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Motivation



What do we mean by Uncertainty?

Return a distribution over predictions 

rather than a single prediction.

● Classification: Output label along with 

its confidence.

● Regression: Output mean along with 

its variance.

Good uncertainty estimates quantify when we 
can trust the model’s predictions.
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Image credit: Eric Nalisnick



What do we mean by Out-of-Distribution Robustness?

I.I.D. pTEST(y,x) = pTRAIN(y,x)

O.O.D. pTEST(y,x) ≠ pTRAIN(y,x) 
Examples of dataset shift:

● Covariate shift. Distribution of features p(x) changes and p(y|x) is fixed.

● Open-set recognition. New classes may appear at test time.

● Subpopulation shift. Frequencies of data subpopulations changes.

● Label shift. Distribution of labels p(y) changes and p(x|y) is fixed.

(Independent and Identically Distributed)



ImageNet-C: Varying Intensity for Dataset Shift

Image source: Benchmarking Neural Network Robustness to Common Corruptions and Perturbations, Hendrycks & Dietterich, 2019.

I.I.D test set

Increasing “OODness”

“Distance” between pTEST(y,x) and pTRAIN(y,x) increases

https://arxiv.org/abs/1903.12261


● Accuracy drops with 
increasing shift on 
Imagenet-C

● But do the models 
know that they are 
less accurate?

Neural networks do not generalize under covariate shift



● Expected Calibration error (↓)

Neural networks do not know when they don’t know

Calibration Error = |Confidence  -  Accuracy|

predicted 
probability 

of correctness

observed 
frequency of 
correctness

● Quality of uncertainty 
degrades with shift -> 
“overconfident  mistakes”

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia*, Fertig* et al. 2019

https://arxiv.org/abs/1906.02530


Models assign high confidence predictions far away from training data

High confidence
(low uncertainty)

Low uncertainty
(high confidence)

Deep neural networks assign high confidence predictions to inputs far away from pTRAIN(x,y)



Applications



Healthcare
● Use model uncertainty to decide when to trust the model or to defer to a human. 
● Selective prediction, Cost-sensitive decision making

Diabetic retinopathy detection from fundus images 
Gulshan et al, 2016 
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https://jamanetwork.com/journals/jama/fullarticle/2588763


Dataset shift:

● Time of day / Lighting
● Geographical location (City vs suburban)
● Changing conditions (Weather / Construction)

Self-driving cars

Image credit: Sun et al, Waymo Open Dataset
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https://waymo.com/open/about/


Open Set Recognition

Image source: https://blog.google/technology/health/ai-dermatology-preview-io-2021/

Test input may not belong to one of the K training classes.

High I.I.D. accuracy is not sufficient, need to be able to detect OOD inputs.

https://blog.google/technology/health/ai-dermatology-preview-io-2021/


Active Learning

Image source: Active Learning Literature Survey, Settles 2010

● Use model uncertainty to improve data efficiency and model performance in blindspots.

http://burrsettles.com/pub/settles.activelearning.pdf


Bayesian Optimization and Experimental Design
● Hyperparameter optimization and experimental design

○ Used across large organizations and the sciences
● Photovoltaics, chemistry experiments, AlphaGo, batteries, materials design

Image source: Attia et al. 2020 Closed-loop optimization of fast-charging protocols for batteries with machine learning

https://www.nature.com/articles/s41524-020-0277-x
https://www.nature.com/articles/s41586-020-2442-2?luicode=10000011&lfid=231522type%3D1%26t%3D10%26q%3D%23nature%23&featurecode=20000181&u=https%3A%2F%2Fwww.nature.com%2Farticles%2Fs41586-020-2442-2
https://arxiv.org/abs/1812.06855
https://www.nature.com/articles/s41586-020-1994-5
http://nature.com/articles/ncomms11241/bay
https://www.nature.com/articles/s41586-020-1994-5


● Decision making with asymmetric losses

● Modeling uncertainty is crucial for 
exploration vs exploitation trade-off

● Non-stationarity

Bandits and Reinforcement Learning

Image source: David Silver’s RL course 

https://www.davidsilver.uk/wp-content/uploads/2020/03/XX.pdf
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All models are wrong, but some models that know when they are wrong, are useful.



