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Abstract
One approach to deal with the statistical inefficiency of neural networks is to rely
on auxiliary losses that help to build useful representations. However, it is not
always trivial to know if an auxiliary task will be helpful for the main task and
when it could start hurting. We propose to use cosine similarity between gradients
of tasks as an adaptive weight for the auxiliary loss and show that our approach is
guaranteed to converge to critical points of the main task. The practical usefulness
of our algorithm is demonstrated on Atari games, a popular benchmark for deep
reinforcement learning.3

1 Introduction
Neural networks are extremely powerful function approximators that have excelled on a wide range
of tasks [6, 15, 26, 27, 30]. Despite the state of the art results across domains, they remain data-
inefficient and expensive to train. In reinforcement learning (RL), agents typically consume millions
of frames of experiences before learning to act in complex environments [3, 26], which not only
puts pressure on compute power but also makes particular domains (e.g., robotics) impractical. In
supervised learning (e.g., image classification), large deep learning (DL) benchmarks with millions
of examples are needed for training [21]. This additional implication of requiring human intervention
to label a large dataset can be prohibitively expensive.

Different techniques have been studied for improving data efficiency, from data augmentation
[5, 13, 27], transfer learning [17, 28], to lifelong learning [2]. In this work, we focus on a particular
setup for transfer learning. We assume that besides the main task, one has access to multiple auxiliary
tasks that share some unknown structure with the main task. To improve data efficiency, these
additional tasks can be used as auxiliary losses. Only the performance on the main task is of interest,
even though the model is trained simultaneously on all these tasks. Any improvement on the auxiliary
losses is useful only to the extent that it helps learning features or behaviors for the main task.

Auxiliary tasks have been shown to work well in practice. In image classification, Zhang et al.
[33] used unsupervised reconstruction tasks. In RL, the UNREAL framework [12] incorporates
unsupervised control tasks in addition to reward prediction learning as auxiliary tasks. Mirowski et al.
[14] studied auxiliary tasks in the context of navigation. Papoudakis et al. [18] also explored auxiliary
loses for VizDoom domain. However, their success depends on how well aligned the auxiliary losses
are with the main task. Knowing this apriori is typically non-trivial and the usefulness of an auxiliary
task can change through the course of training. In this work, we explore a simple yet effective
approach for measuring the similarity between an auxiliary task and the main task of interest, given
the value of the parameters. We show that this measure can be used to decide which auxiliary losses
are helpful and for how long.

Notation and problem description Assume we have a main task Tmain and an auxiliary task Taux
that induce two losses Lmain and Laux. We care only about maximizing performance on Tmain;
Taux is an auxiliary task which is not of direct interest.4 We propose to parameterize the solution
∗Work done during an internship at DeepMind. Other affiliation: Washington State University.
†Equal Contribution
3We also conduct experiments on multi-task supervised learning using subsets of ImageNet and additional

reinforcement learning experiments on gridworlds, see Appendix C.
4Note that this is different from multi-objective optimization in which both tasks are of interest.
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for Tmain andTaux by two neural networksf (�; � ; � main ) andg(�; � ; � aux ) such that they share a
subset of parameters denoted here by� . Generally, the auxiliary loss literature proposes to minimize

arg min
� ;� main ;� aux

L main (� ; � main ) + � L aux (� ; � aux ) (1)

under the intuition that modifying� to minimizeL aux will improve L main if the two tasks are
suf�ciently related. We propose to modulate the weight� at each learning iterationt by how useful
Taux is for Tmain given � ( t ) ; � ( t )

main ; � ( t )
aux . That is, at each optimization iteration, we want to

ef�ciently approximate the solution to

arg min
� ( t )

L main

�
� ( t ) � � r � (L main + � ( t ) L aux ); � ( t )

main � � r � main L main

�
(2)

Note that the input space ofTmain andTaux do not have to match, and in particular,Taux does not
need to be de�ned for an input ofTmain or the other way around.5 Solving equation 2 is expensive.
Instead, we look for a cheap heuristic to approximate� ( t ) which is better than keeping� ( t ) constant.

