 
VSz,=Vzr,=0 for all n>2.  

The simplification (13) thus reduces M to a linear 
filter: tile stimulus ensemble should be "coloured" 
Gaussian noise (cf .  Lee and Schetzen, 1965). 
Furthermore the restriction on S implies that in (13) v s 
may as well be replaced by the Wiener kernel w s. Note 
that this very condition on S was already derived in 
Sect. 4, when the experimental determination of the 
neuron's STRF from a single second order cross 
correlation function for a Gaussian white stimulus 
ensemble was discussed. 

The restrictions in case 3) allow to derive from (13) 
a very simple stimulus-normalization procedure for the 
neuron's STRF (Schetzen, 1974) 

~(o~, v)= ~x~'(~, v) 
2/~x~(co)/~x(v) (14) 

where y'(t) denotes the deviation of the system's re- 
sponse y(t) from its average value during the present 
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PolynomlaZ System 

System Representation System Identiflcat~on 

a. 

general 
response < algebraic 

prediction ~relatlous: Eq,(8) 

Gaussian 
u * eorrel.functions Stlmulus 

Ensemble 
response ~ (GSE) 

...... prediction 

b. 

h / 'eo~ou~a' 
@ D s ...... STRF z �9 = ~ c o r r e l a t i o n  / 

(even) 

"r ~ ~ eorrelation 

GSE 

Fig. 3a-e. Schematic diagram of the system theoretical context of the 
spectro-temporal receptive field STRF. a General scheme of re- 
lations between Volterra and Wiener approach to nonlinear systems. 
b Separation of even and odd order contributions, e Special case of a 
system with only a quadratic even order component. Further 
explanation in the text 

stimulus conditions: y'(t)=y(t)-E(y). The latter cor- 
rection is only effective for co + v =0,  in which case it 
effectively results in an additional subtraction of the 
stimulus spectrum: 

is(co, v)= 2/~x~(co)/~x~(v) - 2/~(co)/~=(v)" (15) 

In (14) and (15) the quadratic S-kernel is expressed in 
the second order cross spectrum of the system's in- and 
output, "normalized" with respect to the stimulus 
ensemble by double division by the stimulus spectrum 
at the appropriate frequency values. Finally, it should 
be noted that (14) and (15) describe the quadratic 
Volterra kernel, which in this case is identical to the 
second order Wiener kernel for Gaussian white noise. 
The Wiener kernel, corresponding to the coloured 
noise, however, has a different form, involving the 
spectral factorization of  / ~  (Lee, 1964; Lee and 
Schetzen, 1965). 

6. Discussion 
The concept of the Spectro-Temporal Receptive Field 
(STRF) of an auditory neuron was introduced 

(Aertsen et al., 1980) in order to give a concise 
description of stimulus parameters which appear to be 
relevant for the neuron's firing probability to various 
acoustic stimuli. Basically it may be conceived as the 
"spectacles" in the frequency-time domain through 
which the neuron "views" the acoustic environment. 
The STRF was originally defined in operational terms : 
the average spectro-temporal structure of stimulus 
elements which in time precede the occurrence of 
action potentials. Depending on the type of stimuli 
(narrowband vs. wideband), various procedures for the 
experimental determination of the neuron's spectro- 
temporal sensitivity have been developed (Aertsen et 
al., 1980, 1981; Hermes et al., 1981). In the present 
paper an attempt was made to connect this intuitive 
concept of the STRF with the formal theory of non- 
linear systems. In that context various aspects of the 
STRF have been considered: 

1) existence: under what conditions is it possible 
to define in a formal way something like a STRF of an 
auditory neuron. 

2) measurability: under what conditions is it possi- 
ble to determine the STRF experimentally. 

3) stimulus-dependence: under what conditions can 
the descriptions of the spectro-temporal sensitivity of a 
neuron, determined for different types of stimulus 
ensembles, be connected in a formal way to give the 
neuron's STRF which is disposed of direct stimulus 
effects : "stimulus-normalization". 

Existence and Measurement 

It has been shown that the combination of 1) the 
second order (i.e. spectro-temporal) transfer function- 
like character and 2) the desired intrinsic stimulus- 
invariance of the STRF leads to the proposal to 
identify the STRF with the frequency-time repre- 
sentation of the second order Volterra kernel of the 
neuron's system function. As a consequence the STRF 
of a neuron can be defined provided that the require- 
ments for convergence of the Volterra expansion are 
fulfilled. 

