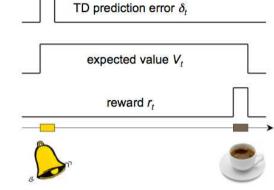
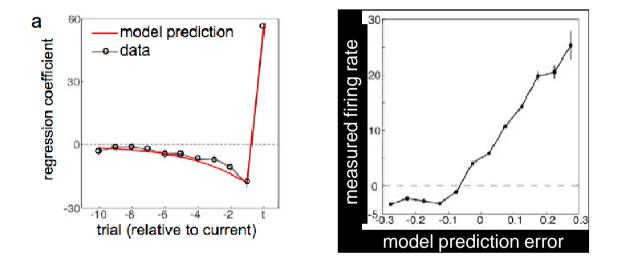
Summary of part I: prediction and RL

Prediction is important for action selection

- The problem: prediction of future reward
- The algorithm: temporal difference learning
- Neural implementation: dopamine dependent learning in BG
- ⇒ A precise computational model of learning allows one to look in the brain for "hidden variables" postulated by the model
- \Rightarrow Precise (normative!) theory for generation of dopamine firing patterns
- \Rightarrow Explains anticipatory dopaminergic responding, second order conditioning
- ⇒ Compelling account for the role of dopamine in classical conditioning: prediction error acts as signal driving learning in prediction areas



prediction error hypothesis of dopamine



at end of trial: $\delta_t = r_t - V_t$ (just like R-W)

$$V_{t} = \eta \sum_{i=1}^{t} (1 - \eta)^{t - i} r_{i}$$

Bayer & Glimcher (2005)

Global plan

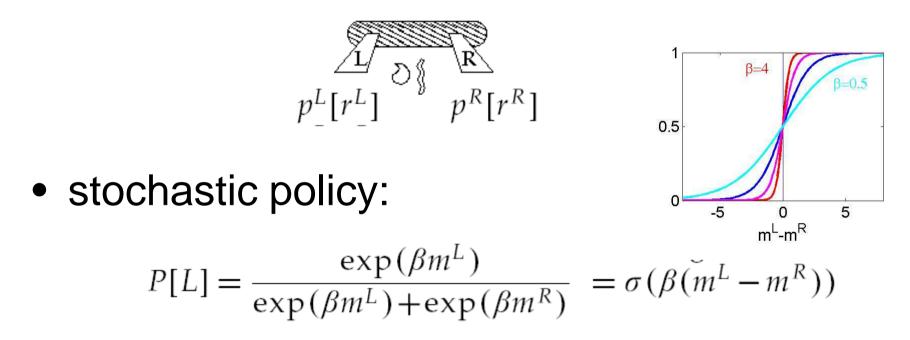
- Reinforcement learning I:
 - prediction
 - classical conditioning
 - dopamine
- Reinforcement learning II:
 - dynamic programming; action selection
 - Pavlovian misbehaviour
 - vigor
- Chapter 9 of Theoretical Neuroscience

Action Selection

active coping strategies evoked from the IPAG and the dIPAG

- Evolutionary specification
- Immedia
- leg fle threat / confrontational defense hypertension and tachycardia extracranial vasodilation hindlimb & renal vasoconstriction non-opioid mediated analgesia – Thorno flight dm hypertension and tachycardia dl hindlimb vasodilation - pigeor extracranial & renal vasoconstriction non-opioid mediated analgesia Delayed passive coping strategies evoked from the vlPAG - these quiescence hyporeactivity mazes hypotension bradycardia Bandler; opioid mediated analgesia Blanchard - chess

Immediate Reinforcement

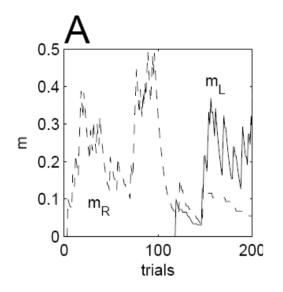


• based on action values: $m^L; m^R$

Indirect Actor

use RW rule:

$$m^L \rightarrow m^L + \epsilon \delta$$
 with $\delta = r^L - m^L$



$$\left\langle r^{L}\right\rangle_{p^{L}}=0.05;\left\langle r^{R}\right\rangle_{p^{R}}=0.25$$

switch every 100 trials

Direct Actor

$$E(\mathbf{m}) = P[L]\langle r^{L} \rangle + P[R]\langle r^{R} \rangle$$

$$\frac{\partial P[L]}{\partial m^{L}} = \beta P[L]P[R] \quad \frac{\partial P[R]}{\partial m^{R}} = -\beta P[L]P[R]$$

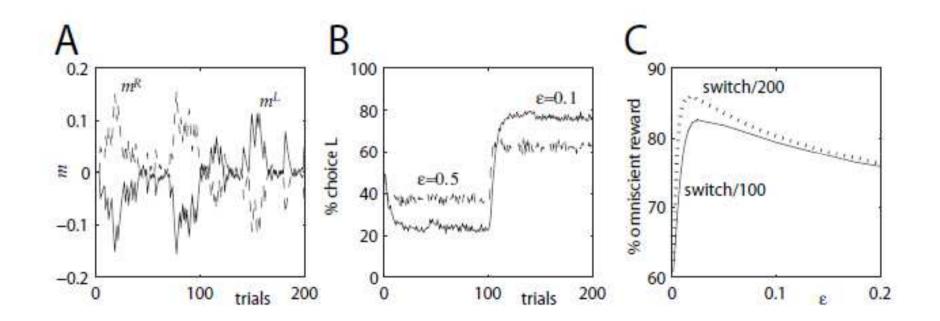
$$\frac{\partial E(\mathbf{m})}{\partial m^{L}} = \beta P[L](\langle r^{L} \rangle - (P[L]\langle r^{L} \rangle + P[R]\langle r^{R} \rangle))$$

$$\frac{\partial E(\mathbf{m})}{\partial m^{L}} = \beta P[L](\langle r^{L} \rangle - E(\mathbf{m}))$$

$$\frac{\partial E(\mathbf{m})}{\partial m^{L}} \approx \beta (r^{L} - E(\mathbf{m})) \quad \text{if L is chosen}$$

$$m^{L} - m^{R} \rightarrow (m^{L} - m^{R}) + \varepsilon (r^{a} - E(\mathbf{m}))(L - R)$$

Direct Actor



Could we Tell?

- correlate past rewards, actions with present choice
- indirect actor (separate clocks):

$$\log \frac{P_S[L]}{P_S[R]} = \beta (m_S^L - m_S^R) = \beta \epsilon \left(\sum_i (1 - \epsilon)^i r_i^L - \sum_i (1 - \epsilon)^i r_i^R \right)$$

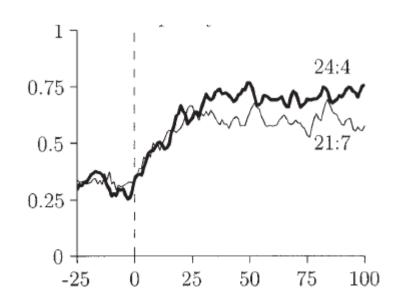
• direct actor (single clock):

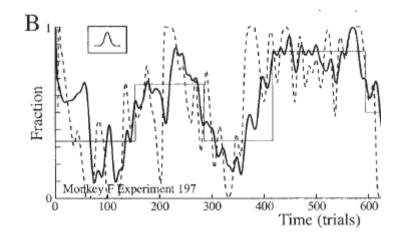
$$\log \frac{P_{K+1}[L]}{P_{K+1}[R]} = \beta (m_{K+1}^L - m_{K+1}^R)$$

$$= \beta \epsilon \sum_{k=0}^{\infty} (1-\epsilon)^k r_{K-k}^a (L_{K-k} - R_{K-k}) - \beta \epsilon \sum_{k=0}^{\infty} (1-\epsilon)^k v_{K-k} (L_{K-k} - R_{K-k})$$
(1)

