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Abstract
One approach to deal with the statistical inefficiency of neural networks is to rely
on auxiliary losses that help to build useful representations. However, it is not
always trivial to know if an auxiliary task will be helpful for the main task and
when it could start hurting. We propose to use cosine similarity between gradients
of tasks as an adaptive weight for the auxiliary loss and show that our approach is
guaranteed to converge to critical points of the main task. The practical usefulness
of our algorithm is demonstrated on Atari games, a popular benchmark for deep
reinforcement learning.3

1 Introduction
Neural networks are extremely powerful function approximators that have excelled on a wide range
of tasks [6, 15, 26, 27, 30]. Despite the state of the art results across domains, they remain data-
inefficient and expensive to train. In reinforcement learning (RL), agents typically consume millions
of frames of experiences before learning to act in complex environments [3, 26], which not only
puts pressure on compute power but also makes particular domains (e.g., robotics) impractical. In
supervised learning (e.g., image classification), large deep learning (DL) benchmarks with millions
of examples are needed for training [21]. This additional implication of requiring human intervention
to label a large dataset can be prohibitively expensive.

Different techniques have been studied for improving data efficiency, from data augmentation
[5, 13, 27], transfer learning [17, 28], to lifelong learning [2]. In this work, we focus on a particular
setup for transfer learning. We assume that besides the main task, one has access to multiple auxiliary
tasks that share some unknown structure with the main task. To improve data efficiency, these
additional tasks can be used as auxiliary losses. Only the performance on the main task is of interest,
even though the model is trained simultaneously on all these tasks. Any improvement on the auxiliary
losses is useful only to the extent that it helps learning features or behaviors for the main task.

Auxiliary tasks have been shown to work well in practice. In image classification, Zhang et al.
[33] used unsupervised reconstruction tasks. In RL, the UNREAL framework [12] incorporates
unsupervised control tasks in addition to reward prediction learning as auxiliary tasks. Mirowski et al.
[14] studied auxiliary tasks in the context of navigation. Papoudakis et al. [18] also explored auxiliary
loses for VizDoom domain. However, their success depends on how well aligned the auxiliary losses
are with the main task. Knowing this apriori is typically non-trivial and the usefulness of an auxiliary
task can change through the course of training. In this work, we explore a simple yet effective
approach for measuring the similarity between an auxiliary task and the main task of interest, given
the value of the parameters. We show that this measure can be used to decide which auxiliary losses
are helpful and for how long.

Notation and problem description Assume we have a main task Tmain and an auxiliary task Taux
that induce two losses Lmain and Laux. We care only about maximizing performance on Tmain;
Taux is an auxiliary task which is not of direct interest.4 We propose to parameterize the solution
∗Work done during an internship at DeepMind. Other affiliation: Washington State University.
†Equal Contribution
3We also conduct experiments on multi-task supervised learning using subsets of ImageNet and additional

reinforcement learning experiments on gridworlds, see Appendix C.
4Note that this is different from multi-objective optimization in which both tasks are of interest.
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for Tmain and Taux by two neural networks f(·,θ,φmain) and g(·,θ,φaux) such that they share a
subset of parameters denoted here by θ. Generally, the auxiliary loss literature proposes to minimize

arg min
θ,φmain,φaux

Lmain(θ,φmain) + λLaux(θ,φaux) (1)

under the intuition that modifying θ to minimize Laux will improve Lmain if the two tasks are
sufficiently related. We propose to modulate the weight λ at each learning iteration t by how useful
Taux is for Tmain given θ(t),φ

(t)
main,φ

(t)
aux. That is, at each optimization iteration, we want to

efficiently approximate the solution to

arg min
λ(t)

Lmain
(
θ(t) − α∇θ(Lmain + λ(t)Laux),φ

(t)
main − α∇φmain

Lmain
)

(2)

Note that the input space of Tmain and Taux do not have to match, and in particular, Taux does not
need to be defined for an input of Tmain or the other way around.5 Solving equation 2 is expensive.
Instead, we look for a cheap heuristic to approximate λ(t) which is better than keeping λ(t) constant.

2 Cosine Similarity Between Gradients of Tasks
We propose to use cosine similarity of gradients between tasks as a measure of task similarity and
hence for approximating λ(t). Consider the example in Figure 1, where the main function that we
wish to minimize is Lmain = (θ−10)2 and the auxiliary function is Laux = θ2. When θ is initialized
at θ = −20, the gradients of the main and auxiliary functions point in the same direction and the
cosine similarity is 1; minimizing the auxiliary loss is beneficial for minimizing the main. However,
at a different point, θ = 5, the two gradients point in different directions and the cosine similarity is
−1; minimizing the auxiliary loss would hinder minimizing the main loss.
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Figure 1: Illustration of cosine
similarity between gradients
on synthetic loss surfaces.

