Global plan

* Reinforcement learning I:
— prediction
— classical conditioning
— dopamine
* Reinforcement learning Il:
— dynamic programming; action selection
— Pavlovian misbehaviour

— vigor

e Chapter 9 of Theoretical Neuroscience




Conditioning

. of important events
in the light of those predictions

— optimality — dynamic progr.
— appropriateness — Kalman filtering

— classical/operant — TD/delta rules
conditioning — simple weights

neuromodulators; amygdala; OFC
nucleus accumbens:; dorsal striatum
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Unconditioned Stimulus

Conditioned Stimulus

Unconditioned Response (reflex);
Conditioned Response (reflex)
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Animals learn predictions
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100
80
60
40 .
0
1 2 3 456 7 8 91011121314

Blocks of 10 Trials

. .
o * .
.

very general across
species, stimuli, behaviors




But do they really?

1. Rescorla’s control

-~ US (dots)

US (dots) contingent on CS

US (dots) not contingent on CS
(but CS-US pairing unchanged)

temporal contiguity is not enough - need contingency

P(food | light) > P(food | no light)




But do they really?

2. Kamin’s blocking

— Moise albne WM Lightalone # Compound G35 (nolse & light)

Phase 1 (Bloc t::: ing CSakns) Phase 2 ( ':3'13'IIIT'I|Z:Z'Z:Z' und C5)
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contingency Is not enough either... need surprise




But do they really?

3. Reynold’s overshadowing
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seems like stimuli compete for learning




Theories of prediction learning: Goals

Explain how the CS acquires “value”

When (under what conditions) does this happen?

Basic phenomena: gradual learning and extinction curves
More elaborate behavioral phenomena

(Neural data)

P.S. Why are we looking at old-fashioned Pavlovian conditioning?

- Itis the perfect uncontaminated test case for examining prediction
learning on its own




Rescorla & Wagner (1972)

error-driven learning: change in value is proportional to the difference
between actual and predicted outcome

Assumptions:
1. learning is driven by error (formalizes notion of surprise)
2. summations of predictors is linear

A simple model - but very powerful!

— explains: gradual acquisition & extinction, blocking, overshadowing,
conditioned inhibition, and more..

— predicted overexpectation
note: US as “special stimulus”




Rescorla-Wagner learning

Vt+1 :Vt T /7(rt _Vt)

how does this explain acquisition and extinction?
what would V look like with 50% reinforcement?eg. 11010011100

— what would V be on average after learning?

— what would the error term be on average after learning?

100
trial number




Rescorla-Wagner learning

Vt+1 :Vt +,7(rt _Vt)

how is the prediction on trial (t) influenced by rewards at times (t-1), (t-2), ...7?
Vi = (1_I7)Vt + /]

the R-W rule estimates
expected reward using a
weighted average of past
rewards

recent rewards weigh more heavily
why is this sensible?
learning rate = forgetting rate!




Summary so far

Predictions are useful for behavior

Animals (and people) learn predictions (Pavlovian conditioning =
prediction learning)

Prediction learning can be explained by an error-correcting learning rule
(Rescorla-Wagner): predictions are learned from experiencing the world
and comparing predictions to reality
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But: second order conditioning

phase 1: > -

phase 2: é\) —_— gjﬁ

Q

_ _ number of phase 2 pairings
what do you think will happen?

what would Rescorla-Wagner learning predict here?

animals learn that a predictor of a predictor is also a predictor of reward!
= not interested solely in predicting immediate reward




lets start over: this time from the top

Marr’s 3 levels:
e The problem: optimal prediction of future reward

want to predict expected sum of
future reward in a trial/episode

(N.B. here t indexes time within a trial)

« what'’s the obvious prediction error?

e what’s the obvious problem with this?




lets start over: this time from the top

Marr’s 3 levels:
e The problem: optimal prediction of future reward

want to predict expected sum of
future reward in a trial/episode

Vi=Eli+h thot.

Bellman eqgn
for policy
evaluation




lets start over: this time from the top

Marr’s 3 levels:
e The problem: optimal prediction of future reward
e The algorithm: temporal difference learning

Vt = E[rt] +Vt+1

Vt — (1_/7)Vt +/7(|’t +Vt+1)

|\ J
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temporal difference prediction error o,

compare to: VT+1 — VT + /7(rT _VT)




prediction error

o, =1 +V, -V,

no prediction prediction, reward prediction, no reward




Summary so far

Temporal difference learning versus Rescorla-Wagner
« derived from first principles about the
« explains everything that R-W does, and more (eg. 2" order conditioning)

e ageneralization of R-W to real time




Back to Marr’'s 3 levels

e The problem: optimal prediction of future reward
e The algorithm: temporal difference learning
* Neural implementation: does the brain use TD learning?




Dopamine

Parkinson’s Disease

— Motor control +
Initiation?

Dorsal Striatum (Caudate, Putamen)
Prefrontal Cortex

/ = . . =
Nucleus Accumbens b Intracranial self-stimulation;
(Ventral Striatum) o
Drug addiction;
Natural rewards
— Reward pathway?
-~ Learning?