2 Cosine Similarity Between Gradients of Tasks
We propose to use cosine similarity of gradients between tasks as a measure of task similarity and
hence for approximating� ( t ) . Consider the example in Figure 1, where the main function that we
wish to minimize isL main = ( � � 10)2 and the auxiliary function isL aux = � 2. When� is initialized
at � = � 20, the gradients of the main and auxiliary functions point in the same direction and the
cosine similarity is1; minimizing the auxiliary loss is bene�cial for minimizing the main. However,
at a different point,� = 5 , the two gradients point in different directions and the cosine similarity is
� 1; minimizing the auxiliary loss would hinder minimizing the main loss.

Figure 1: Illustration of cosine
similarity between gradients
on synthetic loss surfaces.

This example suggests a natural strategy for approximating� ( t ) :
minimize the auxiliary loss as long as its gradient has non-negative
cosine similarity with the main gradient; otherwise, the auxiliary
loss should be ignored. This follows the well-known intuition that
if a vector is in the same half-space as the gradient of a functionf ,
then it is adecent directionfor f . This reduces our strategy to ask if
the gradient of the auxiliary loss is adescent directionfor the main
loss of interest.
Proposition 1. Given any gradient vector �eldG(� ) = r � L (� )
and any vector �eldV (� ) (such as the gradient of another loss
function, but could be an arbitrary set of updates), an update rule
of the form

� ( t +1) := � ( t ) � � ( t )
�

G(� ( t ) )+ V (� ( t ) ) max
�
0; cos(G(� ( t ) ); V (� ( t ) ))

� �

converges to the local minimum ofL given small enough� ( t ) .

Proof is provided in Appendix A.1.

Note that the above statement guarantees only the lack of divergence, but not the improvement of
convergence. That is, cosine similarity guarantees to drop the “worst-case scenarios” by ignoring
the auxiliary loss when it is hurting the main loss, but does not guarantee positive transfer (e.g., the
choice of auxiliary loss could be on its own harmful to the main loss). In Appendix B, we show
example functions where the main loss's convergence is affected either positively (Figure 5) or
negatively (Figure 6) by the auxiliary loss; the main task converges faster (or slower) when a suitable
(or unsuitable) auxiliary task is chosen. Nevertheless, the convergence on the main task is guaranteed
for our proposed strategy regardless of the choice of auxiliary task, as the proposition shows.

In addition, it is important to note that simply adding an arbitrary vector �eld does not have the

convergence property. For example, use functionV (� ) = �r � L (� ) +
h
� � 2

� 2
1 + � 2

2
; � 1

� 2
1 + � 2

2

i T
as a

two-dimensional case, which leads to an update rule of� ( t +1) = � ( t ) � �
h
� � 2

� 2
1 + � 2

2
; � 1

� 2
1 + � 2

2

i T
. This

5In the supervised learning case when the input features are shared, it resembles themulti-task learning
without label correspondencessetting [20].

2



is a non-conservative vector �eld which causes the optimizer to follow concentric circles around
the origin (see Figure 5d in Appendix B). This is crucial to note for some realistic scenarios where
one does not always form a gradient �eld (e.g., the update rule of the Q-learning algorithm). We
provide a few examples on quadratic functions of the proposed approach in Figure 5 to help intuitively
understand the kind of scenarios for which our approach could help.

The above proposition refers to losses with the same set of parameters� , while equation 2 refers
to the scenario when each loss has task speci�c parameters (e.g.� main and� aux ). The following
proposition extends to this scenario:

Proposition 2. Given two losses parametrized with� (some of which are shared� and some are
unique to each loss� main and� aux ), learning rule:

� ( t +1) := � ( t ) � � ( t )
�

r � L main (� ( t ) )+ r � L aux (� ( t ) ) max
�
0; cos(r � L main (� ( t ) ); r � L aux (� ( t ) ))

� �

� ( t +1)
main := � ( t )

main � � ( t ) r � main L main (� ( t ) ) and � ( t +1)
aux := � ( t )

aux � � ( t ) r � aux L aux (� ( t ) )

leads to convergence to local minimum ofL main w.r.t. (� ; � main ) given small enough� ( t ) .

Proof. Comes directly from the previous proposition thatG = r � L main andV = r � L aux . For
any vector �eldsA; B; C , we havehA; B i � 0 andhC; B i � 0 implieshA + C; B i � 0.

