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Abstract

An essential step in understanding the function of sensory nervous sys-
tems is to characterize as accurately as possible the stimulus-response
function (SRF) of the neurons that relay and process sensory informa-
tion. One increasingly common experimental approach is to present a
rapidly varying complex stimulus to the animal while recording the re-
sponses of one or more neurons, and then to directly estimate a func-
tional transformation of the input that accounts for the neuronal firing.
The estimation techniques usually employed, such as Wiener filtering or
other correlation-based estimation of the Wiener or Volterra kernels, are
equivalent to maximum likelihood estimation in a Gaussian-output-noise
regression model. We explore the use of Bayesian evidence-optimization
techniques to condition these estimates. We show that by learning hyper-
parameters that control the smoothness and sparsity of the transfer func-
tion it is possible to improve dramatically the quality of SRF estimates,
as measured by their success in predicting responses to novel input.

1 Introduction

A common experimental approach to the measurement of the stimulus-response function
(SRF) of sensory neurons, particularly in the visual and auditory modalities, is “reverse
correlation” and its related non-linear extensions [1]. The neural response ������� to a con-
tinuous, rapidly varying stimulus � ����� , is measured and used in an attempt to reconstruct
the functional mapping �������	��
� � ������� . In the simplest case, the functional is taken to
be a finite impulse response (FIR) linear filter; if the input is white the filter is identified
by the spike-triggered average of the stimulus, and otherwise by the Wiener filter. Such
linear filter estimates are often called STRFs for spatio-temporal (in the visual case) or
spectro-temporal (in the auditory case) receptive fields. The general the SRF may also be
parameterized on the basis of known or guessed non-linear properties of the neurons, or
may be expanded in terms of the Volterra or Wiener integral power series. In the case
of the Wiener expansion, the integral kernels are usually estimated by measuring various
cross-moments of ������� and � ����� .
In practice, the stimulus is often a discrete-time process ������� . In visual experiments, the
discretization may correspond to the frame rate of the display. In the auditory experiments
that will be considered below, it is set by the rate of the component tone pulses in a random



chord stimulus. On time-scales finer than that set by this discretization rate, the stimulus is
strongly autocorrelated. This makes estimation of the SRF at a finer time-scale extremely
non-robust. We therefore lose very little generality by discretizing the response with the
same time-step, obtaining a response histogram � � ��� .
In this discrete-time framework, the estimation of FIR Wiener-Volterra kernels (of any
order) corresponds to linear regression. To estimate the first-order kernel up to a given
maximum time lag � , we construct a set of input lag-vectors ��� � � � ��� � �������
	��������� � � . If
a single stimulus frame, � � , is itself a � -dimensional vector (representing, say, pixels in
an image or power in different frequency bands) then the lag vectors are formed by con-
catenating � stimulus frames together into vectors of length ��� . The Wiener filter is then
obtained by least-squares linear regression from the lag vectors ��� � � to the corresponding
observed activities � � ��� .
Higher-order kernels can also be found by linear regression, using augmented versions
of the stimulus lag vectors. For example, the second-order kernel is obtained by regres-
sion using input vectors formed by all quadratic combinations of the elements of � � (or,
equivalently, by support-vector-like kernel regression using a homogeneous second-order
polynomial kernel). The present paper will be confined to a treatment of the linear case.
It should be clear, however, that the basic techniques can be extended to higher orders at
the expense of additional computational load, provided only that a sensible definition of
smoothness in these higher-order kernels is available.

The least-squares solution to a regression problem is identical to the maximum likelihood
(ML) value of the weight vector � for the probabilistic regression model with Gaussian
output noise of constant variance ��� :

� ����� ����� � � ��� ��!"� � �$# (1)

As is common with ML learning, weight vectors obtained in this way are often overfit
to the training data, and so give poor estimates of the true underlying stimulus-response
function. This is the case even for linear models. If the stimulus is uncorrelated, the ML-
estimated weight along some input dimension is proportional to the observed correlation
between that dimension of the stimulus and the output response. Noise in the output can
introduce spurious input-output correlations and thus result in erroneous weight values.
Furthermore, if the true relationship between stimulus and response is non-linear, limited
sampling of the input space may also lead to observed correlations that would have been
absent given unlimited data.