Also involved in:
Working memory
Novel situations
ADHD
Schizophrenia

Amygdala

Ventral Tegmental Substantia Nigra

Area




Role of dopamine: Many hypotheses

Anhedonia hypothesis

Prediction error (learning, action selection)
Salience/attention

Incentive salience

Uncertainty

Cost/benefit computation
Energizing/motivating behavior




dopamine and prediction error

5t = I +Vt+1 _Vt

. no prediction prediction, reward prediction, no reward




prediction error hypothesis of dopamine

The idea: Dopamine encodes
a reward prediction error

okt

h-IHmI.LLI-qI-#-]l#J-

Tobler et al, 2005
0.0 ml 0.025 ml 0.075 ml 0.15 ml 0.25 ml

Onset of conditioned stimuli predicting expected reward value

Fiorillo et al, 2003




prediction error hypothesis of dopamine

1 — model prediction
——data
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model prediction error

Bayer & Glimcher (2005)




what drives the dips?

Target Saccade Outcome
Tone Reward 5 Tone
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Tone Reward
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Left saccade Right saccade
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No reward Mo reward

Number of trials

n
o
o

0
200 400 600 0 200 400 600
Saccade latency (ms) Saccade latency (ms)

« why an effect
of reward at
all?

— Pavlovian
Influence

Matsumoto & Hikosaka (2007)
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response (spikes s77) response (spikes s7)

what drives the dips?

Reward on-off Post-target

Saccade latency

Spikes s

(ms)

Matsumoto & Hikosaka (2007)
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Where does dopamine project to? Basal ganglia

Several large subcortical nuclei

(unfortunate anatomical names follow structure rather than function, eg caudate
+ putamen + nucleus accumbens are all relatively similar pieces of strlatum
but globus pallidus & substantia nigra each comprise two different things)
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Where does dopamine project to? Basal ganglia

iInputs to BG are from all over the cortex (and topographically mapped)

Midline and intralaminar
thalmic nuclei

Voorn et al, 2004




Corticostriatal synapses: 3 factor learning

Cortex
Stimulus
Representation

Striatum
learned values

PPTN, @
habenula etc

P\ TA. SNC

but also amygdala; orbitofrontal cortex; ...
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striatal complexities

Frontal Cortex
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Cohen & Frank, 2009



cortical
B afferents
= s

Dopamine and plasticity

Prediction errors are for learning...

Cortico-striatal synapses show complex | fopeain
dopamine-dependent plasticity

\

striatal
neuron
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Risk Experiment

5 stimuli:
40¢
20¢

0/40¢
o¢

o¢

19 subjects (dropped 3 non learners, N=16)
3T scanner, TR=2sec, interleaved

234 trials: 130 choice, 104 single stimulus
randomly ordered and counterbalanced



Neural results: Prediction Errors

what would a prediction error look like (in BOLD)?
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Neural results: Prediction errors in NAC
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(marked per subject”) (avg over all subjects)

can actually decide between different neuroeconomic models of risk

* thanks to Laura deSouza



punishment prediction error

Value Prediction error
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punishment prediction error

experimental sequence

Brain responses

/3

TD model

Prediction error
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Ben Seymour; John O’Doherty




punishment prediction error

ventral striatum




punishment prediction

right anterior insula

High
Pain

Cue A =P Cuc B =P




punishment

e dips below baseline In
dopamine
— Frank: D2 receptors
particularly sensitive

— Bayer & Glimcher: length of
pause related to size of
negative prediction error

e but:
— can’t afford to wait that long

— negative signal for such an
Important event

— opponency a more
conventional solution:
e serotonin...
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generalization

dopamine cells also respond for similar stimuli:

MML&AL elaina tisma
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door +




generalization

what If there 1s
e generalizing cue before the door?

e random interval between cue and door?
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random-dot discrimination
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Sakagami (2010)




other paradigms

Inhibitory conditioning
transreinforcer blocking
motivational sensitivities

backwards blocking
— Kalman filtering
downwards unblocking

primacy as well as recency (highlighting)
— assumed density filtering




Summary of this part: | et

prediction and RL [ opeeavaney, |
Prediction Is important for action selection Lﬁ‘ﬂm

3

The problem: prediction of future reward g
The algorithm: temporal difference learning
Neural implementation: dopamine dependent learning in BG

A precise computational model of learning allows one to look in the
brain for “hidden variables” postulated by the model

Precise (normative!) theory for generation of dopamine firing patterns

Explains anticipatory dopaminergic responding, second order
conditioning

Compelling account for the role of dopamine in classical conditioning:
prediction error acts as signal driving learning in prediction areas




Striatum and learned values

Striatal neurons show ramping activity that precedes a reward (and changes with
learning!)

start food
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Phasic dopamine also responds to...

Novel stimuli
Especially salient (attention grabbing) stimuli
Aversive stimuli (?7?)

Reinforcers and appetitive stimuli induce approach behavior and
learning, but also have attention functions (elicit orienting response)
and disrupt ongoing behaviour.

Perhaps DA reports salience of stimuli (to attract attention; switching)
and not a prediction error? (Horvitz, Redgrave)