Matching: Concurrent VI-VI

	монксу н		
Target 1	Arming probabilities	Magnitudes	Number blocks
© Fix Target 2	$\begin{array}{c} 0.24/0.04\\ 0.21/0.07\\ 0.07/0.21\\ 0.04/0.24\\ 0.24/0.04\\ 0.21/0.07\\ 0.07/0.21\\ 0.04/0.24\\ 0.24/0.04\\ 0.21/0.07\\ \end{array}$	$\begin{array}{c} 0.35/0.35\\ 0.35/0.35\\ 0.35/0.35\\ 0.35/0.35\\ 0.4/0.4\\ 0.4/0.4\\ 0.4/0.4\\ 0.4/0.4\\ 0.4/0.4\\ 0.45/0.45\\ 0.45/0.45\end{array}$	$ \begin{array}{r} 16 \\ 12 \\ 11 \\ 19 \\ 5 \\ 8 \\ 8 \\ 4 \\ 7 \\ 10 \\ \end{array} $
	0.07/0.21 0.04/0.24	$\frac{0.45}{0.45}$	5 10

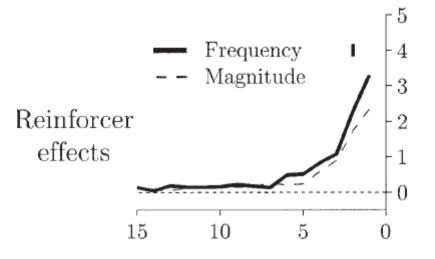




Lau, Glimcher, Corrado, Sugrue, Newsome

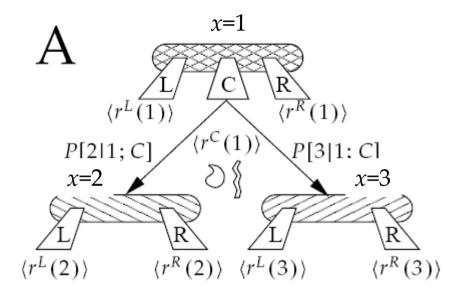
Matching

$$\log\left(\frac{p_{R,i}}{p_{L,i}}\right) = \sum_{j=1}^{\infty} \alpha_j \left(r_{R,i-j} - r_{L,i-j}\right)$$



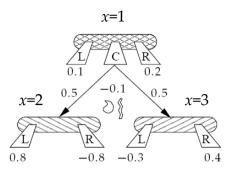
- income not return
- approximately exponential in r
- alternation choice kernel

Action at a (Temporal) Distance

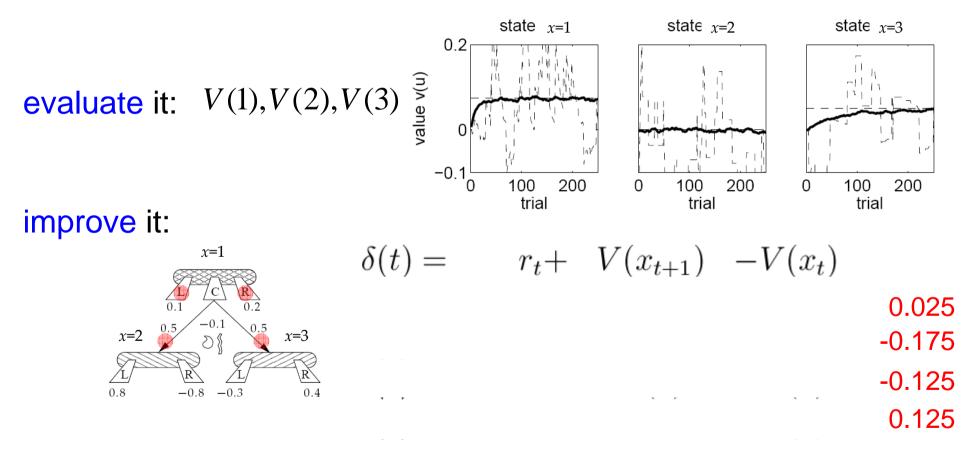


- learning an appropriate action at *x*=1:
 - depends on the actions at x=2 and x=3
 - gains no immediate feedback
- idea: use prediction as surrogate feedback

Action Selection



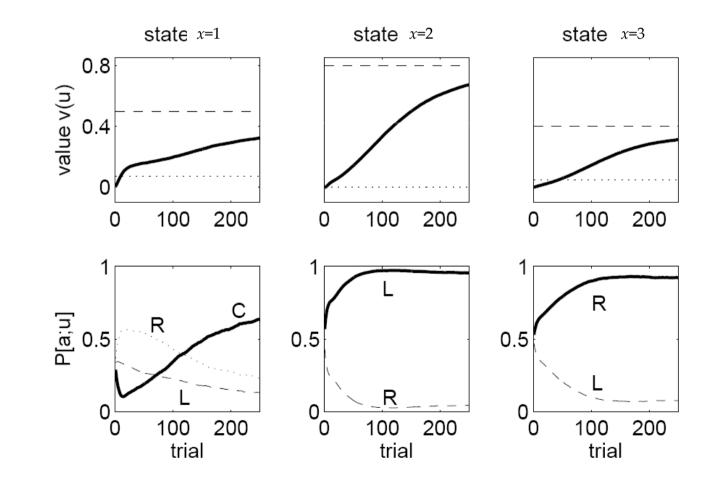
start with policy:
$$P[L;x] = \sigma(m^L(x) - m^R(x))$$



thus choose R more frequently than L;C $\Delta m_* \, lpha \, \delta$

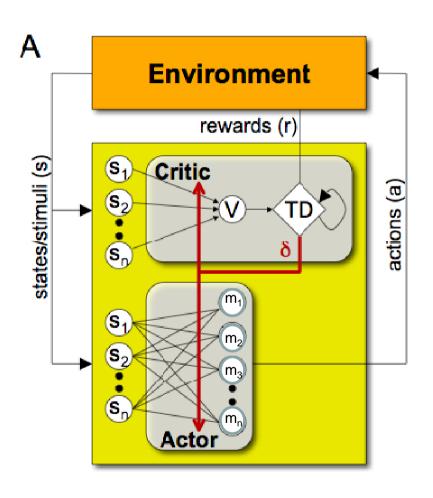
Policy $\Rightarrow \Delta v$

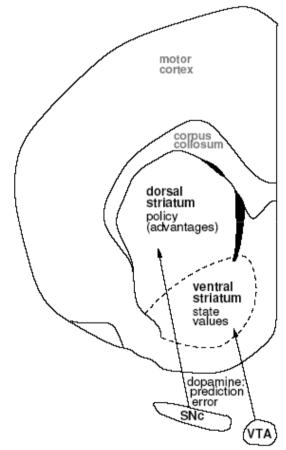
- $\delta > 0$ if • value is too pessimistic $\Rightarrow \Delta$
 - action is better than average $\Rightarrow \Delta P$



