Global plan

- Reinforcement learning I:
 - prediction
 - classical conditioning
 - dopamine
- Reinforcement learning II:
 - dynamic programming; action selection
 - Pavlovian misbehaviour
 - vigor
- Chapter 9 of Theoretical Neuroscience

(thanks to Yael Niv)

Conditioning

prediction:of important eventscontrol:in the light of those predictions

- Ethology
 - optimality
 - appropriateness
- Psychology
 - classical/operant
 - conditioning

- Computation
 - dynamic progr.
 - Kalman filtering
- Algorithm
 - TD/delta rules
 - simple weights
- Neurobiology neuromodulators; amygdala; OFC
- nucleus accumbens; dorsal striatum

Animals learn predictions

- ð
- = Unconditioned Stimulus

- = Conditioned Stimulus
- **DDD** = Unconditioned Response (reflex); Conditioned Response (reflex)

Animals learn predictions

very general across species, stimuli, behaviors

But do they really?

1. Rescorla's control

temporal contiguity is not enough - need contingency

P(food | light) > P(food | no light)

But do they really?

2. Kamin's blocking

contingency is not enough either... need surprise

But do they really?

3. Reynold's overshadowing

seems like stimuli compete for learning

Theories of prediction learning: Goals

- Explain how the CS acquires "value"
- When (under what conditions) does this happen?
- Basic phenomena: gradual learning and extinction curves
- More elaborate behavioral phenomena
- (Neural data)

P.S. Why are we looking at old-fashioned Pavlovian conditioning?
→ it is the perfect uncontaminated test case for examining prediction learning on its own

Rescorla & Wagner (1972)

error-driven learning: change in value is proportional to the difference between actual and predicted outcome

$$\Delta V_{CS_i} = \eta \left(r_{US} - \sum_j V_{CS_j} \right)$$

Assumptions:

1. learning is driven by error (formalizes notion of surprise)

2. summations of predictors is linear

A simple model - but very powerful!

- explains: gradual acquisition & extinction, blocking, overshadowing, conditioned inhibition, and more..
- predicted overexpectation

note: US as "special stimulus"

Rescorla-Wagner learning

$$V_{t+1} = V_t + \eta(r_t - V_t)$$

- how does this explain acquisition and extinction?
- what would V look like with 50% reinforcement? eg. 1 1 0 1 0 0 1 1 1 0 0
 - what would V be on average after learning?
 - what would the error term be on average after learning?

Rescorla-Wagner learning

$$V_{t+1} = V_t + \eta (r_t - V_t)$$

how is the prediction on trial (t) influenced by rewards at times (t-1), (t-2), ...?

$$V_{t+1} = (1 - \eta)V_t + \eta r_t$$

the R-W rule estimates expected reward using a weighted average of past rewards

recent rewards weigh more heavily why is this sensible? learning rate = forgetting rate!

Summary so far

Predictions are useful for behavior

T 7

Animals (and people) learn predictions (Pavlovian conditioning = prediction learning)

Prediction learning can be explained by an error-correcting learning rule (Rescorla-Wagner): predictions are learned from experiencing the world and comparing predictions to reality

Marr:

$$V = \sum_{j} V_{CS_{j}}$$
$$E = \left\langle (r_{US} - V)^{2} \right\rangle$$
$$\Delta V_{CS_{i}} \alpha \frac{\partial E}{\partial V_{CS_{i}}} = (r_{US} - V) = \delta$$

 $\nabla \mathbf{u}$

But: second order conditioning

number of phase 2 pairings

what do you think will happen?

what would Rescorla-Wagner learning predict here?

animals learn that a predictor of a predictor is also a predictor of reward! \Rightarrow not interested solely in predicting immediate reward

lets start over: this time from the top

Marr's 3 levels:

• The problem: optimal prediction of future reward

want to predict expected sum of future reward in a trial/episode

(N.B. here t indexes time within a trial)

• what's the obvious prediction error?

$$\delta^{\rm RW} = r - V_{\rm CS}$$

$$\delta_t = \sum_{i=t}^T r_i - V_t$$

what's the obvious problem with this?

lets start over: this time from the top

Marr's 3 levels:

• The problem: optimal prediction of future reward

want to predict expected sum of future reward in a trial/episode

$$V_{t} = E[r_{t} + r_{t+1} + r_{t+2} + \dots + r_{T}]$$

Bellman eqn for policy evaluation

lets start over: this time from the top

Marr's 3 levels:

- The problem: optimal prediction of future reward
- The algorithm: temporal difference learning

$$V_t = E[r_t] + V_{t+1}$$
$$V_t \leftarrow (1 - \eta)V_t + \eta(r_t + V_{t+1})$$

temporal difference prediction error δ_t

compare to:
$$V_{T+1} \leftarrow V_T + \eta (r_T - V_T)$$

prediction error

Summary so far

Temporal difference learning versus Rescorla-Wagner

- derived from first principles about the future
- explains everything that R-W does, and more (eg. 2nd order conditioning)
- a generalization of R-W to real time

Back to Marr's 3 levels

- The problem: optimal prediction of future reward
- The algorithm: temporal difference learning
- Neural implementation: does the brain use TD learning?

