

Reliable Deep Anomaly Detection

Balaji Lakshminarayanan balajiln@

Joint work with awesome collaborators @ Google & DeepMind

Motivation

Why Reliable Deep Learning?

- Independent and identically distributed (IID): $p_{TEST}(y,x) = p_{TRAIN}(y,x)$
- Out-of-distribution(OOD): p_{TEST}(y,x) ≠

p_{TRAIN}(y,x)

- Accuracy of NNs degrades under dataset shift
 Imagenet (IID) vs Imagenet-C (OOD)
- Calibration also degrades under dataset shift.

Calibration Error = |Confidence - Accuracy|

predicted probability of correctness

observed frequency of correctness

[See our <u>NeurIPS'2020 tutorial</u> for background]

Models assign high confidence predictions to OOD inputs

Image source: "Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness" Liu et al. 2020

Models assign high confidence predictions to OOD inputs

Trust model when x^* is close to $p_{TRAIN}(x,y)$

Image source: "Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness" Liu et al. 2020

Applications

Open Set Recognition

Test input may not belong to one of the K training classes.

Need to be able to say "none-of-the-above".

Image source: https://blog.google/technology/health/ai-dermatology-preview-io-2021/

Open Set Recognition

 Example: Classification of genomic sequences

Image source: https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html

Open Set Recognition

 Example: Classification of genomic sequences

• High i.i.d. accuracy on known classes is not sufficient

 Need to be able to detect inputs that do not belong to one of the known classes

Image source: <u>https://ai.googleblog.com/2019/12/improving-out-of-distribution-detection.html</u>

Google Al Brain Team All models are wrong, but some models that know when they are wrong, are useful.

Methods

Cartoon: Uncertainty/Robustness vs Compute frontier

Quality of Uncertainty / Robustness

Compute (Inference time / Inference memory)

Orthogonal ways of improving performance

- Improve the single model $p(y|x,\theta)$
- Better representation learning (e.g. pre-training)
- Average predictions over diverse set of functions $\theta_1, \theta_2 \dots \theta_M$
- Outlier exposure
- Density modeling in latent space

Not covered in this talk: Unsupervised anomaly detection

• <u>Anomaly Detection using Deep Generative Models: Pitfalls and Promises</u> (overview talk that covers the following papers)

- **Do deep generative models know what they don't know?** E. Nalisnick, A. Matsukawa, Y. W. Teh, D. Gorur, *B. Lakshminarayanan*. <u>ICLR 2019</u>.
- Likelihood ratios for out-of-distribution detection. J. Ren, P. Liu, E. Fertig, J. Snoek, R. Poplin, M. DePristo, J. Dillon, *B. Lakshminarayanan*. <u>NeurIPS 2019</u>.
 - See also <u>A Simple Fix to Mahalanobis Distance for Improving Near-OOD</u>
 <u>Detection</u> where we extended this to density models of representations
- Detecting out-of-distribution inputs to deep generative models using a test for typicality. E. Nalisnick, A. Matsukawa, Y. W. Teh, B. Lakshminarayanan. <u>arXiv 2019</u>.
- Density of States Estimation for Out-of-Distribution Detection W. R. Morningstar, C. Ham, A. G. Gallagher, B. Lakshminarayanan, A. A. Alemi, J. V. Dillon <u>AISTATS 2021</u>

Improving single model performance

Compute (Inference time / Inference memory)

Improving Single Model Uncertainty via Distance Awareness

Jeremiah Liu (jereliu@) et al.

Adding distance-awareness using Spectral-normalized Neural Gaussian Process (SNGP)

High uncertainty (low confidence)

SNGP assigns lower confidence predictions to inputs far away from the training data

Spectral-normalized Neural Gaussian process (SNGP)

Google Al Brain Team

"Models should be distance aware: uncertainty should increase as we move farther from training data."

Key idea:

- 1. Replace linear dense layer with "GP layer".
- Apply spectral normalization to encourage smooth representations (bi-Lipschitz regularization) and avoid "feature collapse".

			Corrupted	OOD	AUPR (†)	Latency
Method	Acc (†)	$\text{ECE}\left(\downarrow\right)$	Acc/ECE	SVHN	CIFAR-100	(ms)
Deterministic	96.0	0.023	72.9 / 0.153	0.7810	0.8352	3.91
MCD-GP	95.5	0.024	70.0 / 0.100	0.9599	0.8631	29.53
DUQ	94.7	0.034	71.6/0.183	0.9733	0.8537	8.68
MC Dropout	96.0	0.024	70.0/0.116	0.9714	0.8320	27.10
Deep Ensembles	96.6	0.010	77.9 / 0.087	0.9640	0.8875	38.10
SNGP (Ours)	95.9	0.018	74.6 / 0.090	0.9901	0.9050	6.25

Results on CIFAR-10 using Wide ResNet

BERT on an intent detection benchmark

Method	Accuracy (†)	ECE (↓)	OO AUROC (↑)	D AUPR (†)	Latency (ms / example)
Deterministic	96.5	0.0236	0.8970	0.7573	10.42
MCD-GP DUQ	95.9 96.0	0.0146 0.0585	0.9055 0.9173	0.8030 0.8058	88.38 15.60
MC Dropout Deep Ensemble	96.5 97.5	0.0210 0.0128	0.9382 0.9635	0.7997 0.8616	85.62 84.46
SNGP	96.6	0.0115	0.9688	0.8802	17.36

Exploring the limits of OOD detection

Stanislav Fort*, Jie Ren* et al.