Analogous guarantees hold for theunweighted versionof this algorithm, where instead of weighting
by cos(G; V ) we use a binary weight(sign(cos(G; V )) + 1) =2 which is equivalent to usingV
iff cos(G; V ) > 0. When training with mini-batches, accurately estimatingcos(G; V ) can be
dif�cult due to mini-batch noises; the unweighted variant only requiressign(cos(G; V ) which can be
estimated more robustly. Hence, we use this variant in our experiments unless otherwise speci�ed.
Additionally, note that there is no guarantee thatL aux is optimized. For example, ifL aux = �L main
thenL aux is ignored (see a visualization in Figure 5e).

Despite its simplicity, the proposed update rule can give rise to interesting phenomena. In particular,
we can show that the emerging vector �eld could be non-conservative. We prove that this phenomenon
has no negative effects on our proposed algorithm in Appendix A.2.

3 Experiments on Atari Games

Figure 2: Results on Breakout.
We look at the effects of dis-
tilling a suboptimal policy as
an auxiliary task.

In this section, we use the gradient cosine similarity to decide when
the auxiliary task is bene�cial to the main task. We test our approach
in the Atari domain [1] (we also conduct experiments on image
classi�cation and RL grid world, see Appendix C). The training
procedure is summarized in Algorithm 1 in Appendix C.1. Note that
for practical reasons we pick a constantthresholdfor the proposed
update rule instead of using0 as described in Section 2. We use the
same convolutional architecture as in previous works [3, 8, 15, 16]
and train using the batched actor-critic with V-trace algorithm [3].
Experiment details are described in Appendix C.2.

First, we train an agent to play Breakout given asub-optimalsolution
to the agent. The sub-optimal solution is a distillation of behaviors
from a pre-trained Breakout agent (the teacher) with a Kullback-
Leibler (KL) loss [11, 22, 29]. Consider the RL loss as the main loss
of interest and the KL distillation loss as the auxiliary loss. Figure 2 illustrates our results under four
different settings.RL (Baseline)trains with only RL loss;Only KL shows that solely rely on the
auxiliary leads to sub-optimal performance as the agent is purely mimicking a sub-optimal teacher;
RL + KL (baseline)trains jointly with the auxiliary and RL loss leads to a slightly better, but also
sub-optimal performance. While these approaches learn quickly at the beginning, they plateau much
lower than theRL (Baseline)approach.RL + KL (Our Method)is able to take the bene�t from both
theRL (Baseline)and theRL + KL (baseline)approaches that it is able to learn quickly at the start
and continue to �ne-tune with RL loss once the auxiliary loss is zeroed out; the KL penalty is scaled
at every time-step by the cosine similarity between the policy gradient loss and the distillation loss,
once this falls below a �xedthreshold, the loss is “turned off” to prevent negative effects to the main
loss.
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We then consider a multi-task setup to train an agent to play two Atari games, Breakout and Ms.
PacMan, as the main taskTmain . Similarly, we have access to a teacher agent trained on Breakout,
from which we distill a teacher policy. At every time step, the auxiliary KL lossL aux (between the
teacher and student policies of Breakout) is added to the RL multi-task lossL main . Intuitively, doing
so would result in the agent learning only one of the tasks—the one the teacher knows about, as the
gradients from distillation loss would interfere with the policy gradient.

Figure 3 shows that, compared to the baselineMultitaskand the simple addition ofMultitask RL +
Distillation approaches where the agent learns one task at the expense of the other, our method of
scaling the auxiliary loss by gradient cosine similarity is able to compensate for this by learning from
the teacher and then turning off the auxiliary distillation; it learns Ms. PacMan without forgetting
Breakout. The evolution of the gradient cosine similarity between Breakout and Ms. PacMan provides
a meaningful cue for the usefulness ofL aux .

Figure 3: Results on Breakout and Ms. PacMan (averaged over3 seeds). The two plots to the left
show performance on Breakout and Ms. PacMan respectively. The third plot to the left shows how
the gradient cosine similarity between the two tasks changes during training. The last plot shows an
average score of the multi-task performance (normalized independently for each game based on the
best score achieved across all experiments). Our method (orange line) is able to learn both games
without forgetting and achieves the best average performance.