14

actor/critic





dopamine signals to both motivational & motor striatum appear, surprisingly the same

suggestion: training both values & policies

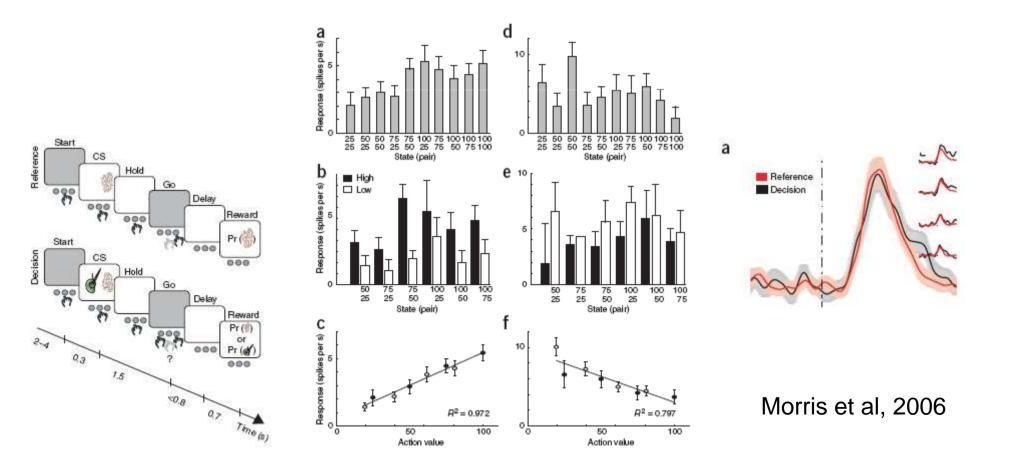
Formally: Dynamic Programming

- $V^*(x_t) = \max_u \{ E[r(x_t, u) + V^*(x_{t+1})] \}$
 - $= \max_{u} \{ E[r(x_{t}, u) + \sum_{y} P(y|x_{t}, u) V^{*}(y)] \}$
- $Q^*(x,u) = E[r(x,u) + \sum_y P(y|x,u) V^*(y)]$
- $V^*(y) = \max_{u'} \{Q^*(y, u')\}$
- policy iteration:
 - $V^{\pi}(x) = \sum_{u} \pi(u|x) \left\{ E \left[r(x_{t}, u) + \sum_{y} P(y|x_{t}, u) V^{\pi}(y) \right] \right\}$
 - $\pi'(x) = \operatorname{argmax}_u \{Q^{\pi}(x, u)\}$
- value iteration

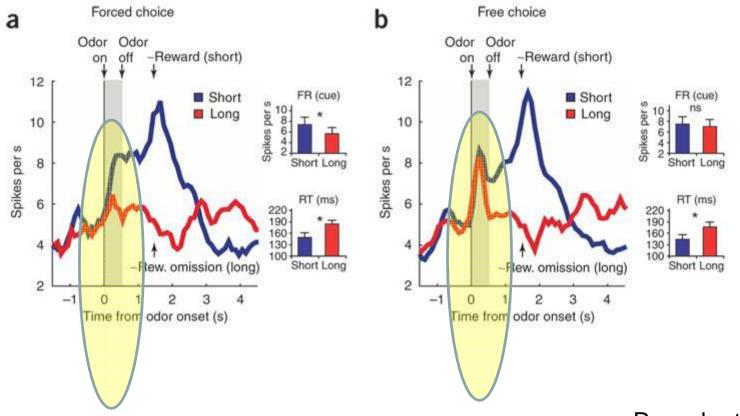
- $V^{n+1}(x) = \max_{u} \{ E[r(x_t, u) + \sum_{y} P(y|x_t, u) V^{n+1}(y)] \}$

Variants: SARSA

 $Q^{*}(1,C) = E[r_{t} + V^{*}(x_{t+1}) | x_{t} = 1, u_{t} = C]$ $Q(1,C) \to Q(1,C) + \varepsilon(r_{t} + Q(2,u^{actual}) - Q(1,C))$



Variants: Q learning $Q^*(1,C) = E[r_t + V^*(x_{t+1}) | x_t = 1, u_t = C]$ $Q(1,C) \rightarrow Q(1,C) + \varepsilon(r_t + \max_u Q(2,u) - Q(1,C))$



Roesch et al, 2007

Summary

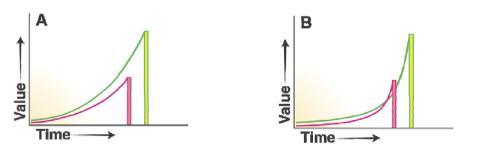
• prediction learning

- Bellman evaluation

- actor-critic
 - asynchronous policy iteration
- indirect method (Q learning)
 - asynchronous value iteration $V^{*}(1) = E[r_{t} + V^{*}(x_{t+1}) | x_{t} = 1]$ $Q^{*}(1, C) = E[r_{t} + V^{*}(x_{t+1}) | x_{t} = 1, u_{t} = C]$

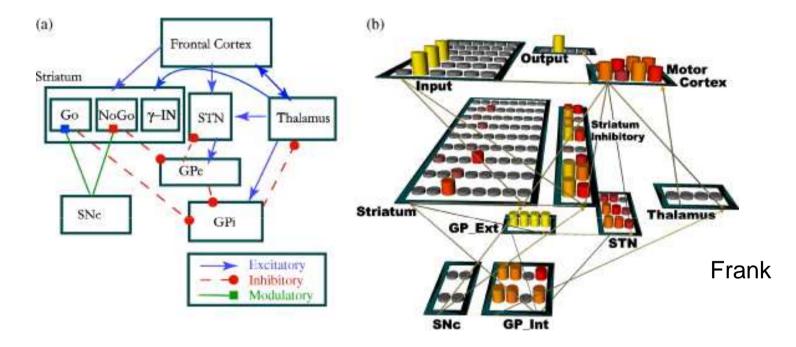
Impulsivity & Hyperbolic Discounting

- humans (and animals) show impulsivity in:
 - diets
 - addiction
 - spending, ...
- intertemporal conflict between short and long term choices
- often explained via hyperbolic discount functions



- alternative is Pavlovian imperative to an immediate reinforcer
- framing, trolley dilemmas, etc

Direct/Indirect Pathways



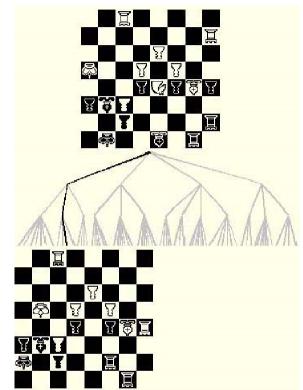
- direct: D1: GO; learn from DA increase
- indirect: D2: noGO; learn from DA decrease
- hyperdirect (STN) delay actions given strongly attractive choices

