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Deep neural networks commonly model 
conditional distributions of the form p(y|x), where 
y denotes a label and x features.  However, in 
many applications, modeling just the conditional 
distribution is insufficient. For instance, if we 
believe that the model may be subjected to 
inputs unlike those of the training data, a model 
for p(x) can possibly detect an outlier before it is 
passed along for prediction. Thus, modeling the 
joint distribution p(y, x) provides a richer 
representation of the data than a conditional one. 
Models of this form are known as hybrid models 
[Ng & Jordan, 2002; Raina et al., 2004; Lasserre et 
al., 2006] as they are defined by combining 
discriminative (i.e. p(y|x)) and generative (i.e. 
p(x)) components..

Our hybrid model will be composed of two primary 
building blocks: flow-based, invertible generative 
models and generalized linear models.

Summary Our hybrid model DIGLM combines deep invertible features and GLMs so that p(x) and p(y|x) can be computed 
exactly in a single feedforward pass. DIGLM’s predictive performance is competitive with pure discriminative models p(y|x), 
while the generative model p(x) can be useful for  better uncertainty estimation and generating samples from the model. 
Future work will explore Bayesian GLM and applications to semi-supervised learning, active learning and domain adaptation.

We propose a hybrid model architecture consisting of a deep invertible transform coupled with a GLM. Together the two 
define a deep predictive model with both the ability to compute p(x) and p(y|x) exactly, in a single feed-forward pass.
Let θ = {φ, β, β0} denote the set of generative and discriminative parameters. The model defines the following joint distribution 
over a label-feature pair (x, y):
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INVERTIBLE GENERATIVE MODELS

Deep invertible generative models are simply 
high-capacity, bijective transformations with a 
tractable Jacobian matrix and inverse. The best 
known models of this class are the real 
non-volume preserving (RNVP) transform [Dinh 
et al., 2017] and its recent extension, the Glow 
transform [Kingma & Dhariwal, 2018]. The bijective 
nature of these transforms is crucial as it allows us 
to employ the change-of-variables (COV) 
formula for exact density evaluation:

where f denotes the transform with parameters φ, 
|∂f / ∂x| the determinant of the Jacobian of the 
transform, and p(z) a distribution on the latent 
variables. The modeler is free to choose p(z), and 
therefore it is often set as a factorized standard 
Gaussian for computational simplicity. The 
parameters φ are estimated via maximizing the 
exact log-likelihood.

GENERALIZED LINEAR MODELS

Generalized linear models (GLMs) [Nelder & Baker, 

1972] model the expected response y as follows:

● E[y|z] denotes the expected value of y 
● β is a d-dimensional vector of real-valued 

parameters, β0 is a scalar bias, z are covariates
●  g−1(·) a link function such that g−1: R→µy|z
● Bayesian GLM could be defined by specifying a 

prior p(β) and computing the posterior p(β|y, Z).

where z = f(x, φ) is the output of the invertible transformation, p(z) is the latent distribution, and 
p(y|f(x, φ) ; β, β0) is a GLM with the latent variables as its input features.  The figure to the right shows a 
diagram of the computational pipeline.  We term this model DIGLM: Deep Invertible Generalized 
Linear Model.  

In practice we found better performance is obtained by scaling the contribution of p(x) to account for 
the drastic difference in dimensionality between y and x. We denote this modified objective as:

where λ is the scaling constant. Weighted losses are commonly used in hybrid models [Lasserre et al., 2006; McCallum et al., 
2006; Kingma et al., 2014].

MNIST CLASSIFICATION

We train a DIGLM on the MNIST dataset with Glow [Kingma & Dhariwal, 2018] as the invertible architecture. We compare the hybrid 
model to the discriminative model obtained by setting λ = 0.  We compare test classification error, negative log-likelihood 
(NLL), and entropy of the predictive distribution p(y|x). Following Lakshminarayanan et al. (2017), we evaluate on both the 
MNIST test set and the out-of-distribution (OOD) NotMNIST test set. The OOD test is a proxy to test if the system exhibits 
higher uncertainty on inputs not seen during training data.

REGRESSION ON FLIGHT DELAY DATA SET

The results are shown in Table 1. The discriminative model achieves 
slightly lower test error, however the hybrid model achieves better 
NLL and entropy. Next, we compare the generative density p(x) for 
the hybrid model as well as the discriminative model.  In the 
histogram to the right, we see that the pure discriminative model 
(left) assigns similar density to the OOD inputs.  On the other hand, 
the hybrid model (right) evaluates to lower density values for 
NotMNIST (OOD).  Hence the hybrid model allows a user to abstain 
from trusting the model’s predictions when the density is lower.

We illustrate performance on a regression task using the flight delay dataset, processed by 
Hensman et al. (2013), with the goal of predicting how long flights are delayed based on 
eight features.  We use RNVP flows as the bijector and evaluate performance by measuring 
the root mean squared error (RMSE) and NLL.  Following Deisenroth & Ng (2015), we train 
using the first 5M (million) data points and use the following 100,000 as test data points.  We 
picked this split of the dataset not only to illustrate the scalability of our method, but also 
due to the fact that the test distribution is known to be slightly different from training, 
which poses challenges due to non-stationarity.

To the best of our knowledge, the state-of-the-art performance is a RMSE of 38.38 and 
NLL of 6.91 [Lakshminarayanan et al., 2016]. Our hybrid model, which assumes p(y|x) to be a 
heteroscedastic Gaussian, achieves a slightly worse RMSE of 40.46 but achieves better NLL 

of 5.07.  The lower NLL shows the usefulness of the hybrid model on non-stationary problems: the histogram to the left 
confirms that the test data points indeed have lower density than the training points.