Goal: Improve SOTA on hard OOD detection tasks

Far OOD, AUROC = 99%

Near OOD, AUROC = 80%

- OOD: test input $\{X', y'\}, y' \notin Y_{\text{ID}}$, new class, shift in y
- In-distribution shift: $\{X', y'\}, y' \in Y_{\text{ID}}$, same class, shift in x

Pre-trained ViT improves near-OOD detection

CIFAR-100 → CIFAR-10

In-dist.	Test Accuracy	Mahalanobis AUROC	MSP AUROC
WRN training from scratch	79.80%	74.91%	75.40%
Pretrain+finetune ViT	91.67%	96.23%	92.08%

We improve SOTA AUROC on CIFAR-100 vs CIFAR-10 from ~85% to ~96% using fine-tuned ViT

*OOD score: Mahalanobis distance based on last layer embeddings

Pre-trained ViT improves near-OOD detection

Figure: 2D PCA project of the space of embedding. Color coding shows Mahalanobis outlier score.

Qualitative failure cases of ViT OOD detection

Most false positives are due to mislabeling or ambiguity

Maha dist.=463 Label=deer Prediction=kangaroo

Maha dist.=491 Maha dist.=515 Label=automobile Label=automobile Prediction=bus

Maha dist.=521 Label=truck Prediction=bus

Maha dist.=525 Label=truck

Maha dist.=538 Label=truck Prediction=bus Maha dist.=544 Label=truck Prediction=bus

(a) OOD images (CIFAR-10) closest to the in-distribution (CIFAR-100).

Maha dist.=279 Label=fox Prediction=fox

Maha dist.=434 Label=bus Prediction=bus

Maha dist.=281 Label=streetcar Prediction=streetcar

Maha dist.=364 Label=bus Prediction=bus

(b) The in-distribution (CIFAR-100) images with the closest embedding vector to images in Figure 11a.

Further improvement: Few-shot Outlier Exposure

- When only a handful of known outlier examples is available
 - Either collected intentionally or collected from failure cases

Few-shot Outlier Exposure

Few shot outlier exposure further improves AUROC on CIFAR-100 vs CIFAR-10 to ~99% with just 1 labeled example per outlier class

Challenging genomics near-OOD benchmark

Model	Test accuracy	Mahalanobis AUROC	MSP AUROC
1D CNN [Ren et al., 2019]	85.93%	64.75%	65.84%
BERT pretrain and finetune	89.84%	77.49%	73.53%

Recipe translates to other data modalities

Challenging genomics near-OOD benchmark: 66% (current SOTA)

- -> 77% (pre-trained transformer)
- -> 88% (few-shot outlier exposure)

Zero-shot Outlier Exposure using CLIP

Distribution 1	Distribution 2	Labels 1	Labels 2	AUROC
CIFAR-100	CIFAR-10	CIFAR-100 names		69.49%
CIFAR-100	CIFAR-10	CIFAR-100 names	CIFAR-10 names	94.68%
CIFAR-10	CIFAR-100	CIFAR-10 names		89.17%
CIFAR-10	CIFAR-100	CIFAR-10 names	CIFAR-100 names	94.68%

*We do not finetune CLIP

Just use the names of known outliers without any accompanying images

Improving the quality of model uncertainty

Compute (Inference time / Inference memory)

<u>Does Your Dermatology Classifier Know What It Doesn't Know?</u> <u>Detecting the Long-Tail of Unseen Conditions</u>

Abhijit Guha Roy*, Jie Ren*, et al.

Diverse Ensembles Improve OOD detection

Method		_		
	AUROC (\uparrow)	FPR @ 0.95 TPR (\downarrow)	AUPR-in (\uparrow)	Inlier accuracy (\uparrow)
ImageNet + Ensemble	76.4	75.3	79.9	72.9
ImageNet + HOD + Ensemble	79.2	70.6	81.8	70.9
BiT-JFT + Ensemble	77.8	71.0	80.6	73.8
BiT-JFT + HOD + Ensemble	81.6	62.6	83.9	75.6
SimCLR + Ensemble.	77.0	76.4	79.8	75.1
SimCLR + HOD + Ensemble	78.7	70.4	81.5	71.3
MICLe + Ensemble	79.0	71.5	82.1	75.8
MICLe + HOD + Ensemble	80.5	67.5	83.2	72.4
Diverse ensemble	83.0	61.4	85.8	76.3

Diverse Ensembles

Hierarchical Outlier Detection Loss (HODL)

Google Al Brain Team

Takeaways

- Orthogonal directions to improve performance:
 - Improving single model uncertainty via distance awareness
 - Pre-training and few-shot outlier exposure
 - Diverse ensembles
 - Understanding failure modes of anomaly detection in deep generative models (link)
- Links to papers available in my webpage: <u>http://www.gatsby.ucl.ac.uk/~balaji/</u>
 - Uncertainty baselines code: <u>github.com/google/uncertainty-baselines</u>
 - Robustness metrics code: <u>github.com/google-research/robustness_metrics</u>