Frank



- DARPP-32: D1 effect
- DRD2: D2 effect

Three Decision Makers

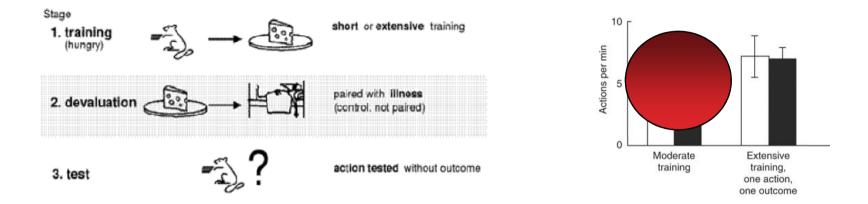


- tree search
- position evaluation
- situation memory

Multiple Systems in RL

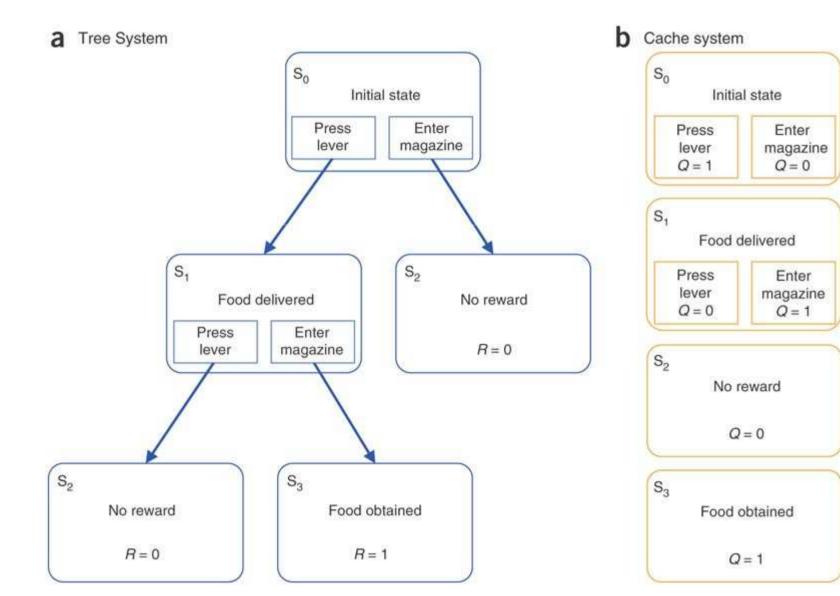
- model-based RL
 - build a forward model of the task, outcomes
 - search in the forward model (online DP)
 - optimal use of information
 - computationally ruinous
- cached-based RL
 - learn Q values, which summarize future worth
 - computationally trivial
 - bootstrap-based; so statistically inefficient
- learn both select according to uncertainty

Animal Canary

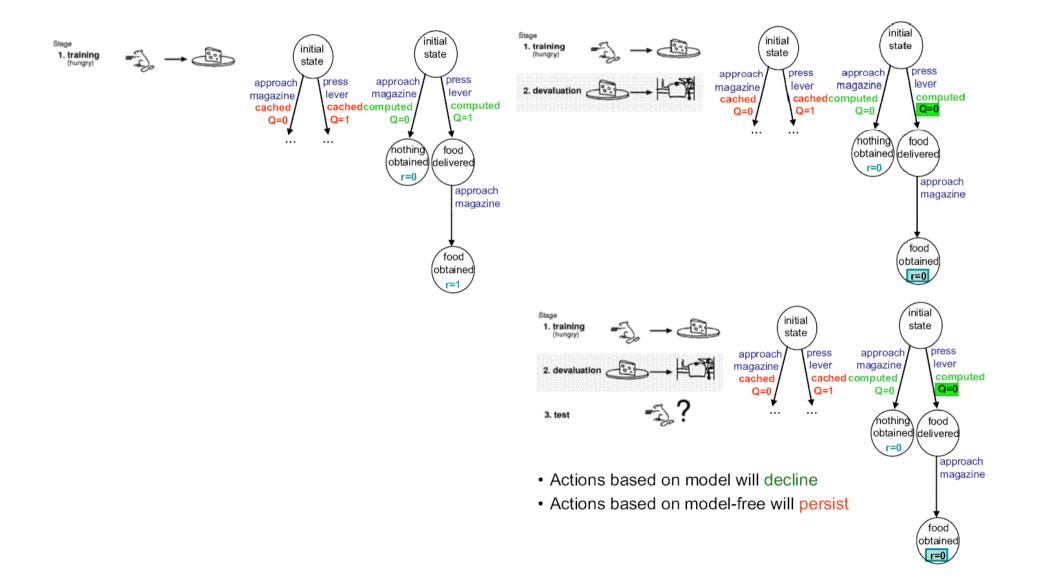


- OFC; dIPFC; dorsomedial striatum; BLA?
- dosolateral striatum, amygdala

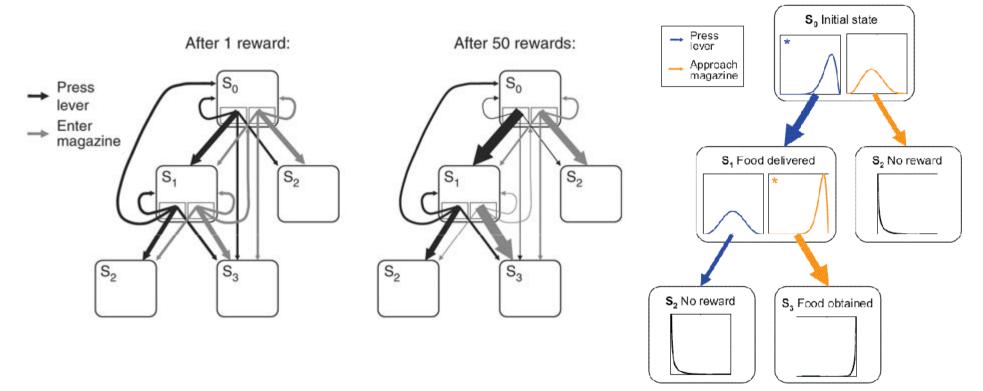
Two Systems:



Behavioural Effects

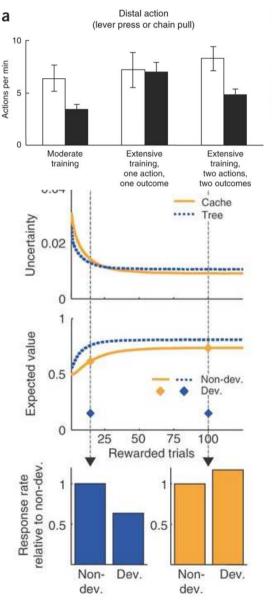


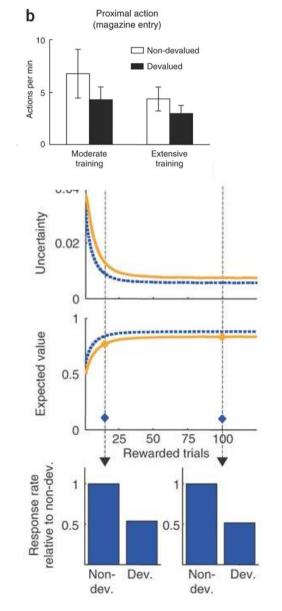
Effects of Learning



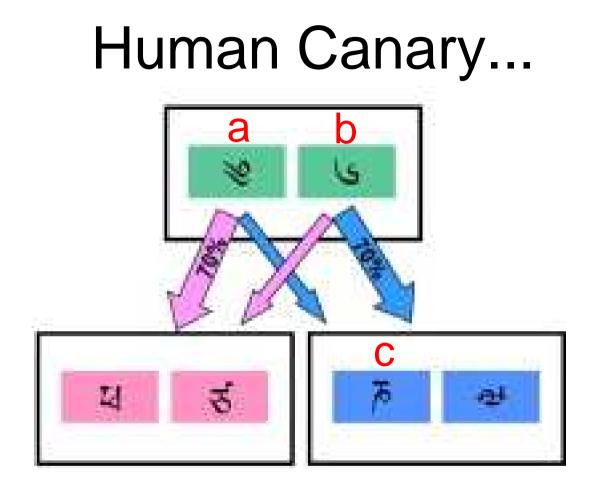
- distributional value iteration
 - (Bayesian Q learning)
- fixed additional uncertainty per step