This example suggests a natural strategy for approximating λ(t):
minimize the auxiliary loss as long as its gradient has non-negative
cosine similarity with the main gradient; otherwise, the auxiliary
loss should be ignored. This follows the well-known intuition that
if a vector is in the same half-space as the gradient of a function f ,
then it is a decent direction for f . This reduces our strategy to ask if
the gradient of the auxiliary loss is a descent direction for the main
loss of interest.
Proposition 1. Given any gradient vector field G(θ) = ∇θL(θ)
and any vector field V (θ) (such as the gradient of another loss
function, but could be an arbitrary set of updates), an update rule
of the form

θ(t+1) := θ(t)−α(t)
(
G(θ(t))+V (θ(t)) max

(
0, cos(G(θ(t)), V (θ(t)))

))
converges to the local minimum of L given small enough α(t).

Proof is provided in Appendix A.1.

Note that the above statement guarantees only the lack of divergence, but not the improvement of
convergence. That is, cosine similarity guarantees to drop the “worst-case scenarios” by ignoring
the auxiliary loss when it is hurting the main loss, but does not guarantee positive transfer (e.g., the
choice of auxiliary loss could be on its own harmful to the main loss). In Appendix B, we show
example functions where the main loss’s convergence is affected either positively (Figure 5) or
negatively (Figure 6) by the auxiliary loss; the main task converges faster (or slower) when a suitable
(or unsuitable) auxiliary task is chosen. Nevertheless, the convergence on the main task is guaranteed
for our proposed strategy regardless of the choice of auxiliary task, as the proposition shows.

In addition, it is important to note that simply adding an arbitrary vector field does not have the

convergence property. For example, use function V (θ) = −∇θL(θ) +
[
− θ2
θ21+θ

2
2
, θ1
θ21+θ

2
2

]T
as a

two-dimensional case, which leads to an update rule of θ(t+1) = θ(t) − α
[
− θ2
θ21+θ

2
2
, θ1
θ21+θ

2
2

]T
. This

5In the supervised learning case when the input features are shared, it resembles the multi-task learning
without label correspondences setting [20].
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is a non-conservative vector field which causes the optimizer to follow concentric circles around
the origin (see Figure 5d in Appendix B). This is crucial to note for some realistic scenarios where
one does not always form a gradient field (e.g., the update rule of the Q-learning algorithm). We
provide a few examples on quadratic functions of the proposed approach in Figure 5 to help intuitively
understand the kind of scenarios for which our approach could help.

The above proposition refers to losses with the same set of parameters θ, while equation 2 refers
to the scenario when each loss has task specific parameters (e.g. φmain and φaux). The following
proposition extends to this scenario:

Proposition 2. Given two losses parametrized with Θ (some of which are shared θ and some are
unique to each loss φmain and φaux), learning rule:

θ(t+1) := θ(t)−α(t)
(
∇θLmain(θ(t))+∇θLaux(θ(t)) max

(
0, cos(∇θLmain(θ(t)),∇θLaux(θ(t)))

))
φ

(t+1)
main := φ

(t)
main − α

(t)∇φmain
Lmain(Θ(t)) and φ(t+1)

aux := φ(t)
aux − α(t)∇φaux

Laux(Θ(t))

leads to convergence to local minimum of Lmain w.r.t. (θ,φmain) given small enough α(t).

Proof. Comes directly from the previous proposition that G = ∇θLmain and V = ∇θLaux. For
any vector fields A,B,C, we have 〈A,B〉 ≥ 0 and 〈C,B〉 ≥ 0 implies 〈A+ C,B〉 ≥ 0.

Analogous guarantees hold for the unweighted version of this algorithm, where instead of weighting
by cos(G,V ) we use a binary weight (sign(cos(G,V )) + 1)/2 which is equivalent to using V
iff cos(G,V ) > 0. When training with mini-batches, accurately estimating cos(G,V ) can be
difficult due to mini-batch noises; the unweighted variant only requires sign(cos(G,V ) which can be
estimated more robustly. Hence, we use this variant in our experiments unless otherwise specified.
Additionally, note that there is no guarantee that Laux is optimized. For example, if Laux = −Lmain
then Laux is ignored (see a visualization in Figure 5e).

Despite its simplicity, the proposed update rule can give rise to interesting phenomena. In particular,
we can show that the emerging vector field could be non-conservative. We prove that this phenomenon
has no negative effects on our proposed algorithm in Appendix A.2.