The statistics and machine learning literatures provide a number of techniques for the con-
tainment of overfitting in probabilistic models. Many of these approaches are equivalent
to the maximum a posteriori (MAP) estimation of parameters under a suitable prior distri-
bution. Here, we investigate an approach in which these prior distributions are optimized
with reference to the data; as such, they cease to be “prior” in a strict sense, and instead
become part of a hierarchical probabalistic model. A distribution on the regression param-
eters is first specified up to the unknown values of some hyperparameters. These hyper-
parameters are then adjusted so as to maximize the marginal likelihood or “evidence” —
that is, the probability of the data given the hyperparameters, with the parameters them-
selves integrated out. Finally, the estimate of the parameters is given by the MAP weight
vector under the optimized “prior”. Such evidence optimization schemes have previously
been used in the context of linear, kernel and Gaussian-process regression. We show that,
with realistic data volumes, such techniques provide considerably better estimates of the
stimulus-response function than do the unregularized (ML) Wiener estimates.



2 Test data and methods

A diagnostic of overfitting, and therefore divergence from the true stimulus-response rela-
tionship, is that the resultant model generalizes poorly; that is, it does not predict actual
responses to novel stimuli well. We assessed the generalization ability of parameters cho-
sen by maximum likelihood and by various evidence optimization schemes on a set of
responses collected from the auditory cortex of rodents. As will be seen, evidence op-
timization yielded estimates that generalized far better than those obtained by the more
elementary ML techniques, and so provided a more accurate picture of the underlying
stimulus-response function.

A total of 205 recordings were collected extracellularly from 68 recording sites in the
thalamo-recipient layers of the left primary auditory cortex of anaesthetized rodents (6
CBA/CaJ mice and 4 Long-Evans rats) while a dynamic random chord stimulus (described
below) was presented to the right ear. Recordings often reflected the activity of a number of
neurons; single neurons were identified by Bayesian spike-sorting techniques [2, 3] when-
ever possible. The stimulus consisted of 20 ms tone pulses (ramped up and down with a
5 ms cosine gate) presented at random center frequencies, maximal intensities, and times,
such that pulses at more than one frequency might be played simultaneously. This stimu-
lus resembled that used in a previous study [4], except in the variation of pulse intensity.
The times, frequencies and sound intensities of all tone pulses were chosen independently
within the discretizations of those variables (20 ms bins in time, 1/12 octave bins covering
either 2–32 or 25–100 kHz in frequency, and 5 dB SPL bins covering 25–70 dB SPL in
level). At any time point, the stimulus averaged two tone pulses per octave, with an ex-
pected loudness of approximately 73 dB SPL for the 2–32 kHz stimulus and 70 dB SPL for
the 25–100 kHz stimulus. Each pulse was ramped up and down with a 5 ms cosine gate.
The total duration of each stimulus was 60 s. At each recording site, the 2–32 kHz stimulus
was repeated for 20 trials, and the 25–100 kHz stimulus for 10 trials.

Neural responses from all 10 or 20 trials were histogrammed in 20 ms bins aligned with
stimulus pulse durations. Thus, in the regression framework, the instantaneous input vector
� � comprised the sound amplitudes at each possible frequency at time � , and the output � �
was the number of spikes per trial collected into the � th bin. The repetition of the same
stimulus made it possible to partition the recorded response power into a stimulus-related
(signal) component and a noise component. (For derivation, see Sahani and Linden, “How
Linear are Auditory Cortical Responses?”, this volume.) Only those 92 recordings in which
the signal power was significantly greater than zero were used in this study.