One Outcome



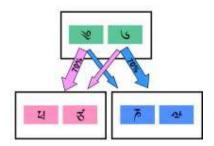


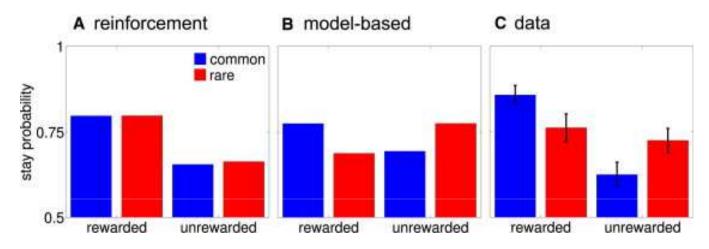
shallow tree implies goal-directed control wins



- if $a \to c$ and $c \to \pounds t$, then do more of a or b?
 - MB: b
 - MF: a (or even no effect)

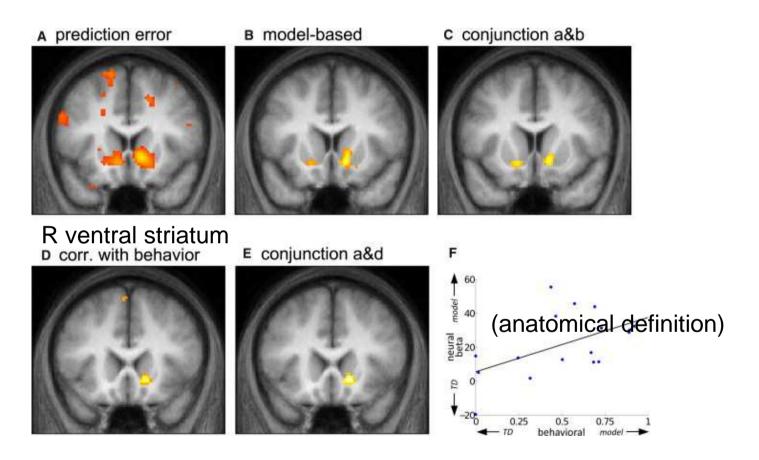
Behaviour





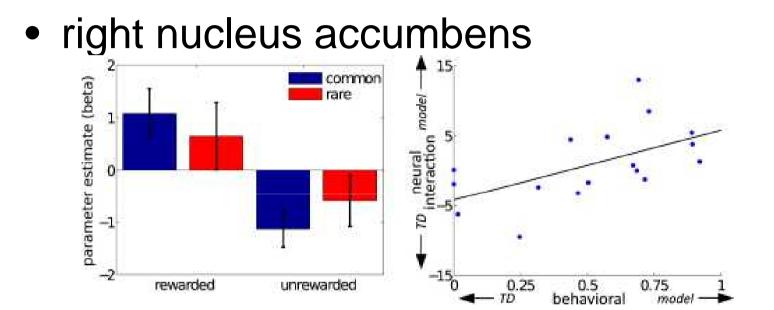
- action values depend on both systems: $Q_{tot}(x,u) = Q_{MF}(x,u) + \beta Q_{MB}(x,u)$
- expect that β will vary by subject (but be fixed)

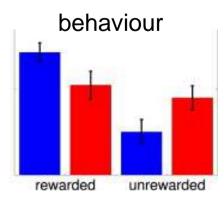
Neural Prediction Errors $(1 \rightarrow 2)$

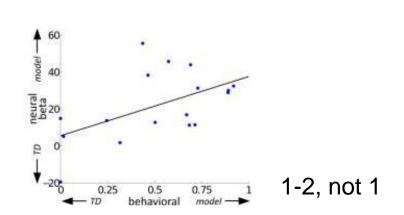


note that MB RL does not use this prediction error – training signal?

Neural Prediction Errors (1)

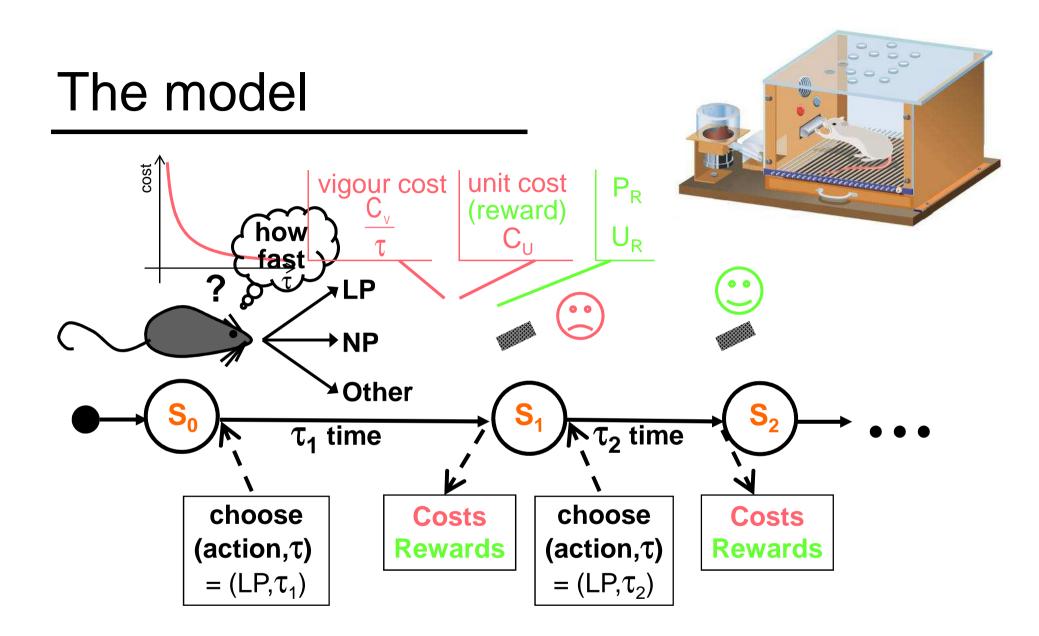


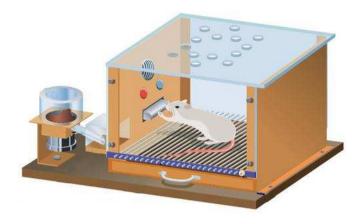




Vigour

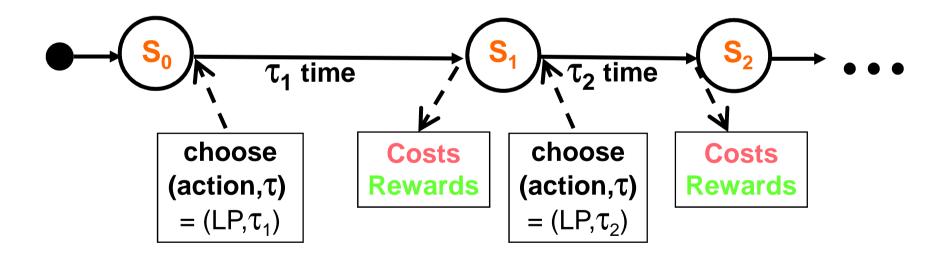
- Two components to choice:
 - what:
 - lever pressing
 - direction to run
 - meal to choose
 - when/how fast/how vigorous
 - free operant tasks
- real-valued DP