Primer on Uncertainty & Robustness



Sources of uncertainty: Model uncertainty

● Many models can fit the training data well
● Also known as epistemic uncertainty
● Model uncertainty is “reducible”

○ Vanishes in the limit of infinite data 
(subject to model identifiability)



Sources of uncertainty: Model uncertainty

● Many models can fit the training data well
● Also known as epistemic uncertainty
● Model uncertainty is “reducible”

○ Vanishes in the limit of infinite data (subject to 
model identifiability)

● Models can be from same hypotheses class (e.g. 
linear classifiers in top figure) or belong to different 
hypotheses classes (bottom figure).



Sources of uncertainty: Data uncertainty

● Labeling noise (ex: human disagreement)

Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements”

https://openreview.net/forum?id=rJl8BhRqF7


Sources of uncertainty: Data uncertainty

● Labeling noise (ex: human disagreement)

Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements”

https://openreview.net/forum?id=rJl8BhRqF7


Sources of uncertainty: Data uncertainty

● Labeling noise (ex: human disagreement)
● Measurement noise (ex: imprecise tools)
● Missing data (ex: partially observed 

features, unobserved confounders)
● Also known as aleatoric uncertainty
● Data uncertainty is “irreducible*”

○ Persists even in the limit of infinite data
○ *Could be reduced with additional 

features/views
Image source: Battleday et al. 2019 “Improving machine 
classification using human uncertainty measurements”

https://openreview.net/forum?id=rJl8BhRqF7


How do we measure the quality of uncertainty?

Calibration Error = |Confidence  -  Accuracy|

predicted probability 
of correctness

observed frequency 
of correctness



How do we measure the quality of uncertainty?

Of all the days where the model predicted rain with 80% 
probability, what fraction did we observe rain?

● 80% implies perfect calibration

● Less than 80% implies model is overconfident

● Greater than 80% implies model is under-confident

Calibration Error = |Confidence  -  Accuracy|



How do we measure the quality of uncertainty?

Of all the days where the model predicted rain with 80% 
probability, what fraction did we observe rain?

● 80% implies perfect calibration

● Less than 80% implies model is overconfident

● Greater than 80% implies model is under-confident

Intuition: For regression, calibration corresponds to coverage in a confidence interval.

Calibration Error = |Confidence  -  Accuracy|



How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

● Bin the probabilities into B bins.

● Compute the within-bin accuracy and within-bin 

predicted confidence. 

● Average the calibration error across bins 

(weighted by number of points in each bin).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/


How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

Image source: Guo+ 2017 “On calibration of modern neural networks”

Confidence > Accuracy

=> OverconfidentConfidence < Accuracy

=> Underconfident

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/
https://arxiv.org/abs/1706.04599


How do we measure the quality of uncertainty?

Expected Calibration Error [Naeini+ 2015]:

Note: Does not reflect accuracy. 

Predicting class frequency p(y=1) = 0.3 for all the inputs achieves perfect calibration.

True
label

0 0 0 0 0 0 0 1 1 1 Accurate? Calibrated?

Model 
prediction

0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 ❌ ✅

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410090/


How do we measure the quality of uncertainty?

Proper scoring rules [Gneiting & Raftery 2007]

● Negative Log-Likelihood (NLL)
○ Also known as cross-entropy
○ Can overemphasize tail probabilities

● Brier Score 
○ Quadratic penalty (bounded range [0,1] unlike log).

○ Can be numerically unstable to optimize.

https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf


How do we measure the quality of uncertainty?

Evaluate model on 
out-of-distribution 
(OOD) inputs which 
do not belong to any 
of the existing classes

● Max confidence
● Entropy of p(y|x) 

 

CIFAR-10 (IID test inputs)
CIFAR-10 
classifier

SVHN  (OOD test inputs)

Confidence on IID inputs > Confidence on OOD inputs ?



Overview of Methods



Probabilistic Deep Learning 

● Parametrize “base model”.

● Specify prior over functions. 

● Capture model uncertainty by approximating 
the posterior.