Tests of generalization were performed by cross-validation. The total duration of the stim-
ulus was divided 10 times into a training data segment (9/10 of the total) and a test data
segment (1/10), such that all 10 test segments were disjoint. Performance was assessed by
the predictive power, that is the test data variance minus average squared prediction error.
The 10 estimates of the predictive power were averaged, and normalized by the estimated
signal power to give a number less than 1. Note that the predictive power could be negative
in cases where the mean was a better description of the test data than was the model pre-
diction. In graphs of the predictive power as a function of noise level, the estimate of the
noise power is also shown after normalization by the estimated signal power.

3 Evidence optimization for linear regression

As is common in regression problems, it is convenient to collect all the stimulus vectors
and observed responses into matrices. Thus, we described the input by a matrix � , the � th
column of which is the input lag-vector � � . Similarly, we collect the outputs into a row
vector � , the � th element of which is � � . The first ����� time-steps are dropped to avoid



incomplete lag-vectors. Then, assuming independent noise in each time bin, we combine
the individual probabilities to give:���

� � � ! � ! � ��� � �� � ����� �
	 ���
�� � � �� � � � � � � � � � � � � � � �� � � (2)

We now choose the prior distribution on � to be normal with zero mean (having no prior
reason to favour either positive or negative weights) and covariance matrix � . Then the
joint density of � and � is� �

��! � � � !�� !"� � � � �� �
���� � �� � � � � � � � � � � � � � � � �
� � � � ��� �  � ��� (3)

where the normalizer
� � � � ����� � 	 ��� ����� � . Fixing � to be the observed values, this

implies a normal posterior on � with variance � � �����! "�#%$ � �� � �  and mean & � � ��'� "�# .
By integrating this normal density in � we obtain an expression for the evidence:( � � ! � � � � � �

� � � !)� ! � � � �+* � ���,� �
� ����� ��	 � � ����� � �-���� � �� � � 	

� � �
� � � �
��. � � � �

(4)

We seek to optimize this evidence with respect to the hyperparameters in � , and the noise
variance � � . To do this we need the respective gradients. If the covariance matrix contains
a parameter / , then the derivative of the log-evidence with respect to / is given by00 /214365 ( � �� Tr � � � �7� �8&9& � � 00 / � �� � (5)

while the gradient in the noise variance is00 � � 14365 ( � �
� �

�
��: $ Tr ; 	 �<��� � �= $ �

� �
� � �8& � � � � � �8& � � � � � (6)

where : is the number of training data points.

4 Automatic relevance determination (ARD)

The most common evidence optimization scheme for regression is known as automatic
relevance determination (ARD). Originally proposed by MacKay and Neal, it has been
used extensively in the literature, notably by MacKay[5] and, in a recent application to
kernel regression, by Tipping [6]. The prior covariance on the weights is taken to be of the
form � �?> �� with > �?@BA�CED��GFIH � . That is, the weights are taken to be independent with
potentially different prior precisions � FJH � . Substitution into (5) yields00 FIH 14365 ( � �� � F � H �<� H4H �8& �H � # (7)

Previous authors have noted that, in comparison to simple gradient methods, iteration of
fixed point equations derived from this and from (6) converge more rapidly:F,K
LNMH � � � F H � H4H& �H (8)

and
� � � �OKPLNM � � � �8& � � � � � � � � & �:��<Q H � � �<� HRHSFIH � (9)

.
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Figure 1: Comparison of various STRF estimates for the same recording.

A pronounced general feature of the maxima discovered by this approach is that many of
the optimal precisions are infinite (that is, the variances are zero). Since the prior distri-
bution is centered on zero, this forces the corresponding weight to vanish. In practice, as
the iterated value of a precision crosses some pre-determined threshold, the corresponding
input dimension is eliminated from the regression problem. The results of evidence opti-
mization suggest that such inputs are irrelevant to predicting the output; hence the name
given to this technique. The resulting MAP estimates obtained under the optimized ARD
prior thus tend to be sparse, with only a small number of non-zero weights often appearing
as isolated spots in the STRF.