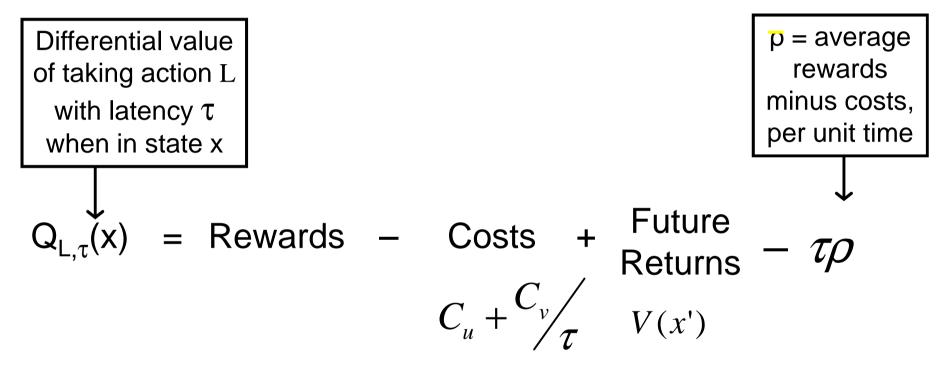
<u>Goal</u>: Choose actions and latencies to maximize the *average rate of return* (rewards minus costs per time)

The model



Average Reward RL

Compute differential values of actions



steady state behavior (not learning dynamics)

(Extension of Schwartz 1993)

Average Reward Cost/benefit Tradeoffs

1. Which action to take?

 \Rightarrow Choose action with largest expected reward minus cost

2. How fast to perform it?

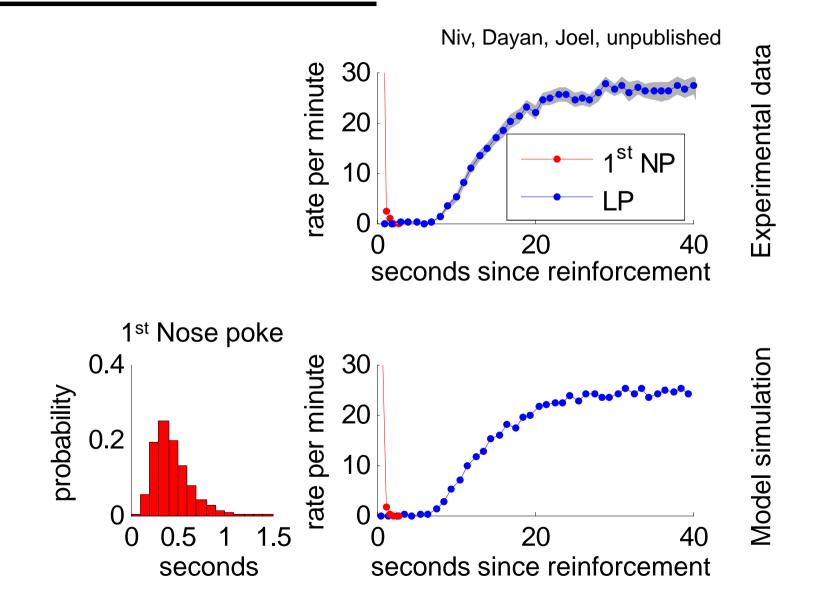
• slow \rightarrow less costly (vigour	• slow \rightarrow delays (all) rewards
cost)	 net rate of rewards = cost of delay (opportunity cost of time)

 \Rightarrow Choose rate that balances vigour and opportunity costs

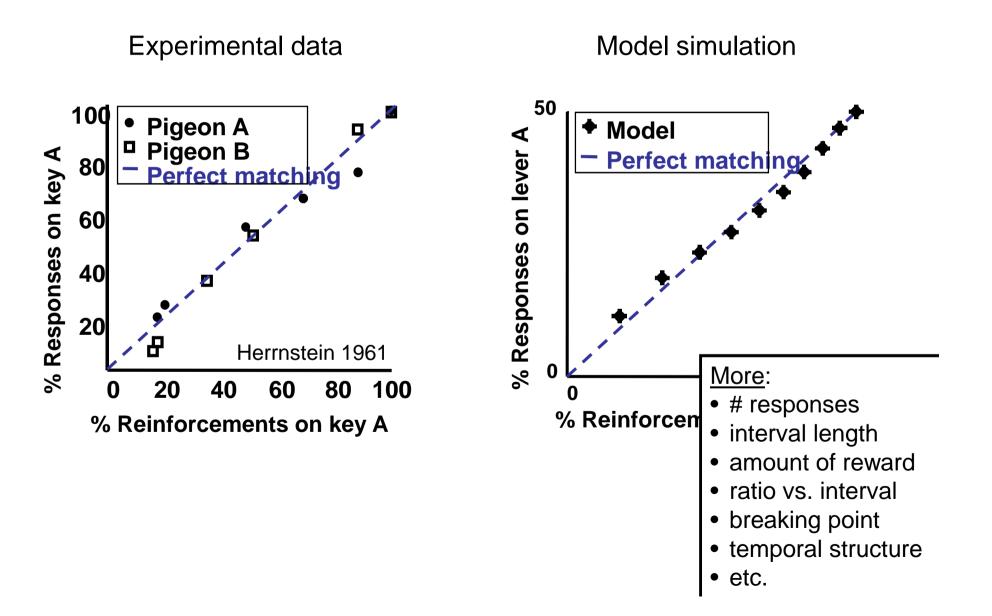
explains faster (irrelevant) actions under hunger, etc

masochism

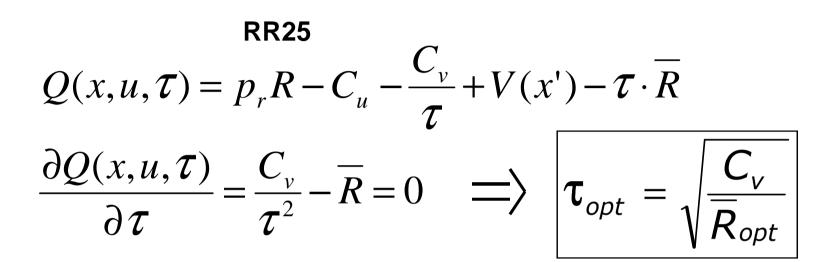
Optimal response rates

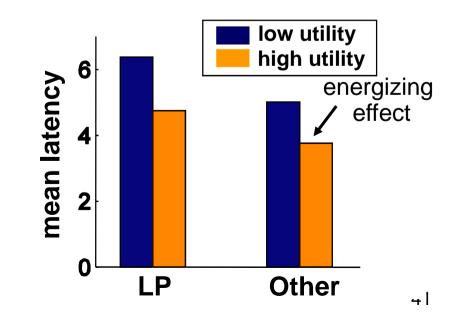


Optimal response rates

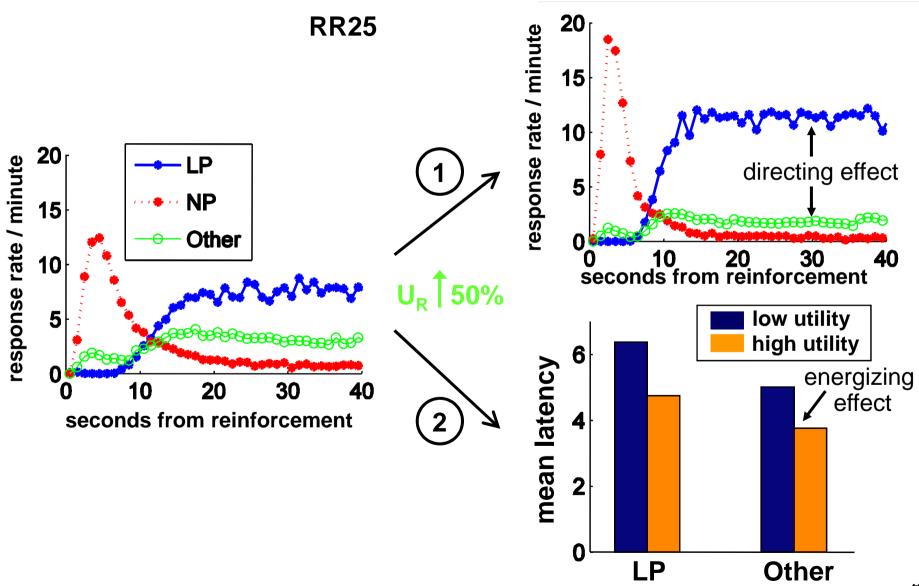


Effects of motivation (in the model)



