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Studying sensory systems

x(t) y(t)

Decoding: x̂(t)= G[y(t)] (reconstruction)
Encoding: ŷ(t)= F [x(t)] (systems identification)



General approach

Goal: Estimate p(spike|x,H) [or λ(t|x[0, t), H(t))] from data.

• Naive approach: measure p(spike, H|x) directly for every setting of x.

– too hard: too little data and too many potential inputs.

• Estimate some functional f (p) instead (e.g. mutual information)

• Select stimuli efficiently

• Fit models with smaller numbers of parameters



Spikes, or rate?

Most neurons communicate using action potentials — statistically de-
scribed by a point process:

P
(
spike ∈ [t, t + dt)

)
= λ(t|H(t), stimulus, network activity)dt

To fully model the response we need to identify λ. In general this de-
pends on spike history H(t) and network activity. Three options:

• Ignore the history dependence, take network activity as source of
“noise” (i.e. assume firing is inhomogeneous Poisson or Cox process,
conditioned on the stimulus).

• Average multiple trials to estimate

λ(t, stimulus) = lim
N→∞

1

N

∑
n

λ(t|Hn(t), stimulus, networkn)

the mean intensity (or PSTH), and try to fit this.

• Attempt to capture history and network effects in simple models.



Spike-triggered average

Decoding: mean of P (x | y = 1)

Encoding: predictive filter



Linear regression

y(t) =

∫ T

0

x(t− τ )w(τ )dτ

W (ω) =
X(ω)∗Y (ω)

|X(ω)|2
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Linear models

So the (whitened) spike-triggered average gives the minimum-squared-
error linear model.

Issues:

• overfitting and regularisation

– standard methods for regression

• negative predicted rates

– can model deviations from background

• real neurons aren’t linear

– models are still used extensively
– interpretable suggestions of underlying sensitivity
– may provide unbiased estimates of cascade filters (see later)



How good are linear predictions?

We would like an absolute measure of model performance.

Measured responses can never be predicted perfectly:

• The measurements themselves are noisy.

Models may fail to predict because:

• They are the wrong model.

• Their parameters are mis-estimated due to noise.



Estimating predictable power

Psignal

Pnoise

response︸ ︷︷ ︸
r(n)

= signal + noise

P(r(n)) = Psignal + Pnoise

P(r(n)) = Psignal +
1

N
Pnoise

⇒

P̂signal =

1

N − 1

(
NP(r(n))− P(r(n))

)
P̂noise = P(r(n))− P̂signal



Signal power in A1 responses
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Testing a model

For a perfect prediction〈
P(trial)− P(residual)

〉
= P(signal)

Thus, we can judge the performance of a model by the normalized pre-
dictive power

P(trial)− P(residual)

P̂(signal)

Similar to coefficient of determination (r2), but the denominator is the
predictable variance.



Predictive performance
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Extrapolating the model performance



Jackknifed estimates
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Extrapolated linearity
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Simulated (almost) linear data
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Linear fits to non-linear functions



Linear fits to non-linear functions

(Stimulus dependence does not always signal response adaptation)



Approximations are stimulus dependent

(Stimulus dependence does not always signal response adaptation)



Consequences

Local fitting can have counterintuitive consequences on the interpreta-
tion of a “receptive field”.



“Independently distributed” stimuli

Knowing stimulus power at any set of points in analysis space provides
noinformation about stimulus power at any other point.

DRC:

Space

Spectrotemporal

Ripple:

Independence is a property of stimulus and analysis space.

Christianson, Sahani, and Linden (2008)



Nonlinearity & non-independence distort RF estimates

Stimulus may have higher-order correlations in other analysis spaces
— interaction with nonlinearities can produce misleading “receptive fields.”

Christianson, Sahani, and Linden (2008)



What about natural sounds?

Multiplicative RF
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Usually not independent in any space — so STRFs may not be conser-
vative estimates of receptive fields.

Christianson, Sahani, and Linden (2008)



Beyond linearity



Beyond linearity

Linear models often fail to predict well. Alternatives?

•Wiener/Volterra functional expansions

– M-series
– Linearised estimation
– Kernel formulations

• LN (Wiener) cascades

– Spike-trigger covariance (STC) methods
– “Maximimally informative” dimensions (MID) ⇔ ML nonparametric

LNP models
– ML Parametric GLM models

• NL (Hammerstein) cascades

– Multilinear formulations



Non-linear models

The LNP (Wiener) cascade

k n

Rectification addresses negative firing rates. Possible biophysical justi-
fication.



LNP estimation – the Spike-triggered ensemble



Single linear filter

STA.

Non-linearity.

STA unbiased for spherical (elliptical) data.

Bussgang.

Non-spherical inputs.

Biases.



Multiple filters

Distribution changes along relevant directions (and, usually, along all
linear combinations of relevant directions).

Proxies for distribution:

•mean: STA (can only reveal a single direction)

• variance: STC

• binned (or kernel) KL: MID “maximally informative directions” (equiv-
alent to ML in LNP model with binned nonlinearity)



STC

Project out STA:

X̃ = X − (Xksta)kTsta; Cprior =
X̃TX̃

N
;Cspike =

X̃Tdiag(Y )X̃

Nspike

Choose directions with greatest change in variance:
k- argmax
‖v‖=1

vT(Cprior − Cspike)v

⇒ find eigenvectors of (Cprior − Cspike) with large (absolute) eigvals.



STC

Reconstruct nonlinearity (may assume separability)



Biases

STC (obviously) requires that the nonlinearity alter variance.

If so, subspace is unbiased if distribution

• radially (elliptically) symmetric

• AND independent

⇒ Gaussian.

