Given a main task of interest and an auxiliary task which is not of direct interest, how do we weight the auxiliary loss? The typical multi-task approach uses:

\[\text{arg min}_{\theta, \phi_{\text{main}}, \phi_{\text{aux}}} L_{\text{main}}(\theta, \phi_{\text{main}}) + \lambda L_{\text{aux}}(\theta, \phi_{\text{aux}}) \]

However, this could be sub-optimal since we care only about performance on the main task. E.g., the auxiliary loss might help initially but hurt later. We want to solve the following problem:

\[\text{arg min}_{\theta, \phi_{\text{main}}, \phi_{\text{aux}}} \left(\theta(\theta^{(i)}) - \alpha \nabla_{\theta} L_{\text{main}}(\theta(\theta^{(i)}) + \lambda \nabla_{\phi_{\text{aux}}} L_{\text{aux}}(\theta(\theta^{(i)})) \right) \]

Question: How to automatically adapt the auxiliary loss so that it does not hurt the main loss?

Motivating example

Given two tasks with shared parameters \(\theta \) & task-specific parameters \(\phi_{\text{main}} \& \phi_{\text{aux}} \), the update:

\[\theta^{(i+1)} := \theta^{(i)} - \alpha^{(i)} \left(\nabla_{\theta} L_{\text{main}}(\theta^{(i)}) + \nabla_{\theta} L_{\text{aux}}(\theta^{(i)}) \right) \max(0, \nabla_{\phi_{\text{aux}}} L_{\text{aux}}(\theta^{(i)})) \]

\[\phi_{\text{main}}^{(i+1)} := \phi_{\text{main}}^{(i)} - \alpha^{(i)} \nabla_{\phi_{\text{main}}} L_{\text{main}}(\theta^{(i)}) \quad \text{and} \quad \phi_{\text{aux}}^{(i+1)} := \phi_{\text{aux}}^{(i)} - \alpha^{(i)} \nabla_{\phi_{\text{aux}}} L_{\text{aux}}(\theta^{(i)}) \]

leads to convergence to local minimum of \(L_{\text{main}} \) w.r.t. \(\theta, \phi_{\text{main}} \) given small enough \(\alpha^{(i)} \).

Weighted version: Weight the auxiliary loss by cosine similarity (as above).

Unweighted version: Use aux loss when \(\cos > \text{Threshold} \) and ignore otherwise.

3. Supervised Learning Using Pairs Of ImageNet Classes

Ground truth of task similarity use Least Common Ancestor (LCA) and Frechet Inception Distance (FID) between ImageNet classes.

Near pair: the most similar, such as Trimaran and Catamaran

Far pair: the least similar, such as Rock python and Traffic light

4. Reinforcement Learning On Imperfect-Teacher Distillation

Single task on Breakout: the main task is Breakout, the auxiliary task is a sub-optimal pre-trained Breakout teacher

- **Only KL:** solely following the teacher leads to sub-optimal solutions
- **RL (Baseline):** single task learning without the teacher
- **RL + KL (Baseline):** the teacher only helps initially

Our Method: uses the teacher's knowledge when it helps initially and ignores when it hurts later on

Multi-task on Breakout and Ms. PacMan: the main task is multi-task Breakout + Ms. PacMan, the auxiliary task is a sub-optimal pre-trained Breakout teacher

- **Multi-task:** learns Ms. PacMan at the expense of Breakout
- **Multi-task RL + Distillation:** the teacher helps Breakout but hurts Ms. PacMan

Our Method: Ms. PacMan ignores the teacher when it hurts; both Breakout and Ms. Pacman learn well

5. Summary

- Proposed gradient cosine similarity as a simple yet effective way to automatically adapt the auxiliary task to help (& not hurt) the main task.

- Experiments on ImageNet and Atari show empirical success; paper contains additional experiments on cross-domain distillation tasks.

- Paper shows theoretical guarantees on the convergence to local optimum of the main task.

Potential issues and Future directions

- Guarantees convergence to local optimum of the main task but not faster convergence.
- Extend theory to optimizers that rely on statistics of the gradients or second order information (e.g., Adam or RMSprop).
- Apply our method to settings where the auxiliary task hurts initially but helps later.