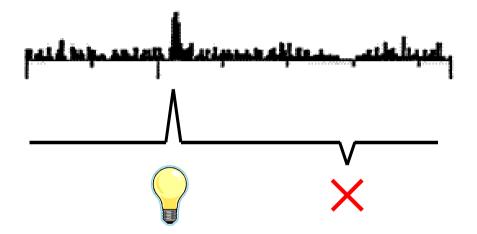


Effects of motivation (in the model)

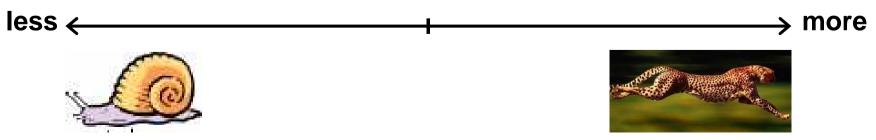


Relation to Dopamine

Phasic dopamine firing = reward prediction error

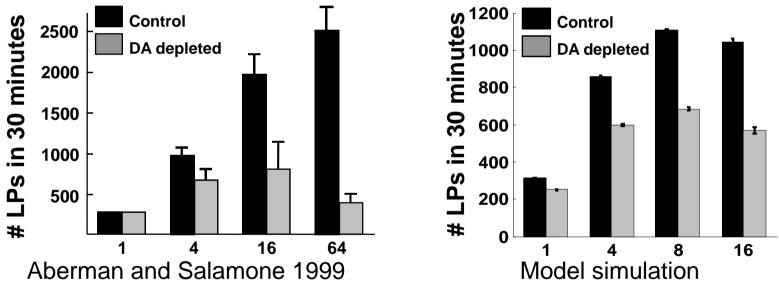


What about tonic dopamine?



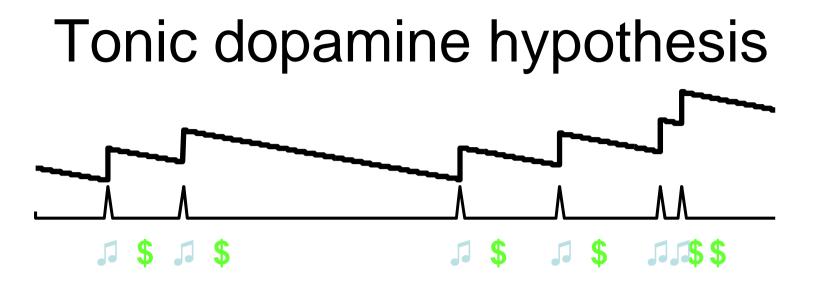
Tonic dopamine = Average reward rate

- 1. explains pharmacological manipulations
- 2. dopamine control of vigour through BG pathways

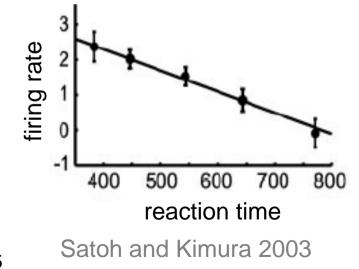


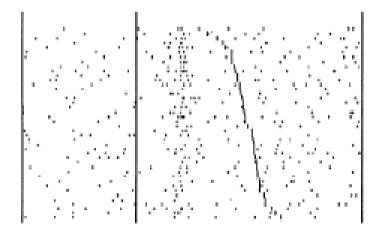
- eating time confound
- context/state dependence (motivation & drugs?)
- less switching=perseveration

NB. phasic signal RPE for choice/value learning



...also explains effects of phasic dopamine on response times

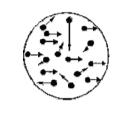




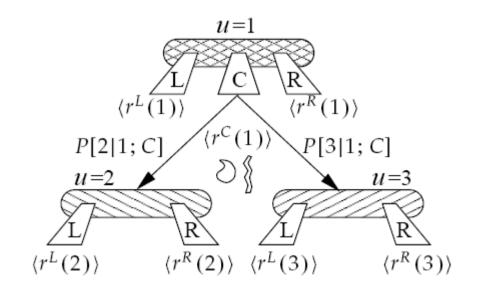
Ljungberg, Apicella and Schultz 1992

Sensory Decisions as Optimal Stopping

• consider listening to:



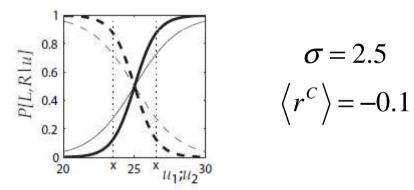
• decision: choose, or sample



Optimal Stopping

• equivalent of state u=1 is $u_1 = n_1$

$$P[L|u_1] = \sigma\left(d'\frac{n_1 - n_{\text{ave}}}{\sigma_n}\right) \text{ for } n_{\text{ave}} = \frac{1}{2}(n^L + n^R)$$

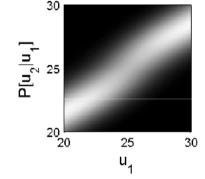


• and states u=2,3 is $u_2 = \frac{1}{2}(n_1 + n_2)$ $P[L|u_2] = \sigma(2d'(u_2 - n_{ave})/\sigma_n)$

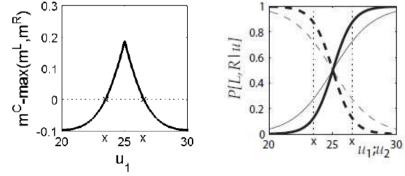
Transition Probabilities

 $p[u_2|u_1; C] = P[L|u_1]p[u_2|L, u_1] + P[R|u_1]p[u_2|R, u_1]$

 $= P[L|u_1] \mathcal{N}\left(2u_2 - u_1; n^L, \sigma_n^2\right) + P[R|u_1] \mathcal{N}\left(2u_2 - u_1; n^R, \sigma_n^2\right)$



$$m^{C}(u_{1}) = \langle r^{C}(u_{1}) + v(u_{2}) \rangle_{u_{1}}$$
$$= r^{C}(u_{1}) + \int_{u_{2}} du_{2} \ p[u_{2}|u_{1}; C] \max\{P[L|u_{2}], P[R|u_{2}]\}$$



Computational Neuromodulation

• dopamine

- phasic: prediction error for reward
- tonic: average reward (vigour)
- serotonin
 - phasic: prediction error for punishment?
- acetylcholine:
 - expected uncertainty?
- norepinephrine
 - unexpected uncertainty; neural interrupt?