The estimated STRFs for one example recording using ML and ARD are shown in the
two left-most panels of figure 1 (the other panels show smoothed estimates which will be
described below), with the estimated weight vectors rearranged into time-frequency matri-
ces. The sparsity of the ARD solution is evident in the reduction of apparent estimation
noise at higher frequencies and longer time lags. This reduction improves the ability of
the estimated model to predict novel data by more than a factor of 2 in this case. Assessed
by cross-validation, as described above, the ARD estimate accurately predicted 26% of the
signal power in test data, whereas the ML estimate (or Wiener kernel) predicted only 12%.

This improvement in predictive quality was evident in every one of the 92 recordings with
significant signal power, indicating that the optimized prior does improve estimation accu-
racy. The left-most panel of figure 2 compares the normalized cross-validation predictive
power of the two STRF estimates. The other two panels show the difference in predictive
powers as function of noise (in the center) and as a histogram (right). The advantage of the
evidence-optimization approach is clearly most pronounced at higher noise levels.

−1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

normalized ML predictive power

no
rm

al
iz

ed
 A

R
D

 p
re

di
ct

iv
e 

po
w

er

0 25 50
0

0.2

0.4

0.6

0.8

1

normalized noise power
0 20 40

0

0.2

0.4

0.6

0.8

1

no. of recordings

no
rm

al
iz

ed
 p

re
di

ct
io

n 
di

ffe
re

nc
e

(A
R

D
 −

 M
L)

Figure 2: Comparison of ARD and ML predictions.



5 Automatic smoothness determination (ASD)

In many regression problems, such as those for which ARD was developed, the different
input dimensions are often unrelated; indeed they may be measured in different units. In
such contexts, an independent prior on the weights, as in ARD, is reasonable. By contrast,
the weights of an STRF are dimensionally and semantically similar. Furthermore, we might
expect weights that are nearby in either time or frequency (or space) to be similar in value;
that is, the STRF is likely to be smooth on the scale at which we model it.

Here we introduce a new evidence optimization scheme, in which the prior covariance
matrix is used to favour smoothing of the STRF weights. The appropriate scale (along
either the time or the frequency/space axis) cannot be known a priori. Instead, we introduce
hyperparameters ��� and � � that set the scale of smoothness in the spectral (or spatial) and
temporal dimensions respectively, and then, for each recording, optimize the evidence to
determine their appropriate values.

The new parameterized covariance matrix, � , depends on two ��� � matrices ��� and � � .
The �	��
 � �� element of each of these gives the squared distance between the weights � H and
��� in terms of center frequency (or space) and time respectively. We take

� � �-�� � ��� � �� �
���
� �� $ � �

� �� � � ! (10)

where the exponent is taken element by element. In this scheme, the hyperparameters ���
and � � set the correlation distances for the weights along the spectral (spatial) and temporal
dimensions, while the additional hyperparameter � sets their overall scale.

Substitution of (10) into the general hyperparameter derivative expression (5) gives00 � 14365 ( � �� Tr ; � � �7� � &9& � � � � �= (11)

and 00 ��� 14365 ( � � �� Tr � � � �<� �8&9& � � � �� � ��� � �����
� � �  � (12)

(where the � denotes the Hadamard or Schur product; i.e., the matrices are multiplied ele-
ment by element), along with a similar expression for �

����� 14365 ( . In this case, optimization
is performed by simple gradient methods.

The third panel of figure 1 shows the ASD-optimized MAP estimate of the STRF for the
same example recording discussed previously. Optimization yielded smoothing width es-
timates of 0.96 (20 ms) bins in time and 2.57 (1/12 octave) bins in frequency; the effect of
this smoothing of the STRF estimate is evident. ASD further improved the ability of the
linear kernel to predict test data, accounting for 27.5% of the signal power in this example.