3 Experiments on Atari Games

Figure 2: Results on Breakout.
We look at the effects of dis-
tilling a suboptimal policy as
an auxiliary task.

In this section, we use the gradient cosine similarity to decide when
the auxiliary task is beneficial to the main task. We test our approach
in the Atari domain [1] (we also conduct experiments on image
classification and RL grid world, see Appendix C). The training
procedure is summarized in Algorithm 1 in Appendix C.1. Note that
for practical reasons we pick a constant threshold for the proposed
update rule instead of using 0 as described in Section 2. We use the
same convolutional architecture as in previous works [3, 8, 15, 16]
and train using the batched actor-critic with V-trace algorithm [3].
Experiment details are described in Appendix C.2.

First, we train an agent to play Breakout given a sub-optimal solution
to the agent. The sub-optimal solution is a distillation of behaviors
from a pre-trained Breakout agent (the teacher) with a Kullback-
Leibler (KL) loss [11, 22, 29]. Consider the RL loss as the main loss
of interest and the KL distillation loss as the auxiliary loss. Figure 2 illustrates our results under four
different settings. RL (Baseline) trains with only RL loss; Only KL shows that solely rely on the
auxiliary leads to sub-optimal performance as the agent is purely mimicking a sub-optimal teacher;
RL + KL (baseline) trains jointly with the auxiliary and RL loss leads to a slightly better, but also
sub-optimal performance. While these approaches learn quickly at the beginning, they plateau much
lower than the RL (Baseline) approach. RL + KL (Our Method) is able to take the benefit from both
the RL (Baseline) and the RL + KL (baseline) approaches that it is able to learn quickly at the start
and continue to fine-tune with RL loss once the auxiliary loss is zeroed out; the KL penalty is scaled
at every time-step by the cosine similarity between the policy gradient loss and the distillation loss,
once this falls below a fixed threshold, the loss is “turned off” to prevent negative effects to the main
loss.
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We then consider a multi-task setup to train an agent to play two Atari games, Breakout and Ms.
PacMan, as the main task Tmain. Similarly, we have access to a teacher agent trained on Breakout,
from which we distill a teacher policy. At every time step, the auxiliary KL loss Laux (between the
teacher and student policies of Breakout) is added to the RL multi-task loss Lmain. Intuitively, doing
so would result in the agent learning only one of the tasks—the one the teacher knows about, as the
gradients from distillation loss would interfere with the policy gradient.

Figure 3 shows that, compared to the baseline Multitask and the simple addition of Multitask RL +
Distillation approaches where the agent learns one task at the expense of the other, our method of
scaling the auxiliary loss by gradient cosine similarity is able to compensate for this by learning from
the teacher and then turning off the auxiliary distillation; it learns Ms. PacMan without forgetting
Breakout. The evolution of the gradient cosine similarity between Breakout and Ms. PacMan provides
a meaningful cue for the usefulness of Laux.

Figure 3: Results on Breakout and Ms. PacMan (averaged over 3 seeds). The two plots to the left
show performance on Breakout and Ms. PacMan respectively. The third plot to the left shows how
the gradient cosine similarity between the two tasks changes during training. The last plot shows an
average score of the multi-task performance (normalized independently for each game based on the
best score achieved across all experiments). Our method (orange line) is able to learn both games
without forgetting and achieves the best average performance.

4 Discussion
In this work, we explored a simple yet efficient technique to ensure that an auxiliary loss does not hurt
the learning on the main task. The proposed approach reduces to applying gradients of the auxiliary
task only if they are a descent direction of the main task.

Though we have demonstrated the usefulness of the proposed method in practice, we discuss here
a few shortcomings of this method. First, estimating the cosine similarity between the gradients
of tasks could be expensive or noisy and that the threshold for turning off the auxiliary is a fixed
constant. These could be addressed by calculating a running average of the cosine similarity to get a
smoother result and potentially hyper-tune the threshold instead of setting it as a fixed constant. One
might argue that our approach would fail in high-dimensional spaces since random vectors in such
spaces tend to be orthogonal, so that cosine similarity will be naturally driven to 0. In fact, this is not
the case; if two gradients are meant to be co-linear, the noise components cancel each other thus will
not affect the cosine similarity estimation. We empirically explore this in Appendix D. Second, the
new loss surface might be less smooth. This can be problematic when using optimizers that rely on
statistics of the gradients or second order information (e.g. Adam or RMSprop). In these cases, the
transition from just the gradient of the main task to the sum of the gradients can affect the statistics
of the optimizer in unwanted ways. Lastly, although the proposed approach works well empirically
on complex and noisy tasks like Atari games, as discussed in Section 2, it guarantees only that the
main task will converge, but not how fast the convergence will be. While removing the worst case
scenarios is important, one might care more for data efficiency when using auxiliary losses (i.e.,
faster convergence). Particularly in Appendix B Figure 6, we construct a counter-example where the
proposed update rule slows down learning compared to optimizing the main task alone.