● Average predictions over multiple functions 
(ensemble or Bayesian NN)

Image source: Gal+ 2015, Dusenberry+ 2020
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Cartoon: Uncertainty/Robustness vs Compute frontier

● Probabilistic framework gives an unifying 
view. Improving p(y|x) improves 
performance on all downstream tasks 
(accuracy/calibration under shift, selective 
prediction, open set recognition, etc) as 
opposed to custom techniques for tasks.

● Practitioners can pick “operating point” 
depending on constraints of application.
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Orthogonal ways of improving performance

“Composable” toolkit

1. Improve the “base” model p(y|x,θ) 
2. Efficiently average predictions over diverse 

set of functions θ1 , θ2  … θM 
3. Better inductive biases for representations 

(e.g. pre-training or data augmentation)

Composing can further improve performance!

 



Improving Single Model Uncertainty via 
Distance Awareness
Jeremiah Liu*, Shreyas Padhy*, Jie Ren*, et al.

https://arxiv.org/abs/2006.10108
https://arxiv.org/abs/2006.10108
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SNGP improves single model uncertainty with two simple changes: 
Spectral-normalization (SN) + Last-layer Gaussian Process (GP) 

SNGP



Why do vanilla DNNs assign high confidence 
predictions far away from training data?

1. Vanilla NNs can map inputs far away 
in input space to close points in latent 
space (cf. “shortcut learning”). 

2. Confidence is a function of 
distance from boundary (and 
not the training data).

 



Idea 1: Enforce bi-Lipschitz smoothness    
via spectral normalization

Bi-Lipschitz smoothness discourages 
inputs far away in input space getting 
mapped close in latent space. 

 



Idea 1: Enforce bi-Lipschitz smoothness

Idea 2: Replace last dense layer with “Gaussian process” layer

Bi-Lipschitz smoothness discourages 
inputs far away in input space getting 
mapped close in latent space 

 

For GP layer, confidence is a 
function of distance from 
the training data.

 



BERT on an intent detection benchmark

● SNGP improves 
○ Accuracy under shift
○ Calibration under shift
○ OOD detection

● Simple to implement
● Low computational/memory overhead
● A building block for better ensembles 

See also [van Amersfoort+ 2020]. [Liu+ 2020]

Spectral-normalized Neural Gaussian process (SNGP)

Results on CIFAR-10 using Wide ResNet

https://arxiv.org/abs/2003.02037
https://arxiv.org/abs/2006.10108
https://arxiv.org/abs/2006.10108


[Liu*, Padhy*, Ren* et al. 2022]

SNGP is very easy to implement 

https://arxiv.org/abs/2205.00403


[Liu*, Padhy*, Ren* et al. 2022]

SNGP provides complementary benefits to ensembling 

https://arxiv.org/abs/2205.00403


[Liu*, Padhy*, Ren* et al. 2022]

SNGP provides complementary benefits to data augmentation 

https://arxiv.org/abs/2205.00403


[Liu*, Padhy*, Ren* et al. 2022]

SNGP scales well to ImageNet

https://arxiv.org/abs/2205.00403


[Liu*, Padhy*, Ren* et al. 2022]

SNGP works well on other modalities, e.g. genomics

https://arxiv.org/abs/2205.00403
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Improving the quality of model uncertainty

“Composable” toolkit

1. Improve the “base” model p(y|x,θ) 
2. Efficiently average predictions over 

diverse set of functions θ1 , θ2  … θM
a. Diverse ensembles ↑
b. Efficient ensembles ←

 



Surprisingly Simple Baseline: Deep Ensembles
Just re-run standard training but with different random seeds (initializations + SGD shuffling) & combine models.

[Lakshminarayanan+ 2016]

https://arxiv.org/abs/1612.01474


Deep Ensembles improve accuracy and calibration under dataset shift

Deep Ensembles are consistently among the best performing methods, especially under dataset shift

Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift [Ovadia+ 2019]

https://arxiv.org/abs/1906.02530


Deep Ensembles: A Loss Landscape Perspective

Stanislav Fort*, Clara Huiyi Hu*, Balaji Lakshminarayanan

https://arxiv.org/abs/1912.02757


Motivation: Understand why deep ensembles work well



Function space distance = prediction dissimilarity



Function space distance = prediction dissimilarity

Similar to itself within runEqually dissimilar between runs



Predictions similarity within and across trajectories



Subspace sampling methods

● Random

● Diagonal Gaussian

● Low-rank Gaussian

● Monte Carlo Dropout



Prediction diversity vs Accuracy

● From a bias-variance tradeoff 

perspective, we care about low 

bias as well as diversity.