In the population of 92 recordings (figure 3, upper panels) MAP estimates based on the
ASD-optimized prior again outperformed ML (Wiener kernel) estimates substantially on
every single recording considered, particularly on those with poorer signal-to-noise ratios.
They also tended to predict more accurately than the ARD-based estimates (figure 3, lower
panels). The improvement over ARD was not quite so pronounced (although it was fre-
quently greater than in the example of figure 1).

6 ARD in an ASD-defined basis

The two evidence optimization frameworks presented above appear inconsistent. ARD
yields a sparse, independent prior, and often leads to isolated non-zero weights in the esti-
mated STRF. By contrast, ASD is explicitly designed to recover smooth STRF estimates.
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Figure 3: Comparison of ASD predictions to ML and ARD.

Nonetheless, both frameworks appear to improve the ability of estimated models to gen-
eralize to novel data. We are thus led to consider ways in which features of both methods
may be combined.

By decomposing the prior covariance � ��� � � , it is possible to rewrite the joint density
of (3) as���
� ! � � � !)� ! � ����� �-�� � �� � � � � � � � �  � � � � � � � � � �� � � � �

� � � � � � �  � �� � � � #
(13)

Making the substitutions ��� ��� � and ��� ��� �� � � , this expression may be recognized
as the joint density for a transformed regression problem with unit prior covariance (the
normalizing constant, not shown, is appropriately transformed by the Jacobean associated
with the change in variables). If now we introduce and optimize a diagonal prior covariance
of the ARD form in this transformed problem, we are indirectly optimizing a covariance
matrix of the form � �	� � > �� � in the original basis. Intuitively, the sparseness driven by
ARD is applied to basis vectors drawn from the rows of the transformation matrix � , rather
than to individual weights. If this basis reflects the smoothness prior obtained from ASD
then the resulting prior will combine the smoothness and sparseness of two approaches.

We choose � to be the (positive branch) matrix square root of the optimal prior matrix
� (see (10)) obtained from ASD. If the eigenvector decomposition of � is 
 ��
 � , then
� � 
 � � � 
 � , where the diagonal elements of � � � are the positive square roots of the
eigenvalues of � . The components of � , defined in this way, are Gaussian basis vectors
slightly narrower than those in � (this is easily seen by noting that the eigenvalue spectrum
for the Toeplitz matrix � is given by the Fourier transform, and that the square-root of
the Gaussian function in the Fourier space is a Gaussian of larger width, corresponding
to a smaller width in the original space). Thus, weight vectors obtained through ARD
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Figure 4: Comparison of ARD in the ASD basis and simple ASD

in this basis will be formed by a superposition of Gaussian components, each of which
individually matches the ASD prior on its covariance.

The results of this procedure (labelled ASD/RD) on our example recording are shown in
the rightmost panel of figure 1. The combined prior shows a similar degree of smoothing
to the ASD-optimized prior alone; in addition, like the ARD prior, it suppresses the appar-
ent background estimation noise at higher frequencies and longer time lags. Predictions
made with this estimate are yet more accurate, capturing 30% of the signal power. This
improvement over estimates derived from ASD alone is borne out in the whole population
(figure 4), although the gain is smaller than in the previous cases.

7 Conclusions

We have demonstrated a succession of evidence-optimization techniques which appear to
improve the accuracy of STRF estimates from noisy data. The mean improvement in pre-
diction of the ASD/RD method over the Wiener kernel is 40% of the stimulus-related signal
power. Considering that the best linear predictor would on average capture no more than
40% of the signal power in these data even in the absence of noise (Sahani and Linden,
“How Linear are Auditory Cortical Responses?”, this volume), this is a dramatic improve-
ment. These results apply to the case of linear models; our current work is directed toward
extensions to non-linear SRFs within an augmented linear regression framework.
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