
Given a main task of interest and an auxiliary task which is not of
direct interest, how do we weight the auxiliary loss? The typical
multi-task approach uses:

However, this could be sub-optimal since we care only about
performance on the main task. E.g., the auxiliary loss might help
initially but hurt later. We want to solve the following problem:

Question: How to automatically adapt the auxiliary loss so
that it does not hurt the main loss?

 Single task on Breakout

ADAPTING AUXILIARY LOSSES USING GRADIENT SIMILARITY
Yunshu Du*, Wojciech M. Czarnecki*, Siddhant M. Jayakumar, Razvan Pascanu, Balaji Lakshminarayanan

1. PROBLEM SETUP

TITLE

2. USING GRADIENT COSINE SIMILARITY TO ADAPT AUXILIARY LOSS

Weighted version: Weight the auxiliary loss by cosine similarity (as above).

Unweighted version: Use aux loss when cos > threshold and ignore otherwise.

yunshu.du@wsu.edu, {lejlot, sidmj, razp, balajiln}@google.com

3. SUPERVISED LEARNING USING PAIRS OF IMAGENET CLASSES

Ground truth of task similarity: use Least Common Ancestor (LCA)
and Frechet Inception Distance (FID) between ImageNet classes.

Near pair: the most similar, such as Trimaran and Catamaran
Far pair: the least similar, such as Rock python and Traffic light

Motivating example: main function , auxiliary function

4. REINFORCEMENT LEARNING ON IMPERFECT-TEACHER DISTILLATION

 Multi-task on Breakout and Ms. PacMan

5. SUMMARY

Given a pair of classes (A, B), we define the main task as (A vs. rest) and the auxiliary task as (B vs. rest).

Figure (a): we validate that near pairs have high cosine similarity and far pairs have low cosine similarity.
Figure (b): in a near pair, our method uses auxiliary to learn faster and recovers the performance of multi-task
Figure (c): in a far pair, our method successfully ignores auxiliary and recovers the performance of single task

Our method automatically uses (ignores) auxiliary when it helps (hurts), achieving the best of both worlds.

● Proposed gradient cosine similarity as a simple
yet effective way to automatically adapt the
auxiliary task to help (& not hurt) the main task.

● Experiments on ImageNet and Atari show
empirical success; paper contains additional
experiments on cross-domain distillation tasks.

● Paper shows theoretical guarantees on the
convergence to local optimum of the main task.

 Potential issues and Future directions

● Guarantees convergence to local optimum of
the main task but not faster convergence.

● Extend theory to optimizers that rely on
statistics of the gradients or second order
information (e.g., Adam or RMSprop).

● Apply our method to settings where the
auxiliary task hurts initially but helps later.

Single task on Breakout: the main task is Breakout, the auxiliary task is a sub-optimal pre-trained Breakout teacher
Only KL: solely following the teacher leads to sub-optimal solutions
RL (Baseline): single task learning without the teacher
RL + KL (Baseline): the teacher only helps initially
Our Method: uses the teacher’s knowledge when it helps initially and ignores when it hurts later on

Multi-task on Breakout and Ms. PacMan: the main task is multi-task Breakout + Ms. PacMan, the auxiliary task is a
sub-optimal pre-trained Breakout teacher
Multi-task: learns Ms. PacMan at the expense of Breakout
Multi-task RL + Distillation: the teacher helps Breakout but hurts Ms. PacMan
Our Method: Ms. PacMan ignores the teacher when it hurts; both Breakout and Ms. Pacman learn well