Dopamine

Parkinson's Disease \rightarrow Motor control + initiation?

Intracranial self-stimulation; Drug addiction; Natural rewards \rightarrow Reward pathway? \rightarrow Learning?

Also involved in:

- Working memory
- Novel situations
- ADHD

. . .

Schizophrenia

Role of dopamine: Many hypotheses

- Anhedonia hypothesis
- Prediction error (learning, action selection)
- Salience/attention
- Incentive salience
- Uncertainty
- Cost/benefit computation
- Energizing/motivating behavior

dopamine and prediction error

$$\delta_t = r_t + V_{t+1} - V_t$$

22

prediction, no reward

no prediction

prediction, reward

prediction error hypothesis of dopamine

The idea: Dopamine encodes a reward prediction error

prediction error hypothesis of dopamine

at end of trial: $\delta_t = r_t - V_t$ (just like R-W)

$$V_{t} = \eta \sum_{i=1}^{t} (1 - \eta)^{t - i} r_{i}$$

Bayer & Glimcher (2005)

what drives the dips?

- why an effect of reward at all?
 - Pavlovian influence

Matsumoto & Hikosaka (2007)

what drives the dips?

Matsumoto & Hikosaka (2007)

rHab -> rSTN

RMTg (predicted R/S)

Jhou et al, 2009

Where does dopamine project to? Basal ganglia

Several large subcortical nuclei (unfortunate anatomical names follow structure rather than function, eg caudate + putamen + nucleus accumbens are all relatively similar pieces of striatum; but globus pallidus & substantia nigra each comprise two different things)

Where does dopamine project to? Basal ganglia

inputs to BG are from all over the cortex (and topographically mapped)

Corticostriatal synapses: 3 factor learning

but also amygdala; orbitofrontal cortex; ...

striatal complexities

Cohen & Frank, 2009

Dopamine and plasticity

Prediction errors are for learning...

Cortico-striatal synapses show complex dopamine-dependent plasticity

Wickens et al, 1996

Risk Experiment

Neural results: Prediction Errors

what would a prediction error look like (in BOLD)?

Neural results: Prediction errors in NAC

can actually decide between different neuroeconomic models of risk

* thanks to Laura deSouza

punishment prediction error

TD error
$$\delta_t = r_t + V_{t+1} - V_t$$

punishment prediction error

experimental sequence.....

Ben Seymour; John O'Doherty

punishment prediction error

TD prediction error: ventral striatum

punishment prediction

dorsal raphe (5HT)?

punishment

- dips below baseline in dopamine
 - Frank: D2 receptors particularly sensitive
 - Bayer & Glimcher: length of pause related to size of negative prediction error
- but:
 - can't afford to wait that long
 - negative signal for such an important event
 - opponency a more conventional solution:
 - serotonin...

generalization

generalization

what if there is

- generalizing cue before the door?
- random interval between cue and door?

random-dot discrimination

differential reward (0.16ml; 0.38ml)

Sakagami (2010)

other paradigms

- inhibitory conditioning
- transreinforcer blocking
- motivational sensitivities
- backwards blocking
 - Kalman filtering
- downwards unblocking
- primacy as well as recency (highlighting)
 - assumed density filtering

Summary of this part: prediction and RL

Prediction is important for action selection

- The problem: prediction of future reward
- The algorithm: temporal difference learning
- Neural implementation: dopamine dependent learning in BG
- ⇒ A precise computational model of learning allows one to look in the brain for "hidden variables" postulated by the model
- \Rightarrow Precise (normative!) theory for generation of dopamine firing patterns
- ⇒ Explains anticipatory dopaminergic responding, second order conditioning
- ⇒ Compelling account for the role of dopamine in classical conditioning: prediction error acts as signal driving learning in prediction areas

Striatum and learned values

Striatal neurons show ramping activity that precedes a reward (and changes with learning!)

(Daw)

Phasic dopamine also responds to...

- Novel stimuli
- Especially salient (attention grabbing) stimuli
- Aversive stimuli (??)
- Reinforcers and appetitive stimuli induce approach behavior and learning, but also have attention functions (elicit orienting response) and disrupt ongoing behaviour.
- → Perhaps DA reports salience of stimuli (to attract attention; switching) and not a prediction error? (Horvitz, Redgrave)