Uncertainty and the Bayesian Brain

- sources:
 - sensory/processing noise
 - ignorance
 - change
- consequences:
 - inference
 - learning
- coding:
 - distributional/probabilistic population codes
 - neuromodulators

Multisensory Integration

•
$$v = s + \varepsilon_v$$
; $t = s + \varepsilon_t$

- $p[s|v,t] \propto p[v,t|s]p[s] \sim p[v|s]p[t|s]$
- $\varepsilon_{v} \sim N[0, \rho_{v}^{-2}]$; $\varepsilon_{t} \sim N[0, \rho_{t}^{-2}]$
- $s|v,t \sim N[\mu_s, \rho_s^{-2}]$

•
$$\mu_s = \frac{v \rho_v^2 + t \rho_t^2}{\rho_v^2 + \rho_t^2}$$
; $\rho_s^2 = \rho_v^2 + \rho_t^2$

$$\mathbf{v}: p[s|\mathbf{v}] \sim \mathcal{N}\left[\frac{\sum_{a} v_{a} s_{a}}{\sum_{b} v_{b}}, \frac{\sigma^{2}}{\sum_{b} v_{b}}\right] \quad \mathbf{t}: p[s|\mathbf{t}] \sim \mathcal{N}\left[\frac{\sum_{a} t_{a} s_{a}}{\sum_{b} t_{b}}, \frac{\sigma^{2}}{\sum_{b} t_{b}}\right]$$

apply the previous analysis:

$$p[s|\mathbf{v}, \mathbf{t}] \sim \mathcal{N} \left[\frac{\frac{\sum_{a} v_{a} s_{a}}{\sum_{b} v_{b}} \frac{\sum_{b} v_{b}}{\sigma^{2}} + \frac{\sum_{a} t_{a} s_{a}}{\sum_{b} t_{b}} \frac{\sum_{b} t_{b}}{\sigma^{2}}}{\frac{\sum_{b} v_{b}}{\sigma^{2}} + \frac{\sum_{b} t_{b}}{\sigma^{2}}}, \frac{1}{\frac{\sum_{b} v_{b}}{\sigma^{2}} + \frac{\sum_{b} t_{b}}{\sigma^{2}}}\right] \\ \sim \mathcal{N} \left[\frac{\sum_{a} (v_{a} + t_{a}) s_{a}}{\sum_{b} v_{b} + t_{b}}, \frac{\sigma^{2}}{\sum_{b} v_{b} + t_{b}} \right]$$

so if: $r_a = v_a + t_a$ everything will work out

Explicit and Implicit Spaces

Computational Neuromodulation

Cerebellum

• specific: prediction errors, uncertainty signals

Uncertainty

Computational **functions** of neuromodulatory uncertainty:

- weaken top-down influence over sensory processing
- promote *learning* about the relevant representations

We focus on **two** different kinds of uncertainties:

- ACh + expected uncertainty from known variability or ignorance
 - **NE •** *unexpected uncertainty* due to gross mismatch between prediction and observation

Kalman Filter

expt $w' = w + \eta$ reward given $r = w \cdot u + \epsilon$

allowable drift $\eta \sim N[0, \sigma^2 \mathbb{I}]$ output noise $\epsilon \sim N[0, \rho^2]$

- Markov random walk (or OU process)
- no punctate changes
- additive model of combination
- forward inference

Kalman Posterior

The Kalman filter maintains uncertainty:

$$P(V) = \mathcal{N}[\hat{\mathbf{w}} \cdot \mathbf{u}, \mathbf{u} \cdot \boldsymbol{\Sigma} \cdot \mathbf{u}]$$

where

Assumed Density KF

Diagonal approx to $\Sigma = \text{diag}(\sigma_i^2)$

If $\mathbf{w} \sim \mathcal{N}\left[\widehat{\mathbf{w}}, \mathsf{diag}(\sigma_i^2)\right]$, then

- Rescorla-Wagner error correction
- competitive allocation of learning

– P&H, M

Blocking

- forward blocking: error correction $(r \mathbf{u} \cdot \hat{\mathbf{w}})$
- backward blocking: -ve off-diag $\Sigma_{LT} < 0$

Mackintosh vs P&H

- under diagonal approximation: $E(r - \mathbf{u} \cdot \hat{\mathbf{w}})^2 = \rho^2 + \sum_j \sigma_j^2 u_i^2$
- for slow learning,

 σ_j^2 changes with correlation of (r-V) and u_i

– effect like Mackintosh

Summary

- Kalman filter models many standard conditioning paradigms
- elements of RW, Mackintosh, P&H
- but:

- downwards unblocking $L \rightarrow r\Delta r \qquad L + T \rightarrow r \qquad T \Leftrightarrow \pm r$ predictor competition

– negative patterning L \rightarrow r; T \rightarrow r; L+T \rightarrow ·

stimulus/correlation rerepresentation (Daw)

recency vs primacy (Kruschke)

Experimental Data

ACh & NE have similar *physiological* effects

- *suppress* recurrent & feedback processing
 - (e.g. Kimura et al, 1995; Kobayashi et al, 2000)
- enhance thalamocortical transmission

(*e.g.* Gil *et al*, 1997)

• **boost** experience-dependent plasticity

(e.g. Bear & Singer, 1986; Kilgard & Merzenich, 1998)