● We plot fraction of data points 

where top-1 prediction is 

different. Note that maximum 

disagreement depends on the 

accuracy (completely different 

mistakes).

● Function diversity is higher 

across trajectories than within 

trajectories.



Loss landscape and function space similarity of 2 trajectories



Can we combine uncertainty from
subspace (within-mode) and ensembles (across-mode)?

Idea: run multiple trajectories and use subspace sampling within each trajectory 
(e.g. Ensemble + Diagonal Gaussian)



Best of both worlds - Results on CIFAR-10 using MediumCNN



Follow up



Parameterize each weight matrix as a new weight 
matrix W multiplied by the outer product of two 
vectors r and s.

There is an independent set of r and s vectors for 
each ensemble member; W is shared.

Known as BatchEnsemble or Rank-1 Ensemble. 

Can also construct Rank-1 Bayesian NNs.

[Wen+ 2020, Dusenberry+ 2020]

Efficient Ensembles and BNNs by Sharing Parameters

http://arxiv.org/abs/2002.06715
https://arxiv.org/abs/2005.07186
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 Efficient 
ensembles

Efficient ensembles lower inference memory and inference time 

[Training Independent Subnetworks for Robust Prediction. Havasi+ 2020]

Idea: Create multiple input heads + multiple output heads (MIMO). Train each head on different SGD batch.

https://arxiv.org/abs/2010.06610


Bayesian Deep Ensembles via the Neural Tangent Kernel

[Bayesian Deep Ensembles via the Neural Tangent Kernel. He+ 2020]

Bayesian Deep Ensembles recover the correct posterior in the infinite width limit.                                               
Deep Ensembles approximate the posterior mean well.

https://arxiv.org/abs/2007.05864
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Better inductive biases for representations

“Composable” toolkit

1. Improve the “base” model p(y|x,θ) 
2. Efficiently average predictions over diverse 

set of functions θ1 , θ2  … θM 
3. Better inductive biases for representations 

(e.g. pre-training or data augmentation)

 



Exploring the limits of OOD detection
Stanislav Fort*, Jie Ren*, Balaji Lakshminarayanan

https://arxiv.org/abs/2106.03004


Far OOD, AUROC = 99%

CIFAR-10 (ID) SVHN (OOD) CIFAR-100 (ID) CIFAR-10 (OOD)

Near OOD, AUROC = 85%

Goal: Improve SOTA on hard OOD detection tasks 
 



Improving near-OOD detection



Benchmarking Human Performance (S.F. is the human)



Improving near-OOD detection



Pre-trained Vision Transformers improve near-OOD detection



Pre-trained Vision Transformers improve near-OOD detection



Pre-trained ViT improves near-OOD detection

Figure: 2D PCA project of the space of embedding. 
Color coding shows Mahalanobis outlier score.



Qualitative failure cases of ViT OOD detection
● Most false positives are due to mislabeling or ambiguity



Qualitative failure cases of ViT OOD detection
● SVHN digits are classified as CIFAR-100 “worms”



The same story for genomics 
(here pre-trained in a self-supervised way)



Putting it all together

Simple, Composable Recipe to 
Improve “Out-of-the-box” Reliability



Paper: https://goo.gle/plex-paper
Code: https://goo.gle/plex-code

Blog: https://ai.googleblog.com/2022/07/towards-reliability-in-deep-learning.html

https://goo.gle/plex-paper
https://goo.gle/plex-code
https://ai.googleblog.com/2022/07/towards-reliability-in-deep-learning.html


