Assignment 4 Theoretical Neuroscience

Maneesh Sahani

4 November 2011

1. Doubly stochastic Poisson processes and spike patterns.

In the 1980s Abeles suggested that the integrative properties of neurons, coupled with the density of connections between them, would lead to self-supporting synchronous volleys of firing that could propagate between different constellations of neurons with extremely high temporal precision (a phenomenon called a "synfire chain"). This prompted an experimental search for the precisely timed spike patterns that might be a signature of such a phenomenon. A single neuron might participate in more than one synchronous volley of a synfire chain. Thus, in part because of technological limitations, many experiments looked for patterns in the spike train of a single cell. Here, we will look at one such hypothetical experiment.

Suppose the mean response rate of a neuron to a stimulus flashed shortly before time 0, is given by the function

$$\overline{\lambda}(t) = \Theta(t)\overline{\rho}e^{-t/2}$$

where $\Theta(t)$ is the Heaviside function (0 if t < 0 and 1 if $t \ge 0$) and $\overline{\rho}$ and T are constants. We begin by making the common assumption that the firing of the neuron is described by an inhomogeneous Poisson process with intensity $\overline{\lambda}(t)$.

- (a) On average, how many spikes will the cell emit in response to the stimulus (assume the experimental counting interval is $\gg T$).
- (b) Under the inhomogeneous Poisson model, what is the intensity with which we would observe spikes within small intervals around three specific times $t, t + \tau_1$ and $t + \tau_2$ all greater than 0. [We want the marginal probability of those 3 times don't assume anything about what the cell is doing at any other time].
- (c) Integrate your expression with respect to t to find $\sigma(\tau_1, \tau_2)$, the intensity of observing a pattern with intervals τ_1 and τ_2 at any point. [Assume τ_1 and τ_2 are positive.]
- (d) An experimenter reports that, looking at a neuron with $\overline{\rho} = 80s^{-1}$ and T = 0.05s and binning spikes in 1 ms intervals, he observed the pattern (5, 50) (i.e., $\tau_1 = 5$ ms and $\tau_2 = 50$) 8 times in 1000 trials. Given your result above, is this surprising? Assume that he looked only for the (5,50) ms pattern. [OPTIONAL Why should that matter to your answer?]

Looking more closely at his data, you note that the Fano Factor of the spike count is about 2. This leads you to consider a doubly stochastic Poisson process model instead, with an intensity

$$\lambda(t) = \Theta(t)\rho e^{-t/T}$$

which depends on a random variable $\rho \sim \text{Gamma}(\alpha, \beta)$.

- (e) Use moment matching to estimate values of the parameters α and β . [That is, find an expression for the variance of a Poisson *counting* distribution with random mean parameter drawn from Gamma(α, β). Find values of α and β for which this expression matches the observed Fano factor.]
- (f) Repeat the calculation for the expected number of (5,50) ms patterns. [Hint: you'll need the third moment of the Gamma distribution]. Is the experimental result surprising now?

2. The expected autocorrelation function of a renewal process.

In class, we analysed the autocorrelation function of a point process in terms of its intensity function $\lambda(t, ...)$. For a self-exciting point process, λ depends on the past history of spiking, and so computing the expected value of the correlation in this way can be quite difficult. Fortunately, for the special case of a renewal process (i.e. a point process with iid inter-event intervals), there is an alternative way to compute the autocorrelation function.

Consider a neuron whose firing can be described by a renewal process with inter-spike interval probability density function $p(\tau)$.

- (a) Given an event at time t, the probability that the next spike arrives in the interval $I_{\tau} = [t + \tau, t + \tau + d\tau)$ is $p(\tau)d\tau$. What is the probability that the *second* spike after the one at t arrives in I_{τ} instead? The third spike?
- (b) What is the probability that, given a spike at t, there is a spike in I_{τ} , regardless of the number of intervening spikes?
- (c) Your answer to the previous question has given you the positive half of the autocorrelation function. What does the negative half look like? What happens at $\tau = 0$?
- (d) Show that for a Gamma process with ISI density

$$p(\tau) = \beta^2 \tau e^{-\beta \tau},$$

the Laplace transform of (the right half of) the expected autocorrelation function is

$$\mathcal{L}[Q(\tau)](s) = \frac{\beta^2}{(\beta+s)^2 - \beta^2}.$$

[Hint: Recall that $\mathcal{L}[f](s) = \int_0^\infty dx \ f(x)e^{-sx}$. Apply the Laplace convolution theorem, after setting $p(\tau) = 0$ for $\tau < 0$. Finally, use the fact that for |x| < 1, $(1-x)^{-1} = 1 + x + x^2 + x^3 + ...$]

(e) Find the expected power spectrum (i.e. the Fourier transform of the expected autocorrelation function) for this process.