The possibility of experimental determination of 
the STRF leads to the requirement of a system func- 
tion behaving as a finite order non linearity, such that 
it can be represented by a polynomial system, com- 
bined with a formulation in terms of the Wiener 
kernels. In that case the STRF in principle can be 
determined from a finite number of correlation func- 
tions of the system's in- and output for a Gaussian 
stimulus ensemble, as schematically indicated in 
Fig. 3a. 

Because of the explicit relations between the 
Volterra and Wiener kernels [cf. (8)], the STRF, like 
any other even order system kernel, can be determined 
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from the even order cross correlation functions, where- 
as the odd order kernels can be measured by evaluat- 
ing the odd order correlation functions. The terms 
"summated" and "compound" correlation in Fig. 3b 
serve to indicate the relation with the summated and 
compound PSTH (Goblick and Pfeiffer, 1969; 
Johannesma, 197l) as estimators of the even respec- 
tively odd part of the neuron's firing probability. 

In case the even part of the system function con- 
tains only a quadratic term, the STRF can be mea- 
sured from a single second order correlation for a 
Gaussian input, irrespective of the form the odd part of 
S takes (cf. Fig. 3c). This situation is directly connected 
to the operational definition of the STRF given hith- 
erto and the analysis procedures associated with it. 

Stimulus- I nvarianc e 

It has been shown that for those stimulus ensembles 
that can be generated from Gaussian white noise 
through transformation by a finite order machine M, 
the neuron's STRF in principle can be determined, 
disposed of the direct effects of the spectro-temporal 
structure of the stimulus ensemble: stimulus normali- 
zation. The introduction of M, which should pref- 
erably be of low order to minimize comPutational 
effort, evidently imposes a restriction on the stimulus 
ensembles which come into consideration. Further 
investigation into the possible range of stimuli to be 
generated in this way, particularly in view of the ideas 
about artificial, quasi-natural sounds originating from 
neuro-ethology, appears to be worthwhile in this 
context. 

For the simple situation, indicated in Fig. 3c, com- 
bined with a linear machine M (i.e. the stimulus 
ensemble consists of "coloured" Gaussian noise) the 
stimulus-normalization appears to be a straightfor- 
ward double spectral division of the system's second 
order cross spectrum, in fact already a result from Lee 
and Schetzen (1965). 

After stimulus-normalization has been applied, the 
neuron's STRF can be used to investigate the possible 
stimulus-effects on the neuron's firing behaviour. The 
STRF then may turn out to be completely stimulus- 
invariant i.e. identical for various technical and natural 
stimuli, or it may be invariant only over a restricted 
range of stimulus variation. The idea of stimulus 
invariance is strongly connected to the procedure of 
output-prediction, although certainly not equivalent to 
it. For a succesful prediction of the response to a 
particular type of stimuli from knowledge of the 
response properties to other stimuli, the invariance 
over the specified stimulus ensembles of system charac- 
teristics like the STRF is a necessary prerequisite. It is 
however not a sufficient condition since the STRF only 

provides the second order contribution to the response 
estimation. The more and the stronger other contri- 
butions in the neuron's system function are present, the 
more the prediction in general is bound to deviate 
from the actual response. Conversely, if the predicted 
response fails to meet the actual response this points to 
one or both of two possible reasons : the STRF is not 
stimulus-invariant over the specific stimulus range 
and/or it does not represent the complete or dominat- 
ing term in the system function. The STRF provides a 
faithful representation of the system's quadratic com- 
ponent within the range of its stimulus-invariance. 

In case an adequate stimulus-normalization pro- 
cedure cannot be applied, because of theoretical or 
computational restrictions, the descriptive value of the 
spectro-temporal sensitivity as measured by corre- 
lation analysis is, strictly spoken, limited to the domain 
of stimuli it was determined with. There are no formal 
guarantees of its significance outside that particular 
stimulus ensemble. However, this should not be taken 
to imply that nothing could be learned from setting 
foot on theoretical terra incognita, where educated 
guesses and great care in the interpretation of results 
should be used side by side. 

