HYBRID MODELS WITH DEEP AND INVERTIBLE FEATURES Eric Nalisnick^{*}, Akihiro Matsukawa^{*}, Yee Whye Teh, Dilan Gorur, Balaji Lakshminarayanan

NTRODUCTION

- Neural networks usually model the conditional distribution $p(\mathbf{y}|\mathbf{x})$, where \mathbf{y} denotes a label and \mathbf{x} features.
- Generative models, on the other hand, represent the distribution over features $p(\mathbf{x})$.
- Can we efficiently combine the two in a hybrid model of the joint distribution *p(y, x)*?

Generative Model Conditional Model = data, ____ = prediction, ____ = uncertainty Observation KDE

2. BACKGROUND

Invertible Generative Models (Normalizing Flows)

Invertible generative models (a.k.a. normalizing flows) are a broad class of models defined via the change-of-variables formula. An initial density **p(x)** 'flows' through a series of transformations f(x) and morphs into some (usually simpler) prior distribution **p(z)**.

 $\log p_x(\boldsymbol{x}) = \log p_z(f(\boldsymbol{x};\boldsymbol{\phi})) + \log |$

Generalized Linear Models (GLMs)

Generalized linear models (GLMs) model the expected response (or label) \mathbf{y} as a transformation of the linear model $\beta^{T}z$ where β are parameters and z are features (covariates).

$$\mathbb{E}[y_n | \boldsymbol{z}_n] = g^{-1} \left(\boldsymbol{\beta}^T \boldsymbol{z}_n \right)$$

- Regression: $\mathbb{E}[y|\mathbf{z}] = \text{identity}(\boldsymbol{\beta}^T \mathbf{z})$
- Binary Classification: $\mathbb{E}[y|\mathbf{z}] = \texttt{logistic}(\boldsymbol{\beta}^T \mathbf{z})$

3. COMBINING DEEP GENERATIVE MODELS AND LINEAR MODELS

We define a model of the joint distribution p(y, x) by instantiating a GLM on the output of a normalizing flow:

 $p(y_n, \boldsymbol{x}_n; \boldsymbol{\theta}) = p(y_n | \boldsymbol{x}_n; \boldsymbol{\beta}, \boldsymbol{\phi}) p(\boldsymbol{x}_n; \boldsymbol{\phi})$

 $= p(y_n | f(\boldsymbol{x}_n; \boldsymbol{\phi}); \boldsymbol{\beta}) | p_z(f(\boldsymbol{x}_n; \boldsymbol{\phi}))$

In practice, we add a weight to the flow terms to tradeoff between predictive and generative behavior:

 $\mathcal{J}_{\lambda}(\boldsymbol{\theta}) = \sum \Big(\log p(y_n | \boldsymbol{x}_n; \boldsymbol{\beta}, \boldsymbol{\phi}) + \lambda \log p(\boldsymbol{x}_n; \boldsymbol{\phi}) \Big)$

 $\log |\partial f / \partial x|$ Examples Planar: $= |1 + \mathbf{u}^T f'(\mathbf{w}^T \mathbf{x} + b)\mathbf{w}|$ where **w**, **u** are parameters. **RNVP**: = $\sum_{l} \sum_{d} s_{l,d}(\mathbf{x}; \boldsymbol{\phi})$ where **s()** are scaling operations. Glow: $=\sum_l\sum_d s_{l,d}(\mathbf{x};oldsymbol{\phi}) + h_l w_l \log | extsf{det}\mathbf{W_l}|$, W 1x1 params.

Bayesian treatment: we can place a prior on the parameters of the GLM in order to quantify model *and* data uncertainty.

 $f(\boldsymbol{x};\boldsymbol{\phi}) \sim p(\boldsymbol{z}), \ \boldsymbol{\beta} \sim p(\boldsymbol{\beta}), \ y_n \sim p(y_n | f(\boldsymbol{x}_n;\boldsymbol{\phi}),\boldsymbol{\beta})$

For a Gaussian prior on the GLM, the predictive model can be trained via the closed-form marginal likelihood:

 $\log p(y_n | f(\boldsymbol{x}_n; \boldsymbol{\phi})) = \log N(\boldsymbol{y}; \boldsymbol{0}, \sigma_0^2 \mathbb{I} + \lambda^{-1} \boldsymbol{Z}_{\boldsymbol{\phi}} \boldsymbol{Z}_{\boldsymbol{\phi}}^T)$

(c) B-DIGLM $p(\boldsymbol{x})$ 1D regression task with heteroscedastic noise. Subfigure (a) shows a Gaussian process and Subfigure (b) shows our Bayesian DIGLM. Subfigure (c) shows p(x) learned by the same DIGLM (black line) and compares it to a KDE (gray shading).

4. SIMULATION

 $f(\mathbf{x}; \boldsymbol{\phi})$

Х

Deep Invertible

Generalized

Linear Model

(DIGLM)

We defined a neural hybrid model that can efficiently compute both predictive p(y|x) and generative p(x) distributions, in a single feed-forward pass, making it a useful building block for downstream applications of probabilistic deep learning.

Paper: https://arxiv.org/abs/1902.02767

O DeepMind equal contribution

5. EXPERIMENTS

Regression on Flight Delay Data Set (N=5 million, D=8)

Classification on MNIST and SVHN

MNIST			NotMNIST			Model	SVHN			CIFAR-10		
	error \downarrow	$\mathrm{NLL}\downarrow$	$ BPD \uparrow NLL \downarrow Entropy \uparrow $		Widdei	$BPD \downarrow $	error \downarrow	$\mathrm{NLL}\downarrow$	BPD ↑	$NLL \downarrow $	Entropy ↑	
	0.67%	0.082	87.74*	29.27	0.130	Discriminative ($\lambda = 0$)	15.40*	4.26%	0.225	15.20*	4.60	0.998
	0.73%	0.035	5.84	2.36	2.300	Hybrid ($\lambda = 0.1/D$)	3.35	4.86%	0.260	7.06	5.06	1.153
	2.22%	0.081	6.13	2.30	2.300	Hybrid ($\lambda = 1.0/D$)	2.40	5.23%	0.253	6.16	4.23	1.677
	4.01%	0.145	6.17	2.30	2.300	Hybrid ($\lambda = 10.0/D$)	2.23	7.27%	0.268	7.03	2.69	2.143

• λ controls the trade-off between p(y|x) and p(x). • Hybrid model is better able to detect the OOD inputs via p(x).

Semi-Supervised Learning: MNIST and Half Moons

Half-moons simulation: the DIGLM leverages unlabeled data to learn a smooth decision boundary (N=10 labeled points).

	MNIST-error↓	MNIST-NLL \downarrow
beled	6.61% 0.99%	0.276 0.069
Deleu	0.99% 0.73%	0.009 0.035

(VAT) with only SSL labels (2% of 1000 labeled data) achieves <1% error on MNIST

6. SUMMARY