Reliability as a Goal for AI

Predict well across 
distribution shifts



Reliability as a Goal for AI

Know what they don’t know



Reliability as a Goal for AI

Learn what they don’t know 
quickly / efficiently



Reliability as a Goal for AI



Setting

1. Pretrain model

2. Finetune model

3. Evaluate model on multiple 
downstream tasks

Ex: JFT, C4

Ex: ImageNet, NaLUE

Checkpoint

Checkpoint

Ex: ImageNet OOD Calibration,
NaLUE-tail Selective Prediction

Results

[goo.gle/plex-paper]

https://arxiv.org/abs/2207.07411


Vision Datasets & Tasks
Pretraining

● JFT-300M
○ 300M images, 375M labels (multi-label), 

18291 classes, 20% of labels are noisy
● JFT-4B

○ 4B images, 6.7B labels (multi-label), 29592 
classes

● ImageNet21k
○ 13M images, 14M labels (multi-label), 

21843 classes, super-set of ImageNet

Finetuning
● ImageNet
● CIFAR-10/100
● RETINA (diabetic retinopathy)
● Places365

Evaluate “Out-of-the-box” performance

● ImageNet-{C,A,R,V2,Vid-robust}, YTBB-robust
○ Covariate shifts from ImageNet

● RETINA Country Shift // RETINA Severity Shift
○ Covariate shift // OOD from RETINA

● ImageNet-ReaL-H // CIFAR-10-H
○ Label uncertainty from ImageNet // CIFAR-10

● CIFAR-10, SVHN // CIFAR-100, SVHN
○ OOD from CIFAR-10 // CIFAR-100

● SP-CIFAR-10 // SP-CIFAR-100
○ Subpopulation shift from CIFAR-10 // CIFAR-100

● 7 smaller datasets for few-shot adaptation

[goo.gle/plex-paper]

https://arxiv.org/abs/1707.02968
https://arxiv.org/abs/2207.07411


Language Datasets & Tasks
Pretraining

● C4 (Colossal Clean Crawled Corpus)
○ 355M webpages (~7 TB) from Common Crawl 

scrapes for unsupervised masked language 
modeling (MLM) pretraining.

Tasks
● Natural Language Inference (NLI).

○ Predict whether sentence1 entails sentence2.
○ "A boy crying; The boy is not happy." ➞ "entail".

● Toxic Comment Detection.
○ Predict toxicity of a sentence.
○ "I'm gay and I'm proud." ➞ "non-toxic"

● Natural Language Understanding (NLU).
○ Predict Vertical, Domain, Intent of a user query.
○ "Turn on radio" ➞ "Vertical=Media; Domain=Radio; 

Intent=TurnOn".

Evaluation

In-domain
Generalization

Out-of-Domain 
Generalization

Subpopulation 
Shift

Natural
Language
Inference

MultiNLI, 
Matched split.

Sentences from 
multiple genres.

MultiNLI, 
mismatched split

Sentences from genres 
different from matched.

HANS

Adversarial examples 
attack heuristics that 

neural models rely on.

Toxic
Comment
Detection

WikipediaTalk

200K Wikipedia 
editor conversations.

CivilComments

2M news website 
comments 2015-2017

CivilComments-I
dentity

Subset of CivilComments 
with socio-ethnic identity 

mentions

NLU NaLUE.

Chatbot queries from 
18 verticals, 77 

domains, and ~260 
intents 

NaLUE,
Out-of-scope Set

Out-of-scope queries 
never appeared in 

training set.

NaLUE,
Tail Intents

Subset of tail intents 
from NaLUE

[goo.gle/plex-paper]

https://www.tensorflow.org/datasets/catalog/c4
https://commoncrawl.org/
http://nlpprogress.com/english/natural_language_inference.html
https://cims.nyu.edu/~sbowman/multinli/
https://cims.nyu.edu/~sbowman/multinli/
https://arxiv.org/abs/1902.01007
https://www.tensorflow.org/datasets/catalog/wikipedia_toxicity_subtypes
https://www.tensorflow.org/datasets/catalog/civil_comments
https://www.tensorflow.org/datasets/catalog/civil_comments#civil_commentscivilcommentsidentities
https://www.tensorflow.org/datasets/catalog/civil_comments#civil_commentscivilcommentsidentities
https://arxiv.org/abs/2207.07411


Base models

Vision: Vision Transformer
● Large (L/32)

○ ~325M parameters
● Base (B/32)

○ ~87M parameters
● Small (S/32)

○ ~22M parameters

[Dosovitskiy+ 2021]

Text: T5 1.1
● Large

○ ~880M parameters
● Base

○ ~250M parameters
● Small

○ ~77M parameters

[Raffel+ 2020]

[goo.gle/plex-paper]

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2207.07411


Plex’s key ingredients
● Massive pre-training. Pretrain on JFT with 300M to 4B images; and C4 for text.

