DO DEEP GENERATIVE MODELS KNOW WHAT THEY DON'T KNOW?

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan

INTRODUCTION

- Discriminative models are susceptible to overconfidence on out-of-distribution (OOD) inputs. Generative models are widely believed to be more robust to such inputs as they also model *p(x)* [Bishop, 1994].
- We challenge this assumption, showing that deep generative models can assign higher density estimates to an OOD dataset than to the training data!
- This phenomenon has implications not just for anomaly detection but also for detecting covariate shift, open-set classification, active learning, semi-supervised learning, etc

2. MOTIVATING OBSERVATION: CIFAR-10 vs SVHN

CIFAR-10

2 2 2 2 2 2 2 2 SVHN

Data Set	Avg. Bits Per Dimension		
Glow Trained on CIFAR-10			
CIFAR10-Train	3.386		
CIFAR10-Test	3.464		
SVHN-Test	2.389		
Glow Trained on SVHN			
SVHN-Test	2.057		

(Lower BPD is Better)

Glow Log-Likelihoods: SVHN train, CIFAR-10 test

Histogram of Glow Log-Likelihoods

is The phenomenon asymmetric w.r.t. datasets: SVHN and Training on CIFAR-10 evaluating on results in the expected ordering (SVHN is assigned higher likelihood).

We trained **Glow** [Kingma Dhariwal, 2018] on CIFAR-10 and evaluated on the model on SVHN. We find that **Glow assigns** higher likelihood to than to CIFAR-10 (both train/test splits).

3. TESTING OTHER DEEP GENERATIVE MODEL CLASSES

This phenomenon is also observed in two other classes of deep generative models: auto-regressive (PixelCNN) and latent variable models (Variational Auto-Encoders).

4. TESTING GLOW ON OTHER DATA SETS

We find further evidence of the phenomenon in five other data set pairs:

FashionMNIST vs MNIST

- We also observe that constant inputs have the highest log-likelihood of any (tested) input.
- Furthermore, we find that **SVHN has higher likelihood** over the entire duration of training.
- Ensembling generative models does not help.

Data Set	Avg. Bits Per Dimension	Data Set	Avg. Bits Per Dim
Glow Trained on FashionMNIST		Glow Trained on CIFAR-10	
Random	8.686	Random	15.773
Constant (0)	0.339	Constant (128)	0.589

FASHIONMNIST TRAIN VS MNIST TEST

BPD vs Training Iteration

log p(X)

- commute.

Paper: https://arxiv.org/abs/1810.09136

This expression helps explain several observations:

1. Asymmetry: difference between 2nd moments does not

2. Constant / grayscale inputs: equivalent to non-training moment being zero. Graying images increases likelihoods.

3. Early stopping / ensembling would not help: expression holds true for all values of CV-Glow's parameters.

6. SUMMARY

Density estimates from (current) deep generative models are **not always** able to detect out-of-distribution inputs.