ACh & NE have distinct *behavioral* effects:

- ACh *boosts* learning to stimuli with uncertain consequences (*e.g.* Bucci, Holland, & Gallagher, 1998)
- NE *boosts* learning upon encountering global changes in the environment (*e.g.* Devauges & Sara, 1990)

ACh in Hippocampus

Given *unfamiliarity*, ACh:

- boosts bottom-up, suppresses recurrent processing
- **boosts** recurrent plasticity

ACh in Conditioning

Given uncertainty, ACh:

 boosts learning to stimuli of uncertain consequences

(Hasselmo, 1995)

(Bucci, Holland, & Galllagher, 1998)

Cholinergic Modulation in the Cortex

Electrophysiology Data

(Gil, Conners, & Amitai, 1997)

ACh agonists:

- facilitate TC transmission
- enhance stimulus-specific activity

Examples of Hallucinations Induced by Anticholinergic Chemicals

Scopolamine in normal volunteers	Integrated, realistic hallucinations with familiar objects and faces	Ketchum et al. (1973)
Intravenous atropine in bradycardia	Intense visual hallucinations on eye closure	Fisher (1991)
Local application of scopolamine or atropine eyedrops	Prolonged anticholinergic delirium in normal adults	Tune et al. (1992)
Side effects of motion-sickness drugs (scopolamine)	Adolescents hallucinating and unable to recognize relatives	Wilkinson (1987) Holland (1992)

⁽Perry & Perry, 1995)

ACh antagonists:

- *induce* hallucinations
- interfere with stimulus processing
- effects *enhanced* by eye closure

Norepinephrine

NE specially involved in **novelty**, confusing association with attention, vigilance

Model Schematics

Attention

Attentional selection for (statistically) **optimal** processing, above and beyond the traditional view of resource constraint

Uncertainty-driven bias in cortical processing

Attention

Attentional selection for (statistically) **optimal** processing, above and beyond the traditional view of resource constraint

Example 2: Attentional Shift

A Common Framework

NE

ACh

Simulation Results: Posner's Task

Simulation Results: Maze Navigation

Fix cue validity \rightarrow no explicit manipulation of ACh

No. days after shift from spatial to visual task (Devauges & Sara, 1990) No. days after shift from spatial to visual task

Simulation Results: Full Model

Simulated Psychopharmacology

Simulation Results: Psychopharmacology

NE depletion can *alleviate* ACh depletion revealing underlying *opponency* (implication for neurological diseases such as Alzheimers)

Behrens et al

Behrens et al

Summary

- Single framework for understanding ACh, NE and some aspects of attention
- ACh/NE as expected/unexpected uncertainty signals
- Experimental psychopharmacological data replicated by model simulations
- Implications from complex interactions between ACh & NE
- Predictions at the cellular, systems, and behavioral levels
- Consider loss functions
- Activity vs weight vs neuromodulatory vs population representations of uncertainty (ACC in Behrens)

Aston-Jones: Target Detection

detect and react to a rare target amongst common distractors

- elevated tonic activity for reversal
- activated by rare target (and reverses)
- not reward/stimulus related? more response related?

Clayton, et al

no reason to persist as hardly unexpected

Phasic NE activity

- no reason to persist under our tonic model
- quantitative phasic theory (Brown, Cohen, Aston-Jones): gain change
 - NE controls balance of recurrence/bottom-up
 - implements changed
 S/N ratio with target
 - or perhaps decision (through instability)
 - detect to detect
 - why only for targets?
 - already detected (early bump)

• NE reports unexpected state changes within the task

Vigilance Model

- variable time in start
- η controls confusability
- one single run
- cumulative is clearer
- exact inference
- effect of 80% prior

Phasic NE

- NE reports uncertainty about current state
 - state in the model, not state of the model
 - divisively related to prior probability of that state
- NE measured relative to default state sequence start → distractor
- temporal aspect start \rightarrow distractor
- structural aspect target *versus* distractor

(small prob of reflexive action)

Phasic NE

- onset response from timing uncertainty (SET)
- growth as P(target)/0.2 rises
- act when P(target)=0.95
- stop if P(target)=0.01
- arbitrarily set NE=0 after
 5 timesteps

fall is rather arbitrary

Response Locking

slightly flatters the model – since no further response variability

- set $\eta = 0.65$ rather than 0.675
- information accumulates over a longer period
- hits more affected than cr's
- timing not quite right

Discusssion

- phasic NE as unexpected state change within a model
- relative to prior probability; against default
- interrupts ongoing processing
- tie to ADHD?
- close to alerting but not necessarily tied to behavioral output (onset rise)
- close to behavioural switching but not DA
- phasic ACh: aspects of known variability within a state?

Computational Neuromodulation

Cerebellum

• specific: prediction errors, uncertainty signals

Computational Neuromodulation

 Δ weight α (learning rate) x (error) x (stimulus)

- precise, falsifiable, roles for DA/5HT; NE/ACh
- only part of the story:
 - 5HT: median raphe
 - ACh: TANs, septum, etc
 - huge diversity of receptors; regional specificity
- psychological disagreement about many facets:
 - attention: over-extended
 - reward: reinforcement, liking, wanting, etc
- interesting role for imaging:
 - it didn't have to be that simple!