Additional Remarks 

An interesting aspect of the STRF not discussed so far 
is its reducibility: does the STRF provide a minimal 
representation of the quadratic system component or 
can it be decomposed into separate constitutive ele- 
ments. It might for instance prove possible to factorize 
the STRF into separate spectral and temporal com- 
ponents. There are no a priori grounds for reducibility, 
the results of experimental analysis should provide the 
arguments in every particular case (Eggermont et al., 
1981). The STRF-concept should not be taken to 
necessarily comprise, for all neurons, all stimulus 
properties, relevant for the neuron's firing behaviour. 
Fundamental questions regarding auditory perception 
may be condensed into "what" and "where", respec- 
tively concerning the "identification" and the "locali- 
zation" of a sound source. The present discussion as 
well as the experiments that inspired it were primarily 
focussed on the identification properties of the audi- 
tory system. Therefore it may well be conceivable that 
the STRF for some neurons should rather be viewed as 
a particular cross-section of a multi-dimensional (e.g. a 
spatio-spectro-temporal) domain in stimulus space, 
reflecting the neuron's sensitivity function. 

The analysis of the STRF forms a specific example 
of the more general approach of stimulus functional 
correlation (Johannesma, 1980). Other examples have 
been described in the literature (e.g. Moller, 1973; De 
Boer, 1979). A qualitative formulation of this statistical 
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a p p r o a c h  can be found  as ear ly  as 1959 in the visual 
l i te ra ture  (Let tvin  et al., 1959): 

"We should present the frog with as wide a range of 
visible stimuli as we could, not only spots of light but 
things he would be disposed to eat, other things from 
which he would flee, sundry geometrical figures, sta- 
tionary and moving about, etc. From the variety of 
stimuli we should then try to discover what common 
features were abstracted by whatever groups of fibers 
we could find in the optic nerve . . . .  What, then, does a 
particular fiber in the optic nerve measure? We have 
considered it to be how much there is in a stimulus of 
that quality which excites the fiber maximally, naming 
that quality." 

The ac tua l  choice of  the s t imulus  funct ional  used in 
the  cor re la t ion  reflects some of  the bas ic  m o d e l  as- 
sumpt ions  a b o u t  the system under  invest igat ion.  The  
choice of  a spec t ro - t empora l  analysis  leading  to the 
S T R F  impl ic i t ly  supposes  the dynamic  spec t rum ana-  
lysis to  form an  i m p o r t a n t  con t r ibu t ion  to the neuron ' s  
system function.  If, for instance,  i n fo rma t ion  is avail-  
able  tha t  the neural  t r ansducer  mechan i sm conta ins  
nonl inear i t ies  l ike exponent ia ls  it  might  be wise to 
recons ider  the a p p r o a c h  using a p o l y n o m i a l  repre-  
sen ta t ion  and,  instead,  to use this in fo rmat ion  in the  
fo rmula t ion  of  the re levant  s t imulus  (or response-)  
functional .  All  re levant  in fo rmat ion  regard ing  possible  
mode l s  should  be used in o rde r  to lend  add i t i ona l  
s uppo r t  to the funct ional  analysis  of  neura l  funct ion 
which, when used in its b a r e s t  form of  "b lack -box"  
analysis  u n d o u b t e d l y  shows several  shor tcomings  (e.g. 
Johnson ,  1980). 

The system theore t ica l  inves t iga t ion  of  the aud i to ry  
nervous  system, especial ly the more  centra l  par t s  of  it, 
shou ld  be based  on two ma in  sources of  in sp i ra t ion :  
a rguments  f rom ethology should  be used for the con-  
s t ruc t ion  of  a s t imulus ensemble  which poses the 
re levant  quest ions  to the system under  invest igat ion,  
whereas  findings f rom electrophysiology should  be 
i n c o r p o r a t e d  into  possible  mode l s  of  neura l  function. 
The  analysis  of  the s t imulus -normal i za t ion  p rocedure  
of  the S T R F  (Sect. 5) suggests tha t  a s t r a igh t fo rward  
formal  a p p r o a c h  to the neural  r ep resen ta t ion  of  acous-  
tic s t imuli  devia t ing  more  and  more  f rom being 
Gauss ian ,  i.e. involving a s t imulus mach ine  M of  
increas ing complexi ty ,  in pr inciple  necessi tates  the use 
of  ever more  sophis t ica ted  analysis  p rocedures  and  a 
co r r e spond ing  increase in the necessary compu te r  
power.  
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