4 Discussion
In this work, we explored a simple yet ef�cient technique to ensure that an auxiliary loss does not hurt
the learning on the main task. The proposed approach reduces to applying gradients of the auxiliary
task only if they are a descent direction of the main task.

Though we have demonstrated the usefulness of the proposed method in practice, we discuss here
a few shortcomings of this method. First, estimating the cosine similarity between the gradients
of tasks could be expensive or noisy and that the threshold for turning off the auxiliary is a �xed
constant. These could be addressed by calculating a running average of the cosine similarity to get a
smoother result and potentially hyper-tune the threshold instead of setting it as a �xed constant. One
might argue that our approach would fail in high-dimensional spaces since random vectors in such
spaces tend to be orthogonal, so that cosine similarity will be naturally driven to0. In fact, this is not
the case; if two gradients are meant to be co-linear, the noise components cancel each other thus will
not affect the cosine similarity estimation. We empirically explore this in Appendix D. Second, the
new loss surface might be less smooth. This can be problematic when using optimizers that rely on
statistics of the gradients or second order information (e.g. Adam or RMSprop). In these cases, the
transition from just the gradient of the main task to the sum of the gradients can affect the statistics
of the optimizer in unwanted ways. Lastly, although the proposed approach works well empirically
on complex and noisy tasks like Atari games, as discussed in Section 2, it guarantees only that the
main task will converge, but not how fast the convergence will be. While removing the worst case
scenarios is important, one might care more for data ef�ciency when using auxiliary losses (i.e.,
faster convergence). Particularly in Appendix B Figure 6, we construct a counter-example where the
proposed update rule slows down learning compared to optimizing the main task alone.

Nevertheless, we have empirically shown the potential of using the proposed hypothesis as a simple
yet ef�cient way of picking a suitable auxiliary task. While we have mostly considered scenarios
where the auxiliary task helps initially but hurts later, it would be interesting to explore settings where
the auxiliary task hurts initially but helps in the end. Examples of such are annealing� in � -VAE
[10] and annealing the con�dence penalty in [19].
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A Propositions and Proofs

A.1 Proof for Proposition 1

Given any gradient vector �eldG(� ) = r � L (� ) and any vector �eldV (� ) (such as gradient of
another loss function, but could be arbitrary set of updates), an update rule of the form

� ( t +1) := � ( t ) � � ( t )
�

G(� ( t ) ) + V (� ( t ) ) max
�
0; cos(G(� ( t ) ); V (� ( t ) ))

� �

converges to the local minimum ofL given small enough� ( t ) .

Proof. Let us denote

G( t ) := G(� ( t ) ) V ( t ) := V (� ( t ) ) rL ( t ) := r � L (� ( t ) )

� � ( t ) := G( t ) + V ( t ) max(0; cos(G( t ) ; V ( t ) )) :

Our update rule is simply� ( t +1) := � ( t ) � � ( t ) � � ( t ) and we have

h� � ( t ) ; rL ( t ) i = hG( t ) + V ( t ) max(0; cos(G( t ) ; V ( t ) )) ; rL ( t ) i (3)

= hG( t ) ; rL ( t ) i + hV ( t ) max(0; cos(G( t ) ; V ( t ) )) ; rL ( t ) i (4)

= krL ( t ) k2 + 1
kV ( t ) kkrL ( t ) k max(0; hrL ( t ) ; V ( t ) i )hV ( t ) ; rL ( t ) i � 0: (5)

And it can be 0 if and only ifkrL ( t ) k = 0 (since sum of two non-negative terms is zero iff both are
zero, and step from (4) to (5) is only possible if this is not true), thus it is 0 only when we are at the
critical point ofL . Thus the method converges due to convergence of steepest descent methods, see
“Cauchy's method of minimization” [4].

A.2 Proposition 3 and Proof

Our proposed update rule give rise to an interesting phenomenon that the emerging vector �eld could
be non-conservative, meaning that there exists not a loss function for which it is a gradient. While
this might seem problematic (for gradient-descent-based optimizers), it describes only the global
structure—typically used optimizers are local in nature [25]. Consequently, in practice one should
not expect any negative effects from this phenomenon, as it simply shows that our proposed technique
is in fact qualitatively changing the nature of update rules for training.