May be possible to correct by transformation, subsampling or weighting
(latter two at cost of variance).



More LNP methods

• Non-parametric non-linearities: “Maximally informative dimensions”
(MID)⇔ “non-parametric” maximum likelihood.

– Intuitively, extends the variance difference idea to arbitrary differ-
ences between marginal and spike-conditioned stimulus distribu-
tions.

kMID = argmax
k

KL[P (k · x)‖P (k · x|spike)]

– Measuring KL requires binning or smoothing—turns out to be equiv-
alent to fitting a non-parametric nonlinearity by binning or smooth-
ing.

– Difficult to use for high-dimensional LNP models.

• Parametric non-linearities: the “generalised linear model” (GLM).



Generalised linear models

LN models with specified nonlinearities and exponential family noise.

In general (for monotonic g):

y ∼ ExpFamily[µ(x)]; g(µ) = βx

For our purposes easier to write

y ∼ ExpFamily[f (βx)]

(Continuous time) point process likelihood with GLM-like dependence of
λ on covariates is approached in limit of bins→ 0 by either Poisson or
Bernoulli GLM.

Mark Berman and T. Rolf Turner (1992) Approximating Point Process Likelihoods with GLIM

Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1):31-38.



Generalised linear models

Poisson distribution⇒ f = exp() is canonical (natural params = βx).

Canonical link functions give concave likelihoods⇒ unique maxima.

Generalises (for Poisson) to any f which is convex and log-concave:

log-likelihood = c− f (βx) + y log f (βx)

Includes:

• threshold-linear

• threshold-polynomial

• “soft-threshold” f (z) = α−1 log(1 + eαz).



Generalised linear models

ML parameters found by

• gradient ascent

• IRLS

Regularisation by L2 (quadratic) or L1 (absolute value – sparse) penal-
ties (MAP with Gaussian/Laplacian priors) preserves concavity.



Linear-Nonlinear-Poisson (GLM)

stimulus filter point
nonlinearity

   Poisson
spiking

stimulus

k
(t)



GLM with history-dependence

• rate is a product of stim- and spike-history dependent terms 

• output no longer a Poisson process

• also known as “soft-threshold” Integrate-and-Fire model

exponential
nonlinearity

+
post-spike filter 

h

(t)

stimulus filter

(Truccolo et al 04)

k

   Poisson
spiking

conditional intensity
(spike rate)

stimulus



filter output

traditional IF

filter output

“hard threshold”

“soft-threshold” IF
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GLM dynamic behaviors

time after spike time (ms)
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GLM dynamic behaviors
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GLM dynamic behaviors

stimulus x(t)
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Generalized Linear Model (GLM)

post-spike filter

exponential
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spiking

stimulus

stimulus filter
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multi-neuron GLM 
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multi-neuron GLM 
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conditional intensity
(spike rate)

...

time t

GLM equivalent diagram:



Multilinear models

Input nonlinearities (Hammerstein cascades) can be identified in a mul-
tilinear (cartesian tensor) framework.



Input nonlinearities

The basic linear model (for sounds):

r̂(i)︸︷︷︸
predicted rate

=
∑
jk

wtf
jk︸︷︷︸

STRF weights

s(i− j, k)︸ ︷︷ ︸
stimulus power

,

How to measure s? (pressure, intensity, dB, thresholded, . . . )

We can learn an optimal representation g(.):

r̂(i) =
∑
jk

wtf
jkg(s(i− j, k)).

Define: basis functions {gl} such that g(s) =
∑
lw

l
lgl(s)

and stimulus array Mijkl = gl(s(i− j, k)). Now the model is

r̂(i) =
∑
j

wtf
jkw

l
lMijkl or r̂ = (wtf ⊗ wl) •M.



Multilinear models

Multilinear forms are straightforward to optimise by alternating least squares.

Cost function:
E =

∥∥∥r− (wtf ⊗ wl) •M
∥∥∥2

Minimise iteratively, defining matrices

B = wl •M and A = wtf •M

and updating

wtf = (BTB)−1BTr and wl = (ATA)−1ATr.

Each linear regression step can be regularised by evidence optimisa-
tion (suboptimal), with uncertainty propagated approximately using vari-
ational methods.



Some input non-linearities
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Parameter grouping

Separable STRF: (time) ⊗ (frequency). The input nonlinearity model is
separable in another sense: (time, frequency) ⊗ (sound level).

intensitytime
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Other separations:

• (time, sound level) ⊗ (frequency): r̂ = (wtl ⊗ wf) • M,

• (frequency, sound level) ⊗ (time): r̂ = (wfl ⊗ wt) • M,

• (time) ⊗ (frequency) ⊗ (sound level): r̂ = (wl ⊗ wf ⊗ wl) • M.
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Contextual influences

stimulus
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Contextual influences

Introduce extra dimensions:

• τ : time difference between contextual and primary tone,

•φ: frequency difference between contextual and primary tone,

•λ: sound level of the contextual tone.

Model the effective sound level of a primary tone by

Level(i, j)→ Level(i, j) · (const + Context(i, j)) .

and the context by

Context(i, j) =
∑
m,n,p

wτmw
φ
n w

λ
p hp(s(i−m, j + n))

This leads to a multilinear model

r̂ = (wt ⊗ wf ⊗ wl ⊗ wτ ⊗ wφ ⊗ wλ) •M.



Inseparable contexts

We can also allow inseparable contexts (and principal fields), dropping
the level-nonlinearity to reduce parameters.

r(i) = c +
∑
jk

wtf
jk soundi−j,k

(
1 +

∑
mn

wτφmn soundi−j−m,k+n
)

stimulus

w
τφ

w
tfPSTH

time

fre
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Performance
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