Conditioning

prediction: of important events
control: in the light of those predictions

- Ethology
 - optimality
 - appropriateness
- Psychology
 - classical/operant
 conditioning

- Computation
 - dynamic progr.
 - Kalman filtering
- Algorithm
 - TD/delta rules
 - simple weights

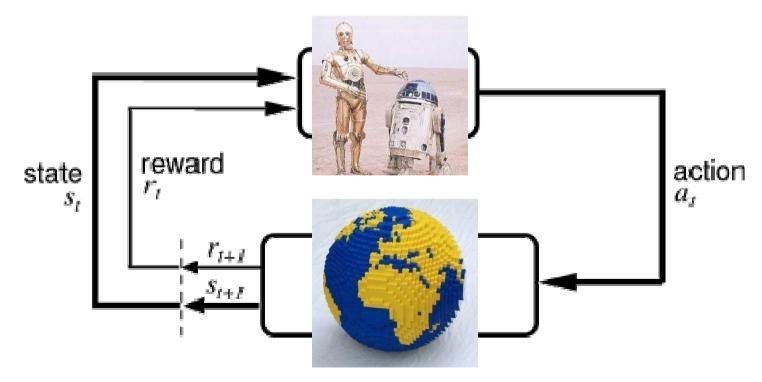
Neurobiology

neuromodulators; amygdala; OFC nucleus accumbens; dorsal striatum

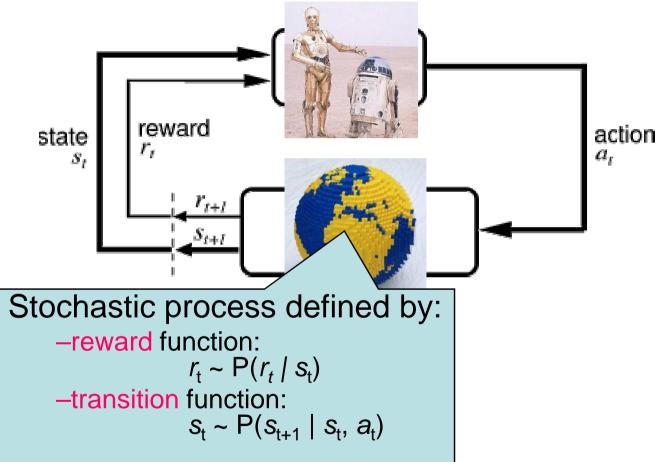
class of stylized tasks with

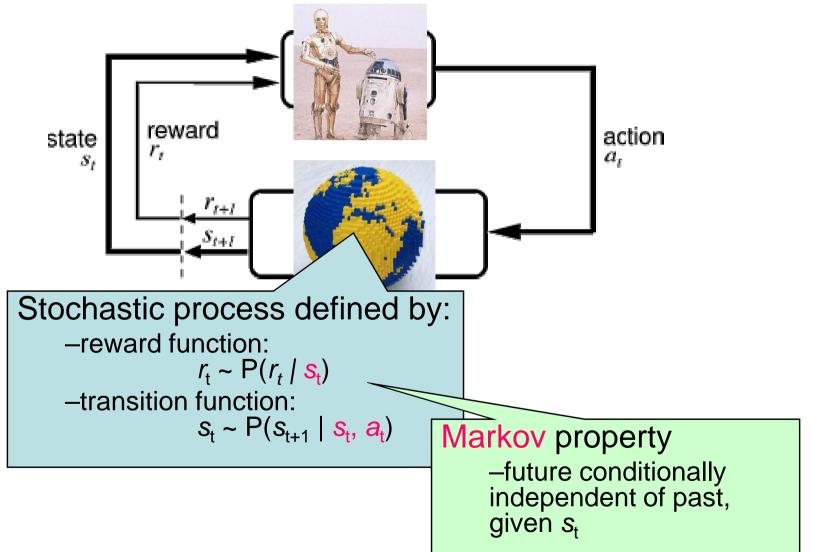
states, actions & rewards

- at each timestep *t* the world takes on state s_t and delivers reward r_t , and the agent chooses an action a_t



- World: You are in state 34. Your immediate reward is 3. You have 3 actions.
- Robot: I'll take action 2.
- World: You are in state 77.Your immediate reward is -7. You have 2 actions.Robot: I'll take action 1.
- World: You're in state 34 (again). Your immediate reward is 3. You have 3 actions.





The optimal policy

Definition: a policy such that at every state, its expected value is better than (or equal to) that of all other policies

Theorem: For every MDP there exists (at least) one deterministic optimal policy.

→ by the way, why is the optimal policy just a mapping from states to actions? couldn't you earn more reward by choosing a different action depending on last 2 states?

Pavlovian & Instrumental Conditioning

Pavlovian

- learning values and predictions
- using TD error
- Instrumental
 - learning actions:
 - by reinforcement (leg flexion)
 - by (TD) critic
 - (actually different forms: goal directed & habitual)

Pavlovian-Instrumental Interactions

- synergistic
 - conditioned reinforcement
 - Pavlovian-instrumental transfer
 - Pavlovian cue predicts the instrumental outcome
 - behavioural inhibition to avoid aversive outcomes
- neutral
 - Pavlovian-instrumental transfer
 - Pavlovian cue predicts outcome with same motivational valence
- opponent
 - Pavlovian-instrumental transfer
 - Pavlovian cue predicts opposite motivational valence
 - negative automaintenance

-ve Automaintenance in Autoshaping

- simple choice task
 - N: nogo gives reward r=1
 - G: go gives reward r=0
- learn three quantities
 - average value
 - Q value for N
 - Q value for G

 $v(t+1) = v(t) + \eta(r(t) - v(t))$ $q_{\mathsf{N}}(t+1) = q_{\mathsf{N}}(t) + \eta(r(t) - q_{\mathsf{N}}(t))$ $q_{\mathsf{G}}(t+1) = q_{\mathsf{G}}(t) + \eta(r(t) - q_{\mathsf{G}}(t))$

• instrumental propensity is

$$p(a(t) = \mathsf{N}) = \frac{e^{\mu(q_{\mathsf{N}}(t) - v(t))}}{e^{\mu(q_{\mathsf{N}}(t) - v(t))} + e^{\mu(q_{\mathsf{G}}(t) - v(t))}}$$
$$= \sigma \left(\mu(q_{\mathsf{N}}(t) - q_{\mathsf{G}}(t))\right)$$

-ve Automaintenance in Autoshaping

- Pavlovian action
 - assert: Pavlovian impetus towards G is v(t)
 - weight Pavlovian and instrumental advantages by ω competitive reliability of Pavlov
- new propensities

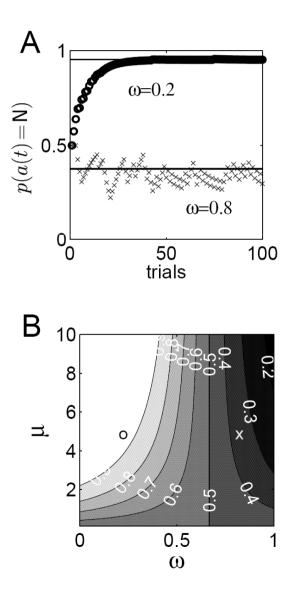
$$\mathsf{N}: q_{\mathsf{N}}(t) - v(t) \implies (1 - \omega)(q_{\mathsf{N}}(t) - v(t))$$

$$\mathsf{G}: \quad q_{\mathsf{G}}(t) - v(t) \quad \Rightarrow \quad (1 - \omega)(q_{\mathsf{G}}(t) - v(t)) + \omega v(t)$$

new action choice

$$p(a(t) = \mathsf{N}) = \sigma \left(\mu \left((1 - \omega)(q_{\mathsf{N}}(t) - q_{\mathsf{G}}(t)) - \omega v(t) \right) \right)$$

-ve Automaintenance in Autoshaping



- basic –ve automaintenance effect (µ=5)
- lines are theoretical asymptotes

• equilibrium probabilities of action