Proposition 3. In general, the proposed update rule does not have to create a conservative vector
�eld.

Proof. Proof comes from a counterexample (Visualized in Figure 4), let us de�ne in 2D space:

L main (� 1; � 2) = a� 1

L aux (� 1; � 2) =
�

a� 1 if � 1 2 [1; 2] ^ � 2 2 [0; 1]
0 therwise

for some �xeda 6= 0 . Let us now de�ne two paths (parametrized bys) between points(0; 0) and
(2; 2), pathA which is a concatenation of a line from(0; 0) to (0; 2) (we call itU, since it goes up)
and line from(0; 2) to (2; 2) (which we callR as it goes right), and pathB which �rst goes right and
then up. LetVcos denote the update rule we follow, then:

Z

A
Vcosds =

Z

A
rL mainds =

Z

U
rL mainds +

Z

R
rL mainds =

Z

R
rL mainds = 2a

At the same time, since gradient ofL main is conservative by de�nition:
Z

B
Vcosds =

Z

B
rL mainds+

Z

C
rL auxds =

Z

A
rL mainds+

Z

C
rL auxds = 2a+

Z

C
rL auxds = 3a

whereC is a part ofB that goes through[1; 2] � [0; 1]. We conclude that
R

A Vcosds 6=
R

B Vcosds, so
our vector �eld is not path invariant, thus by Green's Theorem it is not conservative, which concludes
the proof.
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Figure 4: Visualization of the counterexample from Proposition 3. Stars denote starting (green) and
end (black) points. Dotted and dashed lines correspond to path A and B respectively. Blue arrows
represent gradient vector �eld of the main loss, violet arrows are the merged vector �eld.

B Examples of Positive and Negative Effect of Auxiliary task on Main task

In Figure 5 we show examples where our method of using cosine similarity of gradients as a mixing
strategy that leads to faster convergence. Consider optimizing a main loss functionL 1(� 1; � 2) =
� 2

1 + � 2
2 via utilizing an auxiliary lossL 2(� 1; � 2) = ( � 1 � 1)2 + ( � 2 � 1)2. Their gradients are

visualized in Figure 5a and in this case we expectr L 2 to be helpful forr L 1 since they are positively
aligned. We use steepest descent method and de�ne convergence time as the number of steps needed
to get below 0.1 loss ofL 1. Figure 5b shows that simple addition ofr L 1 andr L 2 slows down
the convergence, while our proposed scaling strategy (Figure 5c) leads to faster learning. Similarly
when considering a non-conservative vector spaceV(� 1; � 2) = [ � � 2

� 2
1 + � 2

2
� 2� 1; � 1

� 2
1 + � 2

2
� 2� 2], simple

mixing leads to divergence (Figure 5d) while our method still works well (Figure 5e).

We also discuss here a few potential issues of the proposed method. First, the method depends on
being able to compute cosine between gradients. However, we rarely are able to compute exact
gradients when a high variance estimator such as a deep neural networks (e.g., mini-batch noises
in supervised learning or Monte Carlo estimations in RL). Consequently, estimating the cosine
similarity might require additional tricks such as to keep moving averages of the estimation. Second,
adding additional task gradient in selected subset of iterates can lead to very bumpy surface from
the perspective of the optimizer, which leads to tracking a higher order derivatives of the gradient
statistics thus less ef�cient and could hinders the optimization process. We construct one such
function in Figure 6 as an illustration.

C More Experiments

We present in this section experiment details on Atari tasks, with additional experiments conducted
in two more tasks: a supervised image classi�cation task in the ImageNet dataset and an RL task in
the maze domain.

C.1 Pseudocode

Algorithms 1 describes theunweightedvariant of our method and Algorithm 2 describes theweighted
variant of our method. See Section 2 for a detailed discussions.

Algorithm 1 Unweighted variant our method

1: Initialize shared parameters� and task speci�c parameters� main ; � aux randomly.
2: for iter = 1 : max iter do
3: Computer � L main ; r � main L main , r � L aux ; r � aux L aux .
4: Update� main and� aux using corresponding gradients.
5: if cos(r � L main ; r � L aux ) � thresholdthen
6: Update� usingr � L main + r � L aux
7: else
8: Update� usingr � L main
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