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Goal: How do we build neural networks that
know what they don’t know?1

• Cost-sensitive decision making (e.g. healthcare,self-driving cars, robotics)

• Dealing with train-test skew in production systems
• Open-set recognition
• Active learning for efficient data collection
• Reinforcement learning: (Safe) Exploration
• ... and many more!

1Can you trust your model’s uncertainty? Evaluating predictive uncertaintyunder dataset shift [7]. 2
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Probabilistic Machine Learning

3



Discriminative vs Generative models

• p(y|x) is trained only on x ∼ pTRAIN(x)• p(y|x) is typically accurate on i.i.d test inputs, but can makeoverconfident errors when asked to predict onout-of-distribution (OOD) inputs• Use density model p(x) to decide when to trust p(y|x) [1]
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Novelty Detection & Neural Network Validation
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Hybrids of Generative & Discriminative models

• Idea: use normalizing flows to compute exact density p(x)and p(y|x) in a single feed-forward pass

• Works well in some cases
• The failure modes were very interesting, so we decided toinvestigate this in detail ...
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Generative models for CIFAR

Deep generative models where density p(x) can be computed:
• Flow-based models: GLOW [2]
• Auto-regressive models: PixelCNNs [9]
• Variational Auto-Encoders (lower bound)
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Training on CIFAR and Testing on SVHN (OOD)
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Training a Flow-Based Model on CIFAR-10
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Training a Flow-Based Model on CIFAR-10
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Model assigns high likelihood to constant
inputs too
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Phenomenon holds for VAEs and PixelCNN too
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The phenomenon is asymmetric w.r.t. datasets
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Additional OOD dataset pairs
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Phenomenon holds throughout training
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Ensembling does not fix the problem either
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Explaining the failure mode for
Flow-based models
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Flows: one slide summary
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Flows: one slide summary
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When would out-of-distribution q will have
higher log-likelihood than p∗?
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Explaining the observations using flow models
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Explaining the observations using
Constant Volume GLOW (CV GLOW)
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Explaining the observations using CV-GLOW
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Explaining the observations using CV-GLOW
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Explaining the observations using CV-GLOW
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Follow-up Work
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Motivating question: why don’t we ever see
samples from the OOD set?
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Typical sets versus Mode

• Mode can be very atypical of the distribution in highdimensions

• High-dimensional Gaussian:– Mode is at µ– Typical samples lie near the shell

Figure: High dimensional Gaussian
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Could similar phenomenon happen with
deep generative models too?
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Definition of typical sets

Testing for typicality
• If a batch x1, . . . , xM is in the typical set, then the averagenegative log likelihood should be close to the entropy.
• Can use tools from statistical hypothesis testing literature
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Testing for Typicality improves OOD detection

Figure: Effect of batch size on AUC of OOD detection 43



Better OOD detection for genomic sequences
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Explaining the failure mode for PixelCNN

• PixelCNN++ model trained on FashionMNIST
• Heat-map showing per-pixel contributions onFashion-MNIST (in-dist) and MNIST (OOD)
• Background pixels dominate the likelihood
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Explaining the failure mode for PixelCNN

• PixelCNN++ model trained on FashionMNIST
• Heat-map showing per-pixel contributions onFashion-MNIST (in-dist) and MNIST (OOD)
• Background pixels dominate the likelihood. Explains why
MNIST is assigned higher likelihood.
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Likelihood Ratio to distinguish
Background vs Semantics

• Input x consists of background xB and semanticcomponent xS. Examples:– Images: background versus objects– Text: stop words versus key words– Genomics: GC background versus motifs– Speech: background noise versus speaker

• Training a background model on perturbed inputs.Compute the likelihood ratio
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Likelihood ratio improves OOD detection for
PixelCNN

• PixelCNN++ model trained on FashionMNIST
• Heat-map showing per-pixel contributions onFashion-MNIST (in-dist) and MNIST (OOD)
• Likelihood Ratio (using background model) focuses on
the semantic pixels and significantly outperforms
likelihood on OOD detection .
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Likelihood ratio significantly improves OOD
detection on genomics data too

• Realistic benchmark + open-source code• https://github.com/google-research/google-research/tree/master/genomics ood 49

https://github.com/google-research/google-research/tree/master/genomics_ood
https://github.com/google-research/google-research/tree/master/genomics_ood


Take home messages

• Be cautious when using density estimates from deepgenerative models as proxy for “similarity” to training data
– Can assign higher density to OOD inputs than training data!– Novelty / Anomaly detection

• Explaining the observed failure modes:
– Flow-based models: Can be explained through inductivebias and the relative variances of the input distributions– Autoregressive models: Can be explained throughbackground effect

• Solutions:
– Likelihood ratio using background model– Typicality test

50



Take home messages

• Be cautious when using density estimates from deepgenerative models as proxy for “similarity” to training data
– Can assign higher density to OOD inputs than training data!– Novelty / Anomaly detection

• Explaining the observed failure modes:
– Flow-based models: Can be explained through inductivebias and the relative variances of the input distributions– Autoregressive models: Can be explained throughbackground effect

• Solutions:
– Likelihood ratio using background model– Typicality test

50



Take home messages

• Be cautious when using density estimates from deepgenerative models as proxy for “similarity” to training data
– Can assign higher density to OOD inputs than training data!– Novelty / Anomaly detection

• Explaining the observed failure modes:
– Flow-based models: Can be explained through inductivebias and the relative variances of the input distributions– Autoregressive models: Can be explained throughbackground effect

• Solutions:
– Likelihood ratio using background model– Typicality test

50



Thanks!

• Aki Matsukawa
• Dilan Gorur
• Emily Fertig
• Eric Nalisnick
• Jasper Snoek
• Jie Ren
• Josh Dillon
• Mark DePristo
• Peter Liu
• Ryan Poplin
• Yee Whye Teh
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Papers available on my webpage (link)

Out-of-distribution robustness of deep generative models
• Do deep generative models know what they don’t know? [5]
• Likelihood ratios for out-of-distribution detection [8]
• Detecting out-of-distribution inputs to deep generative
models using a test for typicality [4]

Predictive uncertainty estimation in deep learning
• Hybrid models with deep and invertible features [6]
• Can you trust your model’s uncertainty? Evaluating
predictive uncertainty under dataset shift [7]

• Simple and scalable predictive uncertainty estimation using
deep ensembles [3]
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