Nevertheless, we have empirically shown the potential of using the proposed hypothesis as a simple
yet efficient way of picking a suitable auxiliary task. While we have mostly considered scenarios
where the auxiliary task helps initially but hurts later, it would be interesting to explore settings where
the auxiliary task hurts initially but helps in the end. Examples of such are annealing β in β-VAE
[10] and annealing the confidence penalty in [19].
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A Propositions and Proofs

A.1 Proof for Proposition 1

Given any gradient vector field G(θ) = ∇θL(θ) and any vector field V (θ) (such as gradient of
another loss function, but could be arbitrary set of updates), an update rule of the form

θ(t+1) := θ(t) − α(t)
(
G(θ(t)) + V (θ(t)) max

(
0, cos(G(θ(t)), V (θ(t)))

))
converges to the local minimum of L given small enough α(t).

Proof. Let us denote

G(t) := G(θ(t)) V (t) := V (θ(t)) ∇L(t) := ∇θL(θ(t))

∆θ(t) := G(t) + V (t) max(0, cos(G(t), V (t))).

Our update rule is simply θ(t+1) := θ(t) − α(t)∆θ(t) and we have

〈∆θ(t),∇L(t)〉 = 〈G(t) + V (t) max(0, cos(G(t), V (t))),∇L(t)〉 (3)

= 〈G(t),∇L(t)〉+ 〈V (t) max(0, cos(G(t), V (t))),∇L(t)〉 (4)

= ‖∇L(t)‖2 + 1
‖V (t)‖‖∇L(t)‖ max(0, 〈∇L(t), V (t)〉)〈V (t),∇L(t)〉 ≥ 0. (5)

And it can be 0 if and only if ‖∇L(t)‖ = 0 (since sum of two non-negative terms is zero iff both are
zero, and step from (4) to (5) is only possible if this is not true), thus it is 0 only when we are at the
critical point of L. Thus the method converges due to convergence of steepest descent methods, see
“Cauchy’s method of minimization” [4].

A.2 Proposition 3 and Proof

Our proposed update rule give rise to an interesting phenomenon that the emerging vector field could
be non-conservative, meaning that there exists not a loss function for which it is a gradient. While
this might seem problematic (for gradient-descent-based optimizers), it describes only the global
structure—typically used optimizers are local in nature [25]. Consequently, in practice one should
not expect any negative effects from this phenomenon, as it simply shows that our proposed technique
is in fact qualitatively changing the nature of update rules for training.
Proposition 3. In general, the proposed update rule does not have to create a conservative vector
field.

Proof. Proof comes from a counterexample (Visualized in Figure 4), let us define in 2D space:

Lmain(θ1, θ2) = aθ1

Laux(θ1, θ2) =

{
aθ1 if θ1 ∈ [1, 2] ∧ θ2 ∈ [0, 1]
0 therwise

for some fixed a 6= 0. Let us now define two paths (parametrized by s) between points (0, 0) and
(2, 2), path A which is a concatenation of a line from (0, 0) to (0, 2) (we call it U , since it goes up)
and line from (0, 2) to (2, 2) (which we call R as it goes right), and path B which first goes right and
then up. Let Vcos denote the update rule we follow, then:∫

A

Vcosds =

∫
A

∇Lmainds =

∫
U

∇Lmainds+

∫
R

∇Lmainds =

∫
R

∇Lmainds = 2a

At the same time, since gradient of Lmain is conservative by definition:∫
B

Vcosds =

∫
B

∇Lmainds+

∫
C

∇Lauxds =

∫
A

∇Lmainds+

∫
C

∇Lauxds = 2a+

∫
C

∇Lauxds = 3a

where C is a part of B that goes through [1, 2]× [0, 1]. We conclude that
∫
A
Vcosds 6=

∫
B
Vcosds, so

our vector field is not path invariant, thus by Green’s Theorem it is not conservative, which concludes
the proof.
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Figure 4: Visualization of the counterexample from Proposition 3. Stars denote starting (green) and
end (black) points. Dotted and dashed lines correspond to path A and B respectively. Blue arrows
represent gradient vector field of the main loss, violet arrows are the merged vector field.