● Base Transformer architecture. ViT for vision, T5 for text.

Last layer changes

Gaussian process layer from SNGP (reduces 

confidence far away from training data). 

Heteroscedastic layer (aleatoric label uncertainty).

Efficient ensembles with BatchEnsemble.

[Wen+ 2020]

[goo.gle/plex-paper]

http://arxiv.org/abs/2002.06715
https://arxiv.org/abs/2207.07411


Final Plex models

Vision: ViT-Plex
● Vision Transformer (ViT) Large
● Pretrained with BatchEnsemble 

(final few layers).
● Finetuned with BatchEnsemble (still 

final few layers) + Heteroscedastic 
last layer.

Text: T5-Plex
● T5 1.1 Large
● Uses existing pretrained checkpoint.
● Finetuned with BatchEnsemble 

(final few layers) + GP last layer.

[goo.gle/plex-paper]

https://arxiv.org/abs/2207.07411


Results: ViT-Plex and T5-Plex [goo.gle/plex-paper]

https://arxiv.org/abs/2207.07411


Highlights: Selective Prediction [goo.gle/plex-paper]

https://arxiv.org/abs/2207.07411


Highlights: Structured Open Set Recognition



Highlights: Zero-Shot Open Set Recognition

O
O

D 
In

pu
t

Tr
ai

ni
ng

 E
xa

m
pl

e

Hen-of-
the-wood

Florist shopAquarium

Pelican

Rainforest

Flowerpot

[goo.gle/plex-paper]

https://arxiv.org/abs/2207.07411


Highlights: Label Uncertainty [goo.gle/plex-paper]

https://arxiv.org/abs/2207.07411


Highlights: Active Learning [goo.gle/plex-paper]

https://arxiv.org/abs/2207.07411


Model Ablations: Impact of Scale (Vision (top) & Language (bottom))

* Reliability score is a normalized average over all task metrics: 139 for vision and 54 for language (see Appendix B of the paper).



Model Ablations: Impact of Uncertainty Model [goo.gle/plex-paper]

https://arxiv.org/abs/2207.07411


Relationship Between Reliability Tasks

Most tasks correlate highly ⇒ 
How well you fit pretraining data is a large predictor of downstream performance.

[goo.gle/plex-paper]

https://arxiv.org/abs/2207.07411


Wrapping up



High-quality implementations of baselines in 
TensorFlow and JAX on a variety of tasks.

Ready for use:  65+ baselines across 9+ 
datasets and 14+ methods, including:

● Vision Transformer 
● T5X-family
● Wide ResNet 28-10 on CIFAR
● ResNet-50 and EfficientNet on ImageNet
● BERT on Intent Detection & Toxicity Detection

Used across 15+ projects at Google.

Collaboration with OATML @ Oxford, unifying 
github.com/oatml/bdl-benchmarks.

Uncertainty Baselines
github.com/google/uncertainty-baselines

http://google3/third_party/py/edward2/baselines/cifar
http://github.com/oatml/bdl-benchmarks
http://github.com/google/uncertainty-baselines


● Uncertainty & robustness are critical problems in AI and machine learning.

● Best performance achieved by composing orthogonal techniques
○ Single model uncertainty
○ Ensembling multiple neural networks
○ Imposing inductive biases on representations

● Open questions
○ Understand relationship between different types of OOD shifts
○ What other tools do we need in the “composable” toolkit?

● Links to papers available in my webpage: http://www.gatsby.ucl.ac.uk/~balaji/

Takeaways

http://www.gatsby.ucl.ac.uk/~balaji/


Thank you! Questions?



Appendix



Survey papers

● A Survey of Uncertainty in Deep Neural Networks. J. Gawlikowski et al., arXiv 2107.03342.
● A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges. M. Abdar et al. arXiv 

2011.06225

Bayesian neural networks

● A practical Bayesian framework for backpropagation networks D. MacKay Neural Computation 1992
● Keeping Neural Networks Simple by Minimizing the Description Length of the Weights. G. Hinton, D. Van Camp. COLT 1993.
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