LIKELIHOOD RATIOS FOR OUT-OF-DISTRIBUTION DETECTION Jie Ren*, Peter J. Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark A. DePristo, Joshua V. Dillon, Balaji Lakshminarayanan*

https://github.com/google-research/google-research/tree/master/genomics_ood *Contact: {<u>ijren, peterjliu, balajiln}@qoogle.com</u>

1. MOTIVATION

- Bacteria identification based on genomic sequences
- ACGTTAACAACC...GGCTTC ⇒ label
- Promising for early detection of disease
- Classifier can achieve high accuracy on known classes, but perform poorly in real world:
- **60-80%** of real-world test inputs belong to as yet **unknown** bacteria
- Ideally, say "I don't know" on OOD inputs than assign high-confidence predictions
- Need accurate OOD detection to ensure safe deployment of classifier

- We create a realistic benchmark for OOD detection on genomics data.
- 10 in-distribution, 60 OOD validation, 60 OOD test classes.
- Classes split by year to reflect challenges faced when classifier trained only on known classes

< 01/01/2011 0	$01/01/2011 \sim 01/01/2016 > 01/01/2016$			
In-distribution	In-distribution validation	In-distribution test		
training	OOD validation	OOD test		

- Challenge: Detect if a test input is OOD (i.e. it does not belong to any of the training classes) Unsupervised: Density-based approaches
- Supervised: Classifier-based approaches

$$p(\mathbf{x}) =$$

for OOD

 $LLR(\mathbf{x}) =$

assuming both models capture background equally well.

New benchmark dataset + code is available at

2. GENERATIVE MODELS CAN ASSIGN HIGHER LIKELIHOOD TO OOD INPUTS

• Generative models for OOD detection:

 do not require labeled data • model the input distribution $p_{TRAIN}(\mathbf{x})$ and evaluate the likelihood of new inputs. Prior work [Nalisnick et al., 2018, Choi et al. 2019]

observed failure modes of generative models:

Higher likelihoods for OOD than in-dist. e.g. Fashion-MNIST (in-dist.) vs. MNIST (OOD)

• We observe a similar failure mode on generative models trained on genomic sequences.

3. EXPLAINING WHY DENSITY MODELS FAIL AT OOD DETECTION

• $p(\mathbf{x})$ has to explain both semantic & background components Humans ignore background and focus primarily on semantics

Likelihood is highly correlated with the background

4. PROPOSED SOLUTION: LIKELIHOOD RATIOS FOR OOD DETECTION

 How do we automatically extract the semantic component of p(x)?

• We propose training a background model on perturbed inputs and computing the likelihood ratio:

$$= \log \frac{p_{\theta}(\mathbf{x})}{p_{\theta_0}(\mathbf{x})} = \log \frac{p_{\theta}(\mathbf{x}_B) \ p_{\theta}(\mathbf{x}_S)}{p_{\theta_0}(\mathbf{x}_B) \ p_{\theta_0}(\mathbf{x}_S)} \approx \log \frac{p_{\theta}(\mathbf{x}_S)}{p_{\theta_0}(\mathbf{x}_S)}$$

• LLR is a background contrastive score: the significance of the semantics compared with the background.

Algorithm

- and optionally model regularization*.
- Fit $p_{\theta_0}(\mathbf{x})$ using perturbed input data
- Fit $p_{\theta}(\mathbf{x})$ using in-distribution data - Compute the likelihood ratio.
- Predict OOD if likelihood ratio is small.

*Hyperparameters (mutation rate and L2 coefficient) are tuned using an independent OOD dataset different from test OOD.

In distribution J - 1.6 - 1.4 - 1.2 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2 0.0 Log-likelihood

 proportion of zeros in an image • GC-content in genomic sequence

Images with highest (high portion of background) and lowest likelihood

Images with highest (prototypical) & lowest likelihood ratio (rare patterns)

6. OOD DETECTION FOR GENOMIC SEQUENCES

- LSTM model is trained using sequences
- Likelihood Ratio significantly improve
- Effect of background GC-content is cor.
- OOD detection correlates with its distar

Summary

Google Al O DeepMind

5. OOD DETECTION FOR IMAGES

Investigate auto-regressive models: which pixels contribute the most to the likelihood (ratio)? • Fashion-MNIST (in-dist.) vs. MNIST (OOD). PixelCNN++ model is trained on Fashion-MNIST. • Likelihood is dominated by the background pixels $\Rightarrow p(Fashion-MNIST) < p(MNIST)$ • Likelihood ratio focuses on the semantic pixels \Rightarrow LLR(Fashion-MNIST) > LLR(MNIST)

 $\log p_{\theta}(x_d | x_{< d}) - \log p_{\theta_0}(x_d | x_{< d})$

Classifier-based ODIN	0.752
Classifier Ensemble 5	0.839
Classifier-based	0.942
Mahalanobis Distance	

— Fashion-MNI

s from in-distribution classes es OOD Detection rrected		Method	AUROC
		Likelihood	0.626
		Likelihood Ratio	0.755
	Classifier-based p(y x)	0.634	
oution	^{1.1} - ^{1.0} - •••• Ensemble 20	Classifier-based Entropy	0.634
	0.9 O 0.8	Classifier-based ODIN	0.697
•	G 0.7 0.6	Classifier Ensemble 5	0.682
0.8 1.0	0.5 0.4 0.3 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Minimum distance to in-distribution	Classifier-based Mahalanobis Distance	0.525

• Create a realistic benchmark dataset for OOD detection (and open-set classification) in genomics Show that the likelihood from deep generative models can be confounded by background statistics • Propose a likelihood ratio method for unsupervised OOD detection, outperforming the raw likelihood • Our method performs well on images and achieves SOTA performance on genomic dataset.