B Examples of Positive and Negative Effect of Auxiliary task on Main task

In Figure 5 we show examples where our method of using cosine similarity of gradients as a mixing
strategy that leads to faster convergence. Consider optimizing a main loss function L1(θ1, θ2) =
θ21 + θ22 via utilizing an auxiliary loss L2(θ1, θ2) = (θ1 − 1)2 + (θ2 − 1)2. Their gradients are
visualized in Figure 5a and in this case we expect∇L2 to be helpful for∇L1 since they are positively
aligned. We use steepest descent method and define convergence time as the number of steps needed
to get below 0.1 loss of L1. Figure 5b shows that simple addition of ∇L1 and ∇L2 slows down
the convergence, while our proposed scaling strategy (Figure 5c) leads to faster learning. Similarly
when considering a non-conservative vector space V (θ1, θ2) = [− θ2

θ21+θ
2
2
− 2θ1,

θ1
θ21+θ

2
2
− 2θ2], simple

mixing leads to divergence (Figure 5d) while our method still works well (Figure 5e).

We also discuss here a few potential issues of the proposed method. First, the method depends on
being able to compute cosine between gradients. However, we rarely are able to compute exact
gradients when a high variance estimator such as a deep neural networks (e.g., mini-batch noises
in supervised learning or Monte Carlo estimations in RL). Consequently, estimating the cosine
similarity might require additional tricks such as to keep moving averages of the estimation. Second,
adding additional task gradient in selected subset of iterates can lead to very bumpy surface from
the perspective of the optimizer, which leads to tracking a higher order derivatives of the gradient
statistics thus less efficient and could hinders the optimization process. We construct one such
function in Figure 6 as an illustration.

C More Experiments

We present in this section experiment details on Atari tasks, with additional experiments conducted
in two more tasks: a supervised image classification task in the ImageNet dataset and an RL task in
the maze domain.

C.1 Pseudocode

Algorithms 1 describes the unweighted variant of our method and Algorithm 2 describes the weighted
variant of our method. See Section 2 for a detailed discussions.

Algorithm 1 Unweighted variant our method

1: Initialize shared parameters θ and task specific parameters φmain,φaux randomly.
2: for iter = 1 : max iter do
3: Compute∇θLmain,∇φmain

Lmain,∇θLaux,∇φaux
Laux.

4: Update φmain and φaux using corresponding gradients.
5: if cos(∇θLmain,∇θLaux) ≥ threshold then
6: Update θ using ∇θLmain +∇θLaux
7: else
8: Update θ using ∇θLmain

8



2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 89

Conv time: 58

Conv time: 90

Conv time: 99

Conv time: 54

∇L1

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

∇L2

(a)

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

∇L1 +∇L2

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 92

Conv time: 69

Conv time: 70

Conv time: 91

Conv time: 65

∇L1 + 0. 1∇L2

(b)

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 84

Conv time: 58

Conv time: 24

Conv time: 80

Conv time: 54

∇L1 +∇L2max(0, cos(∇L1,∇L2))

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 81

Conv time: 58

Conv time: 24

Conv time: 76

Conv time: 54

∇L1 +∇L20. 5(sign(cos(∇L1,∇L2)) + 1)

(c)

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

V

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

Conv time: inf

∇L1 + V

(d)

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 89

Conv time: 58

Conv time: 90

Conv time: 99

Conv time: 54

∇L1 + Vmax(0, cos(∇L1, V))

2 1 0 1 2

θ1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

θ 2

0 100 200 300 400 500 600

t

0.0

0.5

1.0

1.5

2.0

2.5

L
1
(θ

1
t,
θ 2
t)

Conv time: 89

Conv time: 58

Conv time: 90

Conv time: 99

Conv time: 54

∇L1 + V0. 5(sign(cos(∇L1, V)) + 1)

(e)

Figure 5: Positive example optimization for L1(θ1, θ2) = θ21 +θ22 , L2(θ1, θ2) = (θ1−1)2+(θ2−1)2

and V (θ1, θ2) = [− θ2
θ21+θ

2
2
− 2θ1,

θ1
θ21+θ

2
2
− 2θ2] where the proposed method speeds up the process

(compared on all runs). Each colored trajectory represents one optimization run with random initial
position. Star represents the convergence point. All experiments use steepest descent method and run
600 iterations with constant step size of 0.01. Convergence time is defined as number of steps needed
to get below 0.1 loss of L1 (gray region). Color of each point represents its alignment with ∇L1

(green—positive alignment, red—negative alignment, white—directions are perpendicular). In this
example L2 is helpful for L1 as it reinforces good descent directions in most of the space. However,
simple mixing is actually slowing optimization down (or makes it fail completely, Figure 5b.), while
the proposed methods (weighted and unweighted variants) converge faster (Figure 5c). When using
non-conservative vector field V one obtains lack of convergence (cyclic behaviour, Figure 5d), while
the proposed merging still works well (Figure 5e).

9



Figure 6: Negative example optimization forL1(θ) = (θ1 < 0)(θ21+θ22)+(θ1 > 0)
(

1−exp
(
−2(θ21+

θ22)
))

and L2(θ) = (θ1−2)2+(θ2−0.5)2 where the proposed method slows down the process (com-
pared on red runs). For the ease of presentation, we choose L1, which is non-differentiable/smooth
when θ = 0. But one can create any smooth functions with analogous properties. The core idea
is, when there exists a flat region on the loss surface, the auxiliary lost tends to push the iterates
to this region. Even though this move still decreases the loss (i.e., convergence is guaranteed), the
optimization process will be slowed down.

Algorithm 2 Weighted variant our method

1: Initialize shared parameters θ and task specific parameters φmain,φaux randomly.
2: for iter = 1 : max iter do
3: Compute∇θLmain,∇φmain

Lmain,∇θLaux,∇φaux
Laux.

4: Update φmain and φaux using corresponding gradients.
5: Update θ using ∇θLmain + cos(∇θLmain,∇θLaux)∇θLaux

C.2 Experiments on Atari Games

All experiments in the Atari tasks use the same convolutional architecture as was done in previous
works [3, 8, 15, 16] and train with batched actor-critic with the V-trace algorithm [3]. We use a
learning rate of 0.0006 and an entropy cost of 0.01 for all experiments, with a batch size of 32 and
200 parallel actors. We follow the unweighted variant of our method, described in Algorithm 1.

The cosine similarity is computed on a per-layer basis then take the averaged number. We additionally
use a moving average of the cosine similarity computation over time (0.999c(t−1) + 0.001c(t)) to
ensure there are no sudden spikes in the weighting (due to noisy gradients). For the single game
experiment, Breakout, we use 0.02 as the threshold for the cosine similarity. For the multi-game
experiment, Breakout and Ms PacMan, we use 0.01 as the threshold.

C.3 Experiments on Image Classification Tasks

We consider a classification problem on ImageNet [21] and design a simple multi-task binary
classification task to test our hypothesis that a high cosine similarity indicates that the auxiliary task
will be more helpful to the main task (and vice versa). We take a pair of classes from ImageNet, refer
to these as class A and class B, and refer to all the other 998 classes in ImageNet as the background.
Our tasks Tmain and Taux are then formed as a multi-task binary classification of if an image is class
A (otherwise background) and if an image is class B (otherwise background) respectively.

Identifying near and far classes in ImageNet Ideally, we want to pick groups of class pairs that
reflect near or far distance, for the purpose of providing a baseline of helpfulness of the auxiliary
to the main task. Therefore, we use two distance measures, lowest common ancestor (LCA) in the
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ImageNet label hierarchy and Frechet Inception Distance (FID) [9] between image embedding, to
serve as a ground truth of class similarity for selecting class pair A and B.

ImageNet follows a tree hierarchy where each class is a leaf node. We define the distance between
a pair of classes as at which tree level their LCA is found. In particular, there are 19 levels in the
class tree, each leaf node (i.e. class) is considered to be level 0 while the root node is considered to
be level 19. We perform bottom-up search for one pair of random sampled classes and find their LCA
node. The class distance is then defined as the level number of this node. For example, class 871
(“trimaran”) and class 484 (“catamaran”) has class distance 1 because their LCA is one level up. FID
is used as a second measure of similarity. We obtain the image embedding of a pair of classes using
the penultimate layer of a pre-trained ResNetV2-50 model [7], then compute the embedding distance
using FID, which is defined in [9] as:

FID = d2
(
(m1, C1), (m2, C2)

)
= ‖m1 −m2‖22 + Tr

(
C1 + C2 − 2(C1C2)1/2

)
. (6)

where mk, Ck denote the mean and covariance of the embeddings from class k.

We randomly sample 50 pairs of classes for each level of LCA = {1, 2, 3, 4, 16, 17, 18, 19} (400 pair
of classes in total) and compute their FID. Figure 7 shows a plot of LCA (x-axis) verses FID (y-axis)
over our sampled class pairs, showing that LCA and FID are (loosely) correlated and that they reflect
human intuition of task similarity for some pairs. For example, trimaran and catamaran (bottom-
left) are similar both visually and conceptually, whereas rock python and traffic light (top-right)
are dissimilar both visually and conceptually. However, there are contrary examples where LCA
disagrees with FID; monkey pinscher and doberman pinscher (top-left) are visually dissimilar but
conceptually similar, whereas bubble and sundial (bottom-right) are visually similar but conceptually
dissimilar.

Figure 7: LCA (x-axis) versus FID (y-axis) as a ground truth for class similarity.

Based on these measures, we picked three pair of classes for near, class 871 vs. 484, 250 vs. 249 and
238 vs. 241; for far, class 920 vs. 62, 926 vs. 800, 48 vs. 920. From each pair we build Lmain and
Laux by solving the binary classification problem.

Experiment details We use a modified version of ResNetV2-18 [7] as the training model for this
experiment. All parameters in the convolutional layers are shared (denote as θ), followed by task
specific parameters φmain and φaux. We follow Algorithm 1 and choose threshold = 0. First,
we use a multi-task learning setup to minimize Lmain + Laux and measure cosine similarity on θ
through the course of training. Figure 8a shows that cosine similarity is higher for close pairs (blue
lines) and lower for far pairs (red lines); class 1 vs. 1 serves as a baseline that the same class should
have the highest cosine similarity. Next, we compare training using Single Task, Multi-Task, and Our
Method. Figure 8b shows that on a near pair of class, all three methods perform similarly. However,
as Figure 8c shows, multi-task learning leads to poorer performance than single-task learning on
main for a far pair of class due to potential negative transfer, whereas our method uses gradient
cosine similarity as the mixing strategy leads to improved performance.
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(a) Cosine similarities on near pairs
(blue) and far pairs (red). (b) Near pair: 871 vs. 484 (c) Far pair: 48 vs. 920

Figure 8: Multi-task learning setup on ImageNet class pairs. (a): gradient cosine similarity is higher
for near pairs and lower for far pairs. (b) and (c): testing accuracy on single task (dotted), naive
multi-task (dashed) and our method (solid).

C.4 Experiments on Reinforcement Learning Grid Worlds

We consider a typical RL problem where one aims at finding a policy π that maximizes sum of
future discounted rewards, Eπ[

∑N
t′=1 γ

t′−1rt′ ], in some partially observable Markov decision process
(POMDP). There have been many techniques proposed to solve this optimization problem, from
classical policy gradient [32] or Q-Learning [31] to more modern Proximal Policy Optimization [24]
or V-Trace [3]. Inherently, these techniques are usually very data inefficient due to the complexity
of the problem being solved. One way to address this issue is to use transfer learning, for example
from pre-trained policies [22]. However, in the scenario of which a teacher policy is not available
for the target task, one can train policies in other tasks that share enough similarities to hope for
positive transfer. One way of exploiting this extra information is to use behavioural cloning, or
distillation [11, 22], to guide the main RL algorithm in its initial learning phase [23]. In practice, it
might be difficult to find a suitable strategy that combines the two losses and/or smoothly transition
between them. Typically, the teacher policy can be treated as an auxiliary loss [23] or a prior [29]
with a fixed mixing coefficient. However, these techniques become unsound if the teacher policy is
helpful only in specific states, but leads to negative transfer in other states.

We propose a simple RL experiment to show that our method is capable of finding the strategy of
combining auxiliary loss and the main loss. We define a distribution over 15 × 15 mazes, where
an agent observes its surrounding (for up to 4 pixels away) and can move in 4 directions (with
10% transition noise). We randomly place two types of positive rewards, +5 and +10 points, both
terminating an episode. We also place negative rewards (both terminating and non-terminating) to
make problem harder. In order to guarantee a finite length of episodes, we add fixed probability of
0.01 of transitioning to a non-rewarding terminal state.

We first train a Q-learning agent on the maze and use it as the teacher policy πQ. Then, we create
a main task to which there is a possible positive transfer—an environment that keeps the same
maze layout, but removes the +10 rewards (and corresponding states are no longer terminating).
Consequently we have two tasks, Taux where we have a strong teacher policy, and Tmain, the main
task of interest. We sample 1, 000 such environment pairs and report expected returns obtained (100
evaluation episodes at each evaluation point) using various training regimes. See Figure 9 for a
visualization of the task and an example solution.

One can use any RL method to solve Tmain and learn π, here we use episode-level policy gradient
[32] with value function as a baseline method. Policies are parameterized as logits θ of π(a|s) =

exp(θs,a)∑
b exp(θs,b)

∈ [0, 1]. Baselines are parameterized as Bs ∈ R. We train with fixed learning rate of
α = 0.01, discount factor γ = 0.95 and 10, 000 training steps. Under this setup, the update rule for
each sequence τ =

(
(s1, a1, r1), . . . (sN , aN , rN )

)
is thus given by

∆θ = α∇θ log π(at′ |st′)

N−t′∑
i=0

rt′+i −Bst′

 = αG(t), ∆Bst′ = −α∇Bs
t′

(Bst′−
N−t′∑
i=0

rt′+i)
2

This baseline method achieves a score of slightly above 1 point after 10, 000 steps.

To leverage teacher policies for Taux, we define the auxiliary loss to be a distillation loss, which is a
per-state cross-entropy between the teacher’s and student’s distributions over actions. First, we test
using solely distillation loss while sampling trajectories from the student. We recover a subset of
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Figure 9: Left most: Initial task Tmain, yellow border denotes starting point and violet ones
terminating states. Red states are penalizing with the value in the box while the green ones provide
positive reward. Middle Left: Solution found by a single run of Q-learning with uniform exploration
policy. Middle Right: Transformed task Taux. Right most: Solution found by gradient cosine
similarity driven distillation with policy gradient.

Cross-task transfer experiment Taux → Tmain

Figure 10: Expected learning curves for cross-environment distillation experiments, averaged across
1, 000 partially observable grid worlds. Teacher’s policy is based on Q-Learning. Its performance on
a new environment (with modified positive rewards) is represented by the top dotted line (bottom one
represents random policy score). Each column represents different temperature applied to teacher
policy. 0 temperature refer to the original deterministic greedy policy given by Q-Learning. We
report five methods: reward using just policy gradient in the new task, distill using just distillation
cost towards teacher, add adding the two above, cos using weighted variant in Algorithm 2, strict
cos using unweighted variant in Algorithm 1.

teacher’s behaviours and end up with 0 point—an expected negative transfer as the teacher is guiding
us to states that are no longer rewarding.

Then, we test simply adding gradients estimated by policy gradient and distillation. The update rule
is given by:

∆θ = α
[
G(t) −∇θH×(πQ(·|st′)‖π(·|st′))

]
= α[G(t) +

∑
a

πQ(a|st′)∇θ log π(a|st′)],

where V (t) =
∑
a π

Q(a|st′)∇θ log π(a|st′) and H×(p, q) = −
∑
k pk log qk is the cross entropy.

The result policy learns quickly but saturates at a return of 1 point, showing limited positive transfer.

However, if we use the proposed gradient cosine similarity with the following update rule:

∆θ = α
[
G(t) + V (t)

(
2 · sign(cos(G(t), V (t)))− 1

)]
.

we get a significant performance boost; learned policies reach baseline performance after just one
third of steps and on average obtain 3 points after 10, 000 steps.6 See Figure 10 for all of our results.

Our experiments show that gradient cosine similarity between tasks allows one to use knowledge
from other related tasks in an automatic fashion. Agent is simply ignoring teacher signal when it
disagrees with policy gradient estimator. When they agree in the action to reinforce, teacher’s logits
are used for better replication of useful policies. In particular, in Figure 11 we present experiments
of transferring between the same task Tmain. We see that using cosine similarity under-performed

6We compute cosine similarity between a distillation gradient and a single sample of the policy gradient
estimator, meaning that we are using a high variance estimate of the similarity. For larger experiments one
would need to compute running means for reliable statistics, such as what was done in our Atari experiments in
Appendix C.2.
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Distilling from the solution of the same task Tmain → Tmain

Figure 11: Experiments show scenarios when the teacher is perfect. The optimal behavior is thus to
trust it everywhere. We report five methods: reward using just policy gradient in the new task, distill
using just distillation cost towards teacher, add adding the two above, cos using weighted variant in
Algorithm 2, strict cos using unweighted variant in Algorithm 1.

that of simply adding the two losses. This is expected as the noise in the gradients make it hard to
measure if the two tasks are a good fit or not.

D Cosine similarity in high dimensions

Intuitively, our method could fail in high dimensional spaces since random vectors in such spaces tend
to be orthogonal, so that cosine similarity will be naturally driven to 0. We explore here empirically
that, in fact, the opposite happens. In Figure 12 we show that when two gradients are co-linear (e.g.,
when the main gradient and the auxiliary gradient are aligned), the noise components cancel each
other thus the cosine similarity remains high in high dimensions.
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Figure 12: Cosine similarity as a function of dimensions. On the left, we generate two random
vectors θ1 and θ2 from a Gaussian distribution with zero mean and variance σ2 and as expected, the
cosine similarity drops to zero very quickly as the number of dimensions increases. On the right, we
mimic a scenario where the true gradients of the main and auxiliary are aligned, however we observe
only corrupted noisy gradients which are noisy copies of the true underlying vector; we generate
µ ∼ N (0, Id) and generate θ1 ∼ N (µ, σId) and θ2 ∼ N (µ, σId). In this case, cosine similarity is
larger in higher dimensions (as the inner product of the corruption